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EQUALITY CLASSES OF MATRICES*
DANIEL HERSHKOWITZt AND HANS SCHNEIDERft}
Abstract. Recent results of Neumaier for irreducible matrices on the equality case of a classical matrix

inequality due to Ostrowski are generalized to general matrices. Several graph and number theoretic concepts
are employed in the proof of various further results.
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1. Introduction. Let 4 be a complex #» X n matrix and define the absolute value
matrix B = |4| of A by b; = |ayl, i, j = 1, - - -, n. Let p(4) be the spectral radius of 4.

Let % be the set of all complex matrices A such that p(|4|) < 1. In [7] Ostrowski
proves the now very well known result that, for 4 € %,

(1.1) lT-A)'=Ud—14)7,

where the inequality is entrywise.
In [6] Neumaier shows that for 4 € #, the set of n X n irreducible matrices A € %,

(1.2) (=)' [=a— 4D,
if and only if
(1.3) all circuit products of A4 are positive.

It is well known ([2], [3]) that for irreducible A4, (1.3) is equivalent to

A is diagonally similar to | 4|, i.e., there exists a diagonal matrix X such

A4 hat 4 = x|dlx".

Neumaier also shows in [6] that the condition
(1.5) (I—AY=U— A", forsomei,j, 1=ij=<n,

which is apparently weaker than (1.2), is in fact equivalent to (1.2)—(1.4) for A € #. (We
have stated special cases of the results of Ostrowski and Neumaier, from which, however,
the general theorems may easily be derived.)

In this paper we generalize Neumaier’s results in various directions. We consider
the equality (1.2) for general 4 € %, omitting the requirement of irreducibility. We use
the concept of two-twisted chain of the graph G(4) of A, which was defined in [5] (see
also § 2 of this paper). Intuitively, a chain in a directed graph is obtained by putting a
pointer at a vertex and moving it either in the direction or against the direction of a
connected sequence of arcs to another vertex. Each change in direction is a twist. A two-
twisted chain (e.g., cycle) is a chain with at most two twists. Thus, a circuit (directed
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cycle) is a special case of a two-twisted cycle. We show that, for 4 € %, condition (1.2)
is equivalent to

(1.6) all cycle products of A corresponding to two-twisted cycles are positive

(and other conditions). This generalizes (1.3).

If Cis an s X s matrix and 4 is an n X n matrix, where s < n, we generalize both
the Kronecker and Hadamard products in [4] by defining the # X n matrix C XX A, see
also § 3. Thus, if 4 is partitioned into s* matrices 4, i, j = 1, -+ , 5, then C XX A4 is
the matrix whose blocks are c;4;, i, j = 1, -+ , 5. Here we show that if 4 € % is in
Frobenius normal form then A satisfies (1.2) if and only if

A is diagonally similar to C XX |A|, where C is an upper triangular
(1.7) § X s matrix (s = n) such that |c;{is 1 or 0, ¢;is L or 0, i,j=1,---,s,
and zC satisfies (1.2) for0<z< 1.

This generalizes (1.4).

We also generalize (1.5) by defining the concept of a G(A4)-access cover, see also
§ 2. A subset I of (n) X (n), where (n) = {1, - - - , n}, is a G(4)-access cover if for each
(i,j) € (n) X {n) there is an (A, k) € I" such that / has access to i in G(4) and j has access
to k in G(4). We observe that {(i, j)} is a G(4)-access cover for all (i, j) € (n) X (n) if
and only if A4 is irreducible (or equivalently, G(A) is strongly connected). Thus, if I' is a
G(A)-access cover and 4 € %, then (1.2) is equivalent to

(1.8) l(I—A4) ;= —14l);' for (i,j)eT.

The results above may be found as part of Theorem 5.14.
It is easily seen that (1.2) is equivalent to

(1.9) P

seN

=2 4

seN

for A € %, where N is the set of natural numbers. Since, for all subsets S of N,

(1.10) S 4

seS

=2 4P,
ses

it is natural to define Equ (&, T, S) to be the set of all 4 € &/ such that

(1.11) S 4

S€S
where o/ € %, T < (n) X {(ny and S < N.

The equivalences stated above, and others, are stated in terms of Equ (%, T', N). It
is clear that Equ (&7, I, S) 2 Equ (&/, T, N) for S = N. We therefore call a subset S of
N (o, I')-sufficient if Equ (&, T, S) = Equ (&, T, N).

We give conditions equivalent to (#, (n) X {(n))-sufficiency and (%, (n) X {n))-
sufficiency. The general problem of characterizing (&7, I')-sufficient sets and minimal
(o, I')-sufficient sets, for o/ < % and T' = (n) X {n), is open.

Section 2 contains graph theoretic preliminaries. Section 3 contains preliminaries
from combinatorial matrix theory. The basic definitions and results on Equ (<7, T, S)
are collected in § 4. Sections 5 and 6 contain our principal results on Equ (&7, I', N) and
(#, IN-sufficient and (%, I')-sufficient sets.

= 2 |4 for (i,j)€T,

ses
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2. Graph theoretic definitions and preliminaries.

DEFINITION 2.1. A (simple, directed) graph G = (V, E) is a pair of finite sets with
E < VX V. An element of Vis called a vertex of G, and an element of E is called an arc
of G. Wecall G = (V', E')a subgraph of Gif V' < Vand E' c E.

DEFINITION 2.2. Let G be a graph. A chain in G of length s from a vertex ip to a
vertex i; of G is a sequence

(23) 'Y=(i03el,il,e2’i29 ”'sis—hesais)

where either e, = 1 and (i, , i,) is an arc of G or ¢, = —1 and (i, i,—) is an arc of G,
p=1,+-,5 The arc (ip—y, ip), [(ip, ip-1)], 1 = p = s,issaid to lieon y if e, = 1
[e, = —1]. The length of a chain v is denoted by |y|. The chain « is simple if the
vertices iy, * ** , i; are distinct. The chain « is closed if iy = i, and v is called a cycle
if it is closed and the vertices i, - - , i are distinct. A chain given by (2.3) such that
e; = - -+ ¢, = 1 1is called a path. A path that is a cycle is called a circuit. A closed chain
of form

‘Yz(i()ael’il’ e 9is,—es,is—19”'3_el3i0)

will be called trivial. The empty chain & will be considered a chain of length 0 from any
vertex to itself and is defined to be simple. The set {iy, - - - , in} is called the vertex set
of the chain g given by (2.3).

Thus the empty chain is the only simple circuit.

Intuitively, the chain (i, e¢,j) is a step from vertex i to vertex j along the
arc (i, j) if e=1 and a step from i to j along the arc (j, i) if e = —1. We normally
write [ = j or i < j in place of (i, e, j) accordingly as ¢ = 1 or e = —1. For example,
l1—>2-—>3-—>lisacircuit and 1 = 2 — 3 <« 1 is a cycle. Note also that as a
consequence of the above definition certain chains are cycles that normally are not con-
sidered as such, e.g., 1 = 2 < 1. It would make no difference to our results to elimi-
nate such cycles from consideration.

DEFINITION 2.4. A vertex i has access to a vertex j in a graph G if there is a path
from i to j in G and we write i >— jor j —< i. If U, W are subsets of the vertex set ¥ of
G, then the notation U >— W indicates that every vertex of U has access to every vertex
of W.

Observe that a vertex i has access to itself since & is a path from i to i.

DEFINITION 2.5. A graph G is strongly connected if every vertex of G has access to
every vertex of G. A subgraph H of G is called a component of G if H is a maximal
strongly connected subgraph of V, viz. H is strongly connected but no subgraph properly
containing H is connected.

DEFINITION 2.6. Let G = (V, E) be a graph and let (i, j), (h, k) € V X V. Then
(i, j) is a G-access cover for (h, k) (or (i, j) G-access covers (h, k)) if i >— h and k >— j.
Let T be a subset of V' X V. Then the set of all (4, k) that are G-access covered by ele-
ments of ' will be denoted by Ag(T"). If A = As(T), we shall say that I' is a G-access
cover for A (or that I' G-access covers A). If « is a chain in G [G' is a subgraph of G]
with vertex set V', then I' will be called a G-access cover for a [G'] if T' access covers
V' X V'. A G-access cover for V' X V will be called a G-access cover.

It is easy to show that A considered as an operator from the set of subsets of
V X Vinto itself is a closure operator in the sense of [1, p. 42].

The following lemma is clear:

LEMMA 2.7. Let G = (V, E) be a graph. Then the following conditions are equivalent .

(i) G is strongly connected.
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(ii) Every nonempty subset of V X V is a G-access cover.

(iii) Every pair (i, j) € V X V is a G-access cover.

Remark 2.8. Let G be a graph and let H;, - - - , H, be the components of G with
vertex sets V7, - -+, V;, respectively. It is possible to order the components of G so that

Vo>—V,=>p<gq forp,g=1,---,s.

DEFINITION 209. (i) Let 8 and v be the chains (i, e, - ,e i) and
o, f1, =+ 5 fi» Jo), respectively. If i, =j, we define the concatenated chain By by
(io, e, , €, is, f1, ** , fi, Jo). Af i # jo then By is not defined.)

(ii) Let o and B be chains. We call « an extension (chain) of 8 (and 8 a subchain
of &) if 8 = 8,8, and a = B,a/8; where B, 8,, and o' are chains (which may be empty).
Also, an extension of an extension of 3 is defined to be an extension of 3.

It is easy to see that if « is an extension of 8 then o and 8 may be written in the
forms 8 = 6,8, -+ B, and a = aBia; - -+ B,a,, where the a;, i = 0, --- , p, Bi,
i=1,---,parechainsand o;, i = 1, - -+, p — 1 is closed.

DEFINITION 2.10.

(i) Let v be the chain given by (2.3). Then the reverse chain of v is defined to be
(is, —€s, Is—1, *** , —ey, lp), and is denoted by v*.

(ii)) We call e, [e;] the initial [ final] sign of .

DEFINITION 2.11. Let v be a chain given by (2.3).

(i) Ife, # €,+1, | = p < s, then we say that v has a twist at p (or that p is a twist
of ). If v is a closed chain then we allow p = 0 and we let ¢, = ¢;.

(i) If v has exactly k twists then v is said to be exactly k-twisted and we put
i(y) = k.

(iii) If #(y) = m for an integer m then « is said to be m-twisted.

Note that if v is not closed then #(7) is equal to the number of sign changes in the

sequence ¢y, * - - , €. If v is closed then #(v) is equal to the number of sign changes in
the sequence ¢, - - - , €, €. Also note that a closed chain in form (2.3) may have a twist
at0, ---, s — 1 but not at s.

Observe that a chain [cycle] is O-twisted if and only if it is a path [circuit] or a
reversed path [reversed circuit], and that a closed chain has an even number of twists.

LEMMA 2.12. Let G be a graph.

(1) If a is a chain in G and v is a subchain of « then

(2.13) (y)SHa)+1.
(ii) If, further, a and v are closed then
(2.14) Hy) = Ha).

Proof. (i) Lety = v, '+ ypand a = agya; *** op-1Ypa,. We shall establish a
1 — 1 mapping of the set of twists of v (excluding a possible twist at 0) into the set of
twists of . Suppose that |a;| = 5, i =0, -+ ,pand that [y =¢t,i=1, ---, p. Let
l=r=t + - +t,and suppose that v has a twist at 7. Then

r=t|+~~'+t,~+q

where0 = i<pandl1=g=t,,.Ifg<t;y,then ahasatwistatr+ so+ --- + 5;. If
q = t;+; then i < p — 1 (since y does not have a twist at ¢, + - -+ + ¢,) and, since the
final sign of v, and the initial sign of v, , are inequal, it follows that « must have a
twist at r + 5; + -+ - + 5; + ¢ for some ¢’ satisfying 0 = ¢q; = 5, ,. This proves the
existence of the claimed injection and (i) follows.

(ii) If « and v are closed, then #(«) and #(y) are both even and (ii) follows
from (i). O
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3. Definitions and preliminaries in combinatorial matrix theory.
DEFINITION 3.1. Let ¢ be a complex number. The sign of ¢ is defined by

c/ld, ifc#0.
n =
sgn () [0, ifc=0.
We call a complex number c a sign if |d| is either O or 1. If 4 € C™, then we call 4
a sign matrix if ajisasign fori,j=1, -+, n.
DEFINITION 3.2. Let 4 € C™,
(i) Then C = |4| € C™ is defined by ¢; = |ay for i, j=1, -+ , n.
(ii) The matrix A4 is called nonnegative (4 2 0)if a; 2 0,i,j=1, -, n.
DEFINITION 3.3. If A € C™ (the set of n X n complex matrices) then the graph G(A)
of A is defined to be ({n), E) where (n) = {1, -+, n} and (i, j) € E whenever a; # 0.
DEFINITION 3.4. Let A € C™ and let o = (io, ey, iy, - * * , €, iy) be a chain in G(4).

Then we define the chain product J1.(4) by

q
[Tu)= 1] ag_,,,.
pr=1
We put [1x(4) = 1. If a is a cycle (path, circuit) we call the [],(4) a cycle (path,
circuit) product.
Note that if « = (iy, €y, iy, - - -, €, I,) is a closed path and

Bz(ik’ek+la'”’eq’i()aela”"ik), O§k<q’

then [1.(4) = [144).

DEFINITION 3.5. Let 4, B € C™. We say that 4 and B are diagonally similar if there
exists a nonsingular diagonal matrix X such that B = X '4X, and we say that 4 and B
are sign similar if there exists a nonsingular diagonal sign matrix X such that B = X" '4X.
We say that 4 and B are permutation similar if there exists a permutation matrix P such
that B = P~'AP. We say that 4 and B are diagonally equivalent if there exist nonsingular
diagonal matrices X and Y such that B = YAX.

DEFINITION 3.6. Let A, B€C™. We say that 4 and B are c-equivalent if
G(A) = G(B) and for all circuits a in G(4) we have [],(4) = [1(B).

Definition 3.6 and some implications may be found in [2]. In particular, it is well
known that for irreducible matrices 4 and B, the matrices 4 and B are diagonally similar
if and only if they are c-equivalent (see [2, Thm. 4.1]).

DEFINITION 3.7. If ¥V, W < (n) and 4 € C", then A[V, W1 is the submatrix of A
whose rows are indexed by V" and whose columns are indexed by W (in their natural
orders).

DEFINITION 3.8. Let 4 € C™,

(i) The matrix A4 is called irreducible if G(A) is strongly connected.
(ii) The matrix A is said to be in Frobenius normal form if A may be written in
the block form

All A12 e Als

(3.9) a= |9 A= :
o --- 0 A,
where A4;; is an irreducible square matrix, i = 1, - - -, s.

(iii) Let B € C"™. The matrix B is said to be a Frobenius normal form of A if B is
in Frobenius normal form and if 4 and B are permutation similar.
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Remark 3.10. Let A € C™. We may obtain a Frobenius normal form of 4 by reor-
dering the vertices of G(A) so that V), consists of consecutive integers,p = 1, - - - , s, and
so that (2.8) holds. It follows from Definition 3.8 that a Frobenius normal form of 4 is
unique up to permutation similarity. The diagonal blocks of a Frobenius normal form
of A will be called the components of A.

In [4, § 4] we introduced the inflation product C XX A4 of two matrices where
C e C*® A€ C™ and A4 is partitioned into s blocks. In this paper we use the notation
C XX A only in the special case when 4 is in Frobenius normal form and C satisfies
(3.12) below.

DEFINITION 3.11. Let 4 € C™ be in Frobenius normal form (3.9) and suppose that
C € C* satisfies

3.12) Cis a sign matrix,
(3.13) cpisequaltoOor 1, pe(s),
(3.14) Cpg=0<A4,,=0, p,ge(s).

Then the matrix B= C XX A€C™ is defined to be the matrix with blocks
Byg = CpgApgs P, 9 € <S>

4. Preliminaries on equality classes and sufficient sets.
Notation 4.1. We use the following notation:
N =theset {0, 1,2, ---}
A = the set {(i, i) : i € {n)}.
Notation 4.2. Let A € C™,
p(A) = the spectral radius of 4.
U, = the set {4 € C"™ : p(|4]) < 1}.
We normally write % in place of % ,,.
F = the set of irreducible matrices contained in %.
If G = ({(n), E) is a graph, then %(G) is the set {4 € % : G(4) = G}.
Note that for every 4 € C* we have c4 € % for all complex numbers ¢ whose
absolute value is sufficiently small. Let 4 € % and let S = N. Observe that

2 A

seS

4.3) = 2 P=s 2 |AP=d-14)7"

seS SEN

Hence the series in (4.3) converge. In order to discuss the cases when the equalities hold
in (4.3) we shall make several definitions. The first of these allows us to discuss the case
of equality in the first inequality in (4.3).

DEFINITION 4.4. Let T'={(nyX(n), let Sc N, and let &/ <%. Then the
(o, T, S)-equality class is defined to consist of all 4 € 7 such that

24]) (),

sES

for all (i, j) € T, and it is denoted by Equ (<, T, S).

The first two parameters in Equ (&, T', S) are optional and default to % and
(n) X {(n), respectively. Thus (by convention)

Equ (T, S) = Equ (%, T, S),

Equ (#4, S) = Equ (+, (n) X (n), S),

Equ (S) = Equ (%, (n) X {n), S).

We have the following easy but fundamental lemma.

LEMMA 4.6. Leti,j€(n)yandlet S < N. Then the following conditions are equivalent:

45) (
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(1) 4 € Equ (3, )), S).

(i1) sgn (JT(4)) = sgn (I15(4)), for all paths a, B from i to j in G(A) such that
ladl, 18] € S.

Proof. Note that (i) is equivalent to (4.5) by definition of Equ ((i, j), S). The equiv-
alence of (i) and (ii) follows from the conditions for equality in the triangle inequality
and the result that for i, j € (n) and s € N we have

4.7) 45= 2 I«
o € P(i,j;s)
where P(i, j; s) is the set of all paths from i to j of length s in G(A). O
The proof of the following lemma is easy and will be omitted.

LEMMA 4.8. Let o/ < B < U and let T, I, A be subsets of (n)y X {n) such that
F'cA LaeScTc N. Then

4.9) Equ (#4,T,S)=Equ(4,T,S)N <,
(4.10) Equ (&, TUT",S)=Equ (&, T,S)NEqu (&, T",5),
(4.11) Equ («, A, T)=Equ (4,T,S).

Let S < N. Then by Lemma 4.8 it follows that Equ (&, T', N) < Equ (<, T', S) for
all o/ < % and T < (n) X (n). This remark motivates the following definition which
allows us to discuss the case of equality in the second inequality in (4.3).

DEFINITION 4.12. We say that the subset S of N is (&, I)-sufficient if
Equ (o, I', S) = Equ (4, T, N). We say that S is minimal (o4, I')-sufficient if S is
(o, I)-sufficient but no proper subset of S is (<, I')-sufficient. We say that S is optimal
(o, I)-sufficient if S is an (&, I')-sufficient of minimal cardinality, viz. there exists no
(o, I')-sufficient set of lower cardinality. The two parameters in the term (minimal,
optimal) (., T')-sufficient are optional and default to % and (n) X (n), respectively. Thus
S is I'-sufficient means that S is (%, I')-sufficient, S is .o/-sufficient means that S is
(o4, {ny X {n))-sufficient, S is sufficient means that S is (%, (n) X {(n))-sufficient.

Of course, an optimal (<7, I')-sufficient set is minimal (&, T')-sufficient.

LEMMA 4.13. Let o =« B < U, let T = (ny X (ny,and let S< T < N.If S is
(B, T)-sufficient then T is (4, I)-sufficient.

Proof. By Lemma 4.8 we have

Equ (4,T,N)cEqu (4,T,T)=Equ (4,T,S).
But by our hypothesis Equ (4, T, S) = Equ (4, T, N) and it follows that
Equ (4,T,T)=Equ(%4,T,N).
Therefore, by (4.9), it follows that
Equ (&, T, T)=Equ(#4,T,T)N o/ =Equ (4,T,N)N o =Equ («, T, N). O

5. The equality class of N. In this section we prove necessary and sufficient con-
ditions for 4 € Equ (T, N) for irreducible and general 4 € %. In view of Definition 4.4,
A € Equ (T, N) is equivalent to

(.1 l7—A)"ly=0U—14D;" for (i,j)€T.

THEOREM 5.2. Let i, je{ny, and let A be a subset of (n) X (n)y such that
(i, j) € A and (i, j) access covers A. Let A € %U. Then the following conditions are equivalent.
(1) 4 € Equ ((i, ), N).
(i) sgn (IT(4)) = sgn (I15(A4)), for all paths o, B from i to j in G(A).
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(i) sgn (I1.(4)) = sgn (I14(A4)), for all paths «, B from h to k in G(A), where
(h, k) € A.
(iv) A €Equ (A, N).

(v) Both
(@) sgn (I15(4)) = sgn (I1,(A)), for all simple paths B, v from i to j in G(A)
and
(b) If « is a circuit of G(A) which is G(A)-access covered by (i, j) then
[1a(4) > 0.

(vi) All chain products of two-twisted closed chains of G(A) which are G(A)-access
covered by (i, j) are positive.

(vii) All cycle products of two-twisted cycles of G(A) which are G(A)-access covered
by (i, j) are positive.

Proof. We shall show that (i) <> (ii) = (iii) = (iv) = (i), (ii) < (v), and (ii) <
(vi) < (vii).

(1) <> (ii). This is given by Lemma 4.6.

(ii) = (iii). Suppose (ii) holds. Let (4, k) € A and let o and (3 be paths from A to k
in G(A). Since (i, j) is a G(d4)-access cover for (h, k) there exist paths v and é in G(4)
from i to & and k to j, respectively. Since

H‘ya6(A) = H'yﬂﬁ(A)
by (ii), and since

T, es(4) = I1,(4) [1a(4) ITs(A4),
Hyﬂ&(A) = H'y(A) Ha(A) Ha(A),

we obtain (iii).

(iii) = (iv). By (4.10) and Lemma 4.6.

(iv) = (i). By (4.11), since (i, j) € A.

(ii) = (v). Suppose (ii) holds. Then obviously we have (a). To prove (b), let
a = (iy, * - , Is) be a circuit of G(4) that is G(A4)-access covered by (i, j). Then there is a
vertex k of a for which there exist paths 6 from i to k and ¢ from k to j. Without loss of
generality we may assume that k& = i,. By (ii) the path products corresponding to the
paths 6y and 6oy have the same (nonzero) sign. It follows that J].(4) > 0 and (v) is
proved.

(v) = (ii). Suppose that (a) and (b) hold. Let 6 be a path in G(4) from i to j.
Then [],(4) is a product of [14(4) and factors of type [1.(4), where 8 is a simple path
from i to j and « is a circuit of G(4) for which (i, j) is a G(4)-access cover. By (b),
sgn (I1s5(4)) = sgn (I15(4)). Hence it follows from (a) that products corresponding to
every pair of paths from i to j have the same sign.

(ii) = (vi). Let a = (iy, ey, - ** , i,») With iy =i, be a two-twisted closed chain
which is G(A4)-access covered by (i, j). If f(a) = 0 then the positivity of [1.(4) follows as
in the proof of (ii) implies (v) with “circuit” replaced by “closed path.” Suppose
#(a) = 2. Let  have twists at p and g, respectively. Without loss of generality we may
assume that p = 0 and e; = 1. Observe that ¢, = —1. Let oy = (i, - " , i,) and let
ay = (ig, *** , Iy)*. Observe that both «, and a, are paths from i, to i,. Since (i, j) is a
G(A)-access cover for a, there exists paths ¢ from i to iy and ¥ from i, to j. By (ii), the
nonzero path products corresponding to da;¥ and dayy have the same sign. Thus the
path products corresponding to «; and &, have the same sign. Since o = a0 our claim
follows.
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(vi) = (ii). Let « and B be two paths from i to j in G(A4). Then aB* is a two-twisted
closed chain (possibly trivial). Since

[ag(4) = I[1a(A)/T15(4)
clearly (vi) implies (ii).

(vi) = (vii). This is trivial.

(vii) = (vi). Assume that (vii) holds and let « = (iy, - - - , iy), ip = i,, be a two-twisted
closed chain which is G(A)-access covered by (i, j). The proof is by induction on the
length 5. If s = 1, then « is a cycle and the result holds. So let s > 1 and assume that
I1,(4) > 0 for every two-twisted closed chain v that is G(4)-access covered by (i, j) and
such that |y| < s. If a is a cycle the result holds. Otherwise, there exist pand ¢, 0 < p <
q < s, such that 6 = (i, - - - , ig) is a cycle. Further, 8 = (ip, - - , iy, ig41, - " , i) isa
closed chain of length less than s which is G(A)-access covered by (i, j). By Lemma 2.12,
6 and B are two-twisted and hence by the inductive assumption the corresponding chain
products are positive. But [[.(4) = [15(4) [15(4), and hence [],(4) > 0. We now de-
duce (vi). O

It is easy to construct an example to show that the assumption (i, j) € A cannot be
omitted from the hypothesis of Theorem 5.2. However, we have the following corollary.

COROLLARY 5.3. Let A€ C™ and let i, j, h, k € (n). Let (i, j) be a G(A)-access cover
Jor (h, k). Then Equ ((i, j), N) < Equ ((h, k), N).

Proof. Let A € Equ ((i, j), N). Let « and 8 be paths in G(A4) from A to k. Since
(i, j) G(A)-access covers (h, k), there exist paths v from i to 4 and é from k to jin G(A).
By Theorem 5.2,

H'ya&(A) = H’yﬂ&(A)
and it follows that

I1(4) = ITs(A).

Hence, by Theorem 5.2, 4 € Equ ((A, k), N). O
COROLLARY 5.4. Let G = ({n), E) be a graph and let T < A = Ag(T) < (n) X
(n). Then

Equ (%(G), A,N)=Equ (%(G), T, N).
Proof. Since T' < A, it follows from (4.11) that
Equ (#(G), A, N) < Equ (%(G),T, N).

Hence we need only prove that

(5.5) Equ (%(G),T,N)<= Equ (%(G), A, N).

By (4.10) we have

(5.6) Equ (%(G),T,N)=N{Equ (%(G),(i,j),N):(i,j)€T}.
and similarly

5.7 Equ (%(G), A,N)=N{Equ (%(G),(h,k), N):(h, k)€ A}.

It follows from the definition of A;(T') that for each (A, k) € A there exists (i, j) € T
such that (i, j) G-access covers (4, k). Hence (5.5) now follows from (5.6), (5.7), and
Corollary 5.3. O

As a special case of Theorem 5.2 we obtain the following corollary, which is essen-
tially known.
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COROLLARY 5.8. Let A € %. Then the following are equivalent:

(i) 4 €Equ (A, N).

(ii) Every circuit product for G(A) is positive.

Proof. (i) = (ii). Let 4 € Equ (A, N). Since A is a G(A4)-access cover for every circuit
it follows by Theorem 5.2, Part (v) that every circuit product is positive.

(ii) = (i). This follows from Theorem 5.2, Part (v), since the only simple paths from
ito i, i € (n), are circuits. O

For irreducible matrices there is the following stronger result which is essentially
due to Neumaier [6] and which motivated our investigations.

COROLLARY 5.9. Let T' be a nonempty subset of (ny X (n) and let A € . Then
the following are equivalent:

(i) 4 € Equ (N).

(i) 4 € Equ (T, N).

(iii) Al circuit products of G(A) are positive.

(iv) All closed path products of G(A) are positive.

(v) A is sign similar to |A|.

Proof. (i) = (ii). This implication follows from Lemma 4.8.

(i) = (iii). Suppose that (ii) holds. Since G(A4) is strongly connected, it follows from
Lemma 2.7 that I' is a G(4)-access cover for {n) and (iii) follows immediately from
Theorem 5.2.

(iii) = (iv). Every closed path product is a product of circuit products.

(iv) = (v). Suppose (iv) holds. Then corresponding circuit products of 4 and |4| are
equal. Thus, since A is irreducible, as is well known (e.g., [2, Thm. 4.1]), there exists a
diagonal matrix X such that X~'4X = |4|. Let D = |X"!|X. Then D is a diagonal sign
matrix satisfying D™'4D = | A|.

(v)=(i). Let D be a diagonal sign matrix such that D '4D =|A|. Since
|4]* = D™'4*D and p(4) < 1, it follows that

D\I-A)"'D=U-|4)™"

Hence, since D is a diagonal sign matrix, (5.1) holds for I' = {(n) X {(n) and (i) is
proved. O

LEMMA 5.10. Let A =Z 0 be an n X n matrix in Frobenius normal form and let C
be an (upper triangular) s X s matrix satisfying (3.12)-(3.14). Let B = C XX A. Let
i, j € {ny and suppose that a; is an element of Ay, where 1 = p, q = s. Then for every
path 8 in G(B) from i to j there is a path v in G(C) from p to q such that

(5.11) sgn ([1s(B)) =I1,(C).

Conversely, for every path v in G(C) from p to q there is a path 3 in G(B) from i to
J such that (5.11) is satisfied.
Proof. Suppose the rows and columns of the component A4,, of 4 are indexed by

the subset V, of (n),r =1, -+, s. Since 4 and B are in Frobenius normal form, there
existp,, t=0,---,k, 1 =p,=swithp,=pandp,=qandi,jinV,, t=0,--- ,k,
with iy = i and ji = j, such that

(5.12) B =Bo01B: - - * B,

where §, is a path from i, to j,in G(B,,,), t =0, -+ ,kand 6, = j,_, > i, t=1,---,
k.SinceA=0and ¢y, =1or0,t=1, -+, kand ¢, = 0 if and only if By, is a zero

1 X 1 block in which case 8, is empty, we have [15(B) > 0 and [I;(B) = ¢,,,- Hence
if we define

(5.13) Y=Do=> " > Dk,
then v is a path in G(C) from p to g such that (5.11) holds.
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Conversely, let B = C XX |4| and let vy given by (5.13) be a path in G(C) from

p to g. We may choose i, jy; € V,, t =0, -, k and paths §, from i, to j, in G(B,,),
t=0, -+, k. If §,is again defined tobe j,_; = i;,, t = 1, --- , k and B is defined by
(5.12) then (5.11) holds, since ¢,, 20, p =1, --- , 5. O

We now apply Theorem 5.2 to obtain the final result in this section.
THEOREM 5.14. Let A € U and let T be a G(A)-access cover. Then the following are
equivalent.
(i) A € Equ (T, N).
(i1) sgn (I1.(4)) = sgn (I15(A)), for all paths o, B in G(A) from i to j, where
(i, j))erl.
(iii) sgn (IT.(4)) = sgn (I14(A4)), for all paths a, B in G(A) from i to j, where
(i, j) € {n) X (n).
(iv) 4 € Equ (N).
(v) Both
(a) sgn (I15(4)) = sgn (I1.(4)), for all simple paths B, v in G(A4) from i to j,
where (i, j) € T,
and
(b) I1.(4) > 0 for all circuits o of G(A).
(v') Both
(@) sgn (I15(4)) = sgn (I1,(4)), for all simple paths B, v in G(A) from i to j,
where (i, j) € (ny X {(n),
and
) I1.4) > 0 for all circuits a of G(A).
(vi) All chain products of two-twisted closed chains of G(A) are positive.
(vii) All cycle products of two-twisted cycles are positive.
(viii) If A is in Frobenius normal form (3.9) then there exists an s X s sign matrix
C such that zC € Equ (%, N), for 0 < z < 1 and A is sign similar to C XX |A|.
Proof. The equivalence of conditions (i)-(vii) follows immediately from the equiv-
alence of the correspondingly numbered conditions in Theorem 5.2 and the fact that

Equ (T, N) =N {Equ ((i,j), N): (i,j) €T}

by (4.10). The equivalence of conditions (v) and (v') is easily derived by means of Con-
ditions (iv) and (v) of Theorem 5.2. So it suffices to prove the equivalence of Conditions
(iv) and (viii).

(iv) = (viii). Suppose that (iv) holds. Since 4,, is irreducible, p = 1, --- , s, by
Corollary 5.9 there exist diagonal sign matrices X, that satisfy X, '4X, = |4,,l,p=1, - - -,
ssLet X=X, ® --- ® X;and let B= X"'4X. Then |B| = |4|and B,,Z0,p=1, - - -,
s. We shall show that B = C XX | 4|, where C is a suitably chosen sign matrix satisfying
conditions (3.12)-(3.14).

Let 1 <4, j, h, k < n and suppose that both b; and by, are nonzero elements of B,,,
where 1 = p, g < s. Since B,, and B,, are irreducible, there exist chains « and v in G(B,,)
from i to A and in G(By,) from k to j, respectively. Since B, = 0 and B,, = 0, the products
[1.(B) and I1,(B) are positive. Let 8, 6 be chains 7 — k and i — j of length 1, respec-
tively. Then aBy and 6 are paths from i to j in G(B). Since A € Equ (N) we also have
B € Equ (N) and it follows from (ii) of Theorem 5.2 that

sgn ([1ag,(B)) = sgn (I1:(B)).

We deduce that sgn (by) = sgn (by).
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Thus we may define
0 if Bpy=0
7 {

sgn (by) if B,,#0, where b;; is any nonzero entry of B,,.

Then ¢, is equal to O or 1 since B,, 20, p =1, - -+, 5. Thus C € C* is an (upper
triangular) matrix that satisfies conditions (3.12)—(3.14). Further, B = C XX |4|.

We must still show that zC € Equ (%, N) for 0 < z < 1. Let p, g € (s) and let y be
a chain from p to g in G(C). Let i and j be elements of the sets ¥, and ¥, (which index
the corresponding components), respectively. Then by Lemma 5.10 there exists a chain
from i to j in G(B) such that (5.11) holds. It follows that path products corresponding to
any two paths from p to ¢ in G(B) have the same sign. Let 0 < z < 1. Since p(zC) < 1,
we now obtain zC € Equ (N) by Theorem 5.2.

(viii) = (iv). Suppose that (viii) holds and put B = C XX |4|. Let i, j € (n) and let
o, 3 be paths from i to j in G(B). It follows from Lemma 5.10 that there exists a path v
in G(C) such that

sgn (I1(B)) = sgn (IT(C)) = sgn ([14(B)).

Hence B € Equ (V) by Theorem 5.2. Since A is sign similar to B we obtain (iv). O
For the terminology and definitions employed in the following remark see [5].
Remark 5.15. (i) Our proof of (vii) = (vi) of Theorem 5.2 shows that every algebraic

two-twisted chain in a graph G is an integral linear combination of algebraic two-twisted

cycles.

(ii) Suppose that 4 € % and let W be the subspace of the flow space of G(A4) which
is spanned by the algebraic two-twisted closed chains of G(4). Let X be an integral spanning
set for W. If the chain products corresponding to the closed chains in X are positive,
then all chain products corresponding to chains in W are positive. Hence (vi) of Theorem
5.14 holds, and it follows that A € Equ (N). However, this conclusion does not follow
for arbitrary (nonintegral) spanning sets as one may see from Example 5.2 in [8]. A
similar remark may be made concerning (vi) of Theorem 5.2.

6. Sufficient sets. We begin this section with some applications of Corollary 5.4.

COROLLARY 6.1. Let G = ((n), E) be a graph. Let T = A = (n) X {(n) and sup-
pose that T is a G-access cover for A. Let S = N. If S is (U(G), T)-sufficient then S is
(U(G), A)-sufficient.

Proof. By (4.11) we have

(6.2) Equ (%(G), A, S)<Equ (%(G), T, S).
By assumption,

6.3) Equ (%(G),T, S)=Equ (%(G),T,N),

and by Corollary 5.4,

6.4) Equ (%(G),T, N)=Equ (%(G), A,N).

It follows from (6.2)-(6.4) that

Equ (%(G), A, S)<Equ (%(T), A, N).
But hence by (4.11) we obtain

Equ (%(G), A, S)=Equ (%), A,N)

which proves the corollary. O
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FiG. 1

Example 6.5. Let {n) = 4 and let G be given by Fig. 1. Let S| = {2, 3}. Then S,
is (%(G), (1, 4))-sufficient but not (%(G), (2, 4))-sufficient. Since (1, 4) is a G-access cover
for (2, 4), this shows that the condition I' = A cannot be omitted in Corollary 6.1.

Next let S; = {0} and let T' = {(3, 4)}. Then S, is (#(G), T')-sufficient but not A-
sufficient if (2, 4) € A = (n) X (n). By choosing {(2, 4), (3, 4)} = A, we obtain an
example with S, is (%(G), I')-sufficient but not (%(G), A)-sufficient even though
I' € A, and thus the condition that I' is a G-access cover for A cannot be omitted in
Corollary 6.1. Finally, observe that S, is (Z(G), A)-sufficient for any set A such that
(1,4) € A = (ny X {n). Choosing {(1,4),(2,4)} < A and putting I' = {(2, 4)} it fol-
lows from our previous remarks that S is (Z(G), A)-sufficient, but not (%(G), I')-suffi-
cient. Note that I' € A. Thus there appears to be no simple relation in general (with-
out the condition that I' is a G-access cover for A) between (%(G), I')-sufficiency and
(%(G), A)-sufficiency when T < A.

We shall give two proofs of our next corollary. The first is an application of Corollary
6.1 and the second is based directly on Lemma 4.6.

COROLLARY 6.6. Let T < A = (n)y X (n) whereT' + &. Let S N. If S is (¥, T)-
sufficient then S is (#, A)-sufficient.

First proof. Let A€ Equ (£, A, S). Then 4 € Equ (%(G(A)), A, S). Since

UGA) < S,

it follows from Lemma 4.13 that S is (Z(G(A)), I')-sufficient. But since G(A) is strongly
connected it follows from Lemma 2.7 that I' is a G(4)-access cover for A. Hence, by
Corollary 6.1, S is (%(G(A)), A)-sufficient. It follows that

A€Equ(%(G(4)), A,N)=Equ(#,A,N).

The result follows.

Second proof Let A € Equ (¥, A, S). Then, by Lemma 4.6, for all (i, j) € T,
sgn [1.(4) = sgn [14(4), for all paths «, 8 from i to j in G(4) such that |al, |8] € S.
Hence, since S is (£, I')-sufficient, it follows that 4 € Equ (#, I', N) and consequently
sgn [1.(A4) = sgn [14(4) for all paths «, B from i to j in G(A), where (i, j) € T, without
restriction on the lengths of @ and 8. Hence, also, sgn [],(4) = sgn [],(4) for all paths
v, 6 from A to k in G(A4), where (4, k) € A, since, by Lemma 2.7, these paths can be
extended to paths «, 8, respectively, from i to j with (i, j) € I'. But this proves that S is
(#, I)-sufficient. O

Of course, the most interesting case of Corollary 6.6 arises when

{G.)} =T A={nyx<n).
DEFINITION 6.7. Let .S be a nonempty subset of N. Then we define

D(S)={s—t:s,t€Sands>t},
ged (S) = the greatest common divisor of the elements of S,
aS)={ged(T):T< S, T# J},
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CD(S) = C(D(S)),
D(D) = (D) = &.
Observe that S = C(S). For example, if S = {3, 9, 13, 18} then

D(S)={4,5,6,9, 10, 15}

and CD(S) = {1, 2, 3, 4, 5, 6, 9, 10, 15}. Note also that C(C(S)) = C(S). Since
C(CD(S)) = CD(S), it follows that every element of CD(S) is a multiple of the minimal
element of CD(S).

LEMMA 6.8. Let S = N and let A € Equ (S). Then for a closed path o in G(A) with
length s € CD(S) we have [1.(4) > 0.

Proof. Let

a=io“)"'—’is_|—’io.

We first show [I.(4) >0 for s€ D(S). Then s =v — u, where u, v€S. Write
u = as + t, where a and ¢ are nonnegative integers and t < s. Then v = (¢ + 1)s + t. We
take B[vy] to be the path from i, to i, of length u[v] obtained by repeating a[a + 1] times
the path « and adjoining iy — - - - — i,. Since 4 € Equ (S), it follows from Lemma 4.6
that the nonzero path products [14(4) and [1,(4) = [15(4)[1.(4) have the same sign.
Hence [1.(4) > 0.

We now consider the general case of s € CD(S). Then there exist sy, s5, **+ , Sk in
D(S) whose ged is s. As is well known, there exist integers a;, i = 1, - -+ , k, such that
k
(6.9) s= 20 aisi.

i=1

Without loss of generality, assume that g; = 0 if and only if 1 = i = q. Let w; be the
closed path from iy to iy obtained by repeating s,/s times the path a. By the first part
of the proof, w; has a positive path product. Let u[v] be the closed path from i, to iy ob-
tained by repeating |a,| times the path w;, i =1, -+ ,t[i=t+ 1, ---, k]. By (6.9), v is
obtained by adjoining « to u. Since u and » have positive path products it follows that
I1.4) > 0. O

COROLLARY 6.10. If A € Equ (S) then A € Equ (A, CD(S)).

Proof. Immediate by Lemmas 6.8 and 4.6. O

The converses of Lemma 6.8 and Corollary 6.10 are false if n > 1 even for irreducible
matrices. In fact, we shall give an example of an irreducible matrix 4 and a set .S, for
which every closed path of length s € CD(S) has positive path product, yet the matrix 4
is not even in Equ ((;, i), S), for any i € (n).

Example 6.11. Let A be the n X n matrix with all entries on and above the diagonal
equal to 1 and all entries below the diagonal equal to —1. Let S= {1,2} and let
i, j € {n), i # j. Observe that the circuit product corresponding to i — i is positive
while the circuit product corresponding to i = j — i is negative. Hence, by Lemma 4.6,
A € Equ ((i, i), S). However CD(S) = {1} and all circuit products of length 1 are posi-
tive. Hence 4 € Equ (CD(S)), by Lemma 4.6.

THEOREM 6.12. Let S be a subset of N. Then the following are equivalent.

(1) S is A-sufficient.

(i) S is (F, A)-sufficient.

(iii) S is F-sufficient.

(iv) CD(S) contains {n).

(v) For all A € Equ (S), all circuit products of A are positive.

(vi) For all A€ Equ(S), 4 is diagonally similar to a matrix B such that all irreducible
diagonal blocks in the Frobenius normal form of B are nonnegative.
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Proof. (1) = (ii) is obvious.

(i) = (iii). By Corollary 6.6.

(iii) = (iv). Let k € {(n) and let \ be a nonzero complex number. Suppose that
k € CD(S). We shall prove the claimed implication by constructing an irreducible
n X n matrix A(k, N\) such that, for suitable A\, A(k, \) € Equ ((#, S)\Equ (#, N). If
k = 1, we let A(k, \) be the n X n matrix all of whose entries are \. If k€ {2, - - - , n}
we define A(k, \) = 4 by

ai,i+l=l, i=13.”’k_2’
ak“l,j:A’ j:k’...’n’
a]',1=1a j=ka'“,n,

a;=0, otherwise, i,je(n),
eg,forn=>5and k=4

Ak, N) =

—_——0 O O
SO OO —
S OO~ O
SO >»O O
SO >»OoO o

Note that for all k € (n) the matrix A(k, )) is irreducible and the length of every closed
path of A(k, \) is a multiple of k and, provided that k = 2, every circuit product of
A(k, \) equals \. For all k € <n>, it follows that for every closed path 6 of G(A(k, \)) we
have

(6.13) ITsAk, N)) =N,  where [8] = hk.

We now choose A depending on two cases.

(a) No multiple of k lies in CD(S). Then let A = —1.

(b) Some positive multiple of k is in CD(S). Then let pk be the smallest such multiple
and X be a primitive pth root of unity. Since k ¢ CD(S) we have p > 1.

Let i, j € {(n) and let « and 8 be paths from i to j in G(4). Suppose that |a| and |8]
belong to S and assume without loss of generality that |a| = |8]. Let d = |a| — |8|. Let v
be a path from j to i in G(A(k, N\)), which exists since A(k, A) is irreducible. Observe that
ay and By are closed paths and hence d = |ay| — |87/ is divisible by k.

Suppose first that d = 0. Then a7y and By are closed paths of the same length. It
follows from (6.13) that the closed path products corresponding to a7y and 8y are equal.
Suppose now that d > 0. Then d € D(S) = CD(S). Hence (b) above holds. We recall that
C(CD(S)) = CD(S). Hence, since pk is the minimal multiple of k in CD(S), it follows
that d must be a multiple of pk. But (6.13) then again implies that the closed path
products corresponding to ey and By are equal. Hence, in either case, [](4) = [15(4).
Since i, j are arbitrary in (n), it follows from Lemma 4.6 that 4 € Equ (S).

On the other hand, since A(k, \) has a circuit « of length k and [1.(A4(k, \)) is not
positive, we have by Theorem 5.2 that A(k, \) € Equ (V). The implication (iii) = (iv) is
proved.

(iv) = (v). Immediate by Lemma 6.8.

(v) = (vi). By Fiedler and Ptak [3] or Engel and Schneider [2] an irreducible matrix
that satisfies (v) is diagonally similar to a nonnegative matrix. By applying this result to
the Frobenius normal form of 4 we obtain (vi) from (v).

(vi) = (i). Let 4 € Equ (A, S) and let B be a matrix diagonally similar to 4 and
such that B has nonnegative diagonal blocks in a (and therefore every) Frobenius
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normal form. Since the diagonal blocks of B are clearly in Equ (A, N) it follows that
B € Equ (A, N). Hence 4 € Equ (A, N) and (i) follows from (vi). O
THEOREM 6.14. Let S < N.
I. If n <2, then the following are equivalent.
(i) S is sufficient,
(i) (n) = CD(S).
II. Ifn = 3, then (i) is equivalent to
(iii) (@) {n—1, n} = CD(S).
and
®) (n—1)c S

Proof 1. Letn=2.

(i) = (ii). Since S is sufficient, it is also A-sufficient and the result follows from
Theorem 6.12.

(ii) = (i). Let {(n) = CD(S). Suppose 4 € Equ (S). Then, by Lemma 6.8 all circuit
products of 4 are positive. Since, for i, j € (n) there is at most one nonempty simple
path from i to j in G(A), the conditions of Theorem 5.14, Part (v) are satisfied for all
i, j € (n). Hence, by Theorem 5.14, 4 € Equ (N) and the implication (ii) = (i) follows.

II: (i) = (iii), Part (a). With the same proof as in Part I, we have (n) = CD(S).

(i) = (ii1), Part (b). Let 2 = kK =< n — 1. To prove this implication it is enough to
construct a matrix B(k) € Equ (S)\Equ () if either 1 € S or k ¢ S. We let the arc set of
G(B(k)) consist of 1| > k+ l,andi—> i+ 1,i=1, -+, k. We define the (1, k + 1)-
element of B(k) to be —1 and all other nonzero elements to be 1. For example, if k = 2
and n = 4, then

B(k)=

[ e e ]
SO O —
OO = -
SO oo

Let i, j € (n). If either 1 € S or k € S then there is at most one path from i to j in G(B(k))
whose length lies in S. Hence, by Lemma 4.6, we have 4 € Equ (S). But there are two
paths from 1 to k in G(B(k)) whose corresponding products have different signs. Hence,
again by Lemma 4.6, 4 ¢ Equ ().

(iii) = (i). Suppose that (iii) holds. Let 4 € Equ (S). Let i, j € (n). Let a and
8 be simple paths in G(4). Since |a| < n, and |8| < n, we have by Lemma 4.6 that
[T(A) = I1g(A). Since (ny = CD(S), it follows from Lemma 6.8 that all circuit prod-
ucts of A4 are positive. Hence the conditions of Theorem 5.2, Part (v) are satisfied. By
Theorem 5.2 we now obtain 4 € Equ (N) and (iii) = (i) is proved. O

We note that, for n = 3, neither of the conditions (iii)(a) or (iii)(b) of Theorem 6.14
alone implies that S'is sufficient, or even that S'is A-sufficient. This is clear from Theorem
6.12 since neither condition implies that {n) = CD(S).

COROLLARY 6.15. Letn= 3. Let S< N.

I. If' S is sufficient then |S| = n.

I. The following conditions are equivalent:

(i) S is sufficient and |S| = n.
@@ S={1,---,n— 1, m} wheren+1=m=2n-2.
(iii) S is optimal sufficient.

Proof.

I. This is obvious by Theorem 6.14.

II. (i) = (ii). By Theorem 6.14 we have S = {l,---, n— 1, m}. If m = 0 or
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m = n then n € CD(S) and S is not sufficient by Theorem 6.14. Hence m > n. Suppose
that m > 2n — 2. Then it follows that

(6.16) DES)={1, - ,n=2,m—n+1, - ,m—1}.

Let p, g € D(S) where p < q. Then, by (6.16), either p <n— 1 or g — p < n — 1. Hence,
gcd (p, g) < n — 1. It follows that ged (T) < n — 1 for any subset T of D(S) with
|T| > 1. Since n — 1 € D(S) and just one positive multiple of » — 1 belongs to D(S) we
also have n — 1 € CD(S), which contradicts Theorem 6.14. The implication is now
proved.

(ii) = (iii). By Theorem 6.14, S is sufficient. The optimal sufficiency of S follows
from Part I.

(iii) = (i). Let S be an optimal sufficient set. Then clearly S is sufficient. By Theorem
6.14 theset T = {1, ---, n — 1, n + 1) is sufficient with |T'| = n. Hence, by Part I we
have |S| = n. O

We now use Corollary 6.15 to show that a minimal sufficient set is not necessarily
an optimal sufficient set.

Example 6.17. Let n =2 3 and let S = {1,---,n~1,2n — 1, 3n — 2}. Then
{n)y € CD(S) and so, by Theorem 6.14, S'is sufficient. Let S’ be a subset of S of cardinality
n. Observe that S’ cannot satisfy condition (ii) of Corollary 6.15. Hence, by Corollary
6.15, S' is not sufficient. Thus, .S is a minimal sufficient set, but, again by Corollary 6.15,
S'is not an optimal sufficient set.

It is clear that our definitions and results raise a number of interesting questions.
Some are purely number theoretic, others involve a mixture of matrix and number
theory. A general problem is to characterize the (&7, I')-sufficient [minimal (o, T')-
sufficient, optimal (¢, I')-sufficient] sets for given o/ < % and T < {(n) X {n).

In view of Theorem 6.12 the following open questions are of interest.

Open Questions 6.18.

(i) Characterize subsets S of N such that CD(S) = (n).

(ii) Characterize subsets S of N which are minimal with respect to the property
CD(S) 2 {n).

Remark 6.19. In Definition 4.4 the restriction to 4 € % (viz. A € C™ such that
p(]4]) < 1) and the use of power series with all coefficients equal to 1 are technicalities.
Alternatively, we could have considered throughout arbitrary 4 € C™ and nonnegative
sequences

<C> = (C],cz, ........ )

such that X cn ¢ A4|° converges. In this approach one then defines the equality class
Equ (&4, T' S) to consist of all 4 € &/ such that for some nonnegative sequences {C)
with ¢, # 0 if and only if s € S, Zsen 5l 4|° converges and

= 2 (cldP)r.

seN

2 (eA)r

se N

Since the proof of our fundamental lemma, Lemma 4.6, is unchanged, our results
go through to this more general situation and reduce to the previous results for 4 € %.
The concept of sufficiency remains unchanged. We illustrate by means of an example.

Example 6.20. Let n = 10. If S = {3, 9, 10, 13, 18} then CD(S) = {10) U {15}
and hence, by Theorem 6.12, Sis (.#, {n))-sufficient. In other words, let 4 be an irreducible
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n X n matrix, #n = 10, and let ¢, be positive, s = 3, 9, 10, 13, 18. Then the equality
le3 A% + coA° + 104" + €134 + 154"
= 3| AP + col AP + c10l 4" + c13 4] + c15 4]"
implies that for all nonnegative d;, s € N, we have

2 d.A*| = 2 ds|A|s>

seN seN

provided that the second series converges. In particular, if p(|4]) < 1, then

I -4l = —14h7"
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SOME SIGN PATTERNS THAT PRECLUDE MATRIX STABILITY*
CLARK JEFFRIESt AND CHARLES R. JOHNSONi

Abstract. The principal concern of this paper is with real matrices whose undirected graphs are trees. To
better understand potential stability of sign pattern classes, two simple criteria are given that preclude stability
throughout a sign pattern class. In addition, those sign patterns that preclude eigenvalues with real part equal
to 0 are characterized and the constant inertia within such classes is determined. Such tests may be computationally
significant, as calculations with specific matrices may be subject to round off error uncertainties.

Key words. potential stability, sign pattern matrix, stable matrix, tree graph
AMS(MOS) subject classifications. 47A20, 15A57, 93D99

1. Introduction. The inertia of an n-by-n real matrix A is the triple
i(A) = (i(A4), i(A), i(4))

in which i,(4) is the number of eigenvalues of 4 with positive real part, i_(A4) the number
with negative real part and ip(4) the number with zero real part—each counting
any multiplicity; necessarily, i,(4) + i_(4) + iy(4) = n. The matrix A is called stable if
i_(A) = n because the equilibrium x = 0 will be globally stable in the dynamical system
X = Ax if and only if 4 is stable.

We are interested here in what may be concluded about the stability or instability
of 4 purely from the +, —, 0 sign pattern of the entries of A = (a;). For this reason,
we call an n-by-n matrix B = (b;) whose entries are chosen from among the symbols
{+, 0, —} a sign pattern matrix, and we identify with each sign pattern matrix the natu-
ral class of all real matrices 4 = (a;) such that a; > 0 (resp. =, < 0) if and only if b; =
+ (resp. = 0, =—). Matrix operations with sign pattern matrices are carried out in the
obvious way when unambiguous. For example, we call a diagonal sign pattern matrix
none of whose diagonal entries is 0 a signature matrix, and left multiplication of a sign
pattern matrix by a signature matrix uniformly affects the signs within each row.

A sign pattern matrix is called sign stable (respectively, potentially stable) [H], [Q],
[B] if every (respectively, some) real matrix in the associated class is stable. The sign
stable matrices have been characterized in [JKvdD], and several authors have discussed
potential stability without any definite results thus far. Our interest here is in further
understanding potentially stable sign patterns; however, our results are of a negative sort.
We call a sign pattern matrix that is not potentially stable sign unstable, thus a sign
pattern matrix is sign unstable if no matrix in the associated class is stable. Our goal is
a characterization of certain sign unstable sign patterns. Clearly such sign patterns cannot
be potentially stable.

By the (undirected) graph G of an n-by-~ sign pattern matrix B = (b;), we mean a
graph on vertices 1, 2, - - - , n with an undirected edge between i and j if and only if b
or b; # 0. We concentrate here upon sign pattern matrices whose graphs are trees. Such
a matrix is irreducible if and only if a;; # 0 whenever a; # 0, and the eigenvalue possibilities
within the class depend only upon the signs of the a; and of the products a;a;;. We

* Received by the editors August 30, 1986; accepted for publication (in revised form) March 31, 1987.
This work was supported in part by National Science Foundation grant DMS-8713762 and Office of Naval
Research contracts N00014-86-K0012 and 0693.

+ La Ronge, Saskatchewan, Canada, and Mathematical Sciences Department, Clemson University, Clemson,
South Carolina 29634-1907.

1 Mathematics Department, College of William and Mary, Williamsburg, Virginia 23185.
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describe in a natural way all relevant information about such a sign pattern class in a
signed tree whose vertices may be signed +, —, or 0 and whose edges may be signed
+, —. For example, we identify the sign pattern matrix

+ + 0 0 O

- 0 - + 0
B=]10 - —-— 0 O

o + 0 - -

0O 0 0 + +

with
3
+
* (O
- +
02 \ 4 OS

1

Here, a + edge between i and j means that b;; and bj; are both + or both — and a — edge
means that one is + and one is —; the sign of vertex i (+, —, or 0) is simply the sign of
the i, i entry. If the sign is not zero, the vertex is called distinguished. We call an irreducible
sign pattern matrix whose graph is a tree a tree sign pattern (t.s.p) matrix. As there is a
one-to-one correspondence between t.s.p. matrices and signed trees, we shall use these
interchangeably; we shall also move freely between concepts about graphs and matrices,
when any ambiguity is benign. We call a t.s.p. matrix symmetric if each edge of the tree
is + and skew-symmetric if each edge is —.

Two useful factorizations may be associated with each t.s.p. matrix. If B is an
n-by-n t.s.p. matrix the skew-symmetric factorization of B is

B=SlB|

in which S is a signature matrix whose 1, 1 entry is + and B, is a skew-symmetric t.s.p.
matrix. We call B sign consistent if not both + and — occur as diagonal entries in B;. If
Bis sign consistent, let B be obtained from B by sign consistently replacing all 0 diagonal
entries with + or —. We call B the sign completion of B. If any vertex in a sign consistent
B is not signed 0, then B is uniquely determined. Otherwise B can be one of two t.s.p.
matrices with opposite (+ and — interchanged) signs. In any B, nodes connected by a
+ [resp. —] edge are of opposite [same] sign.
The symmetric factorization of B is

B= Ssz

in which S, is a signature matrix whose 1, 1 entry is +, and B, is symmetric t.s.p. matrix.
Each factorization is unique, and the matrices S; and B;, i = 1, 2, are easily determined
from B. It is a very open question to determine whether a t.s.p. matrix is potentially
stable or sign unstable. All (irreducible) sign stable matrices have been classified and are
t.s.p. matrices [JKvdD].

2. Sign instability tests. We present here two simple results which allow many t.s.p.
matrices to be identified as sign unstable. For this we require two lemmas.



SIGN PATTERNS THAT PRECLUDE MATRIX STABILITY 21

LEMMA 1. If, for a given n-by-n matrix A, there exists a nonsingular n-by-n Hermitian
matrix G such that

GA=H+S
with H positive semidefinite Hermitian and S skew-Hermitian, then
W A=i(G) and i(A)=i(G).

Proof. If H is positive definite, then ip(4) = 0, and this is the well-known equality
of inertias result [CDJ]. In our case, choose ¢ > 0 sufficiently small so that the perturbed
matrix 4 + ¢G ! satisfies

i A)Zi(A4+eG™) and i(A)=i(4+eG7H.
However, we have
GA+eG Y=(H+el)+ S

sothat i.(4 + ¢G™') =i (G)and i_(4 + ¢G™") = i_(G) because H + ¢l is positive definite.
The asserted conclusions follow from these equalities and inequalities. O

LEMMA 2. If A and B are n-by-n Hermitian and nonsingular, then i.(BA) = 0
implies i.(B) + i (4) = n.

Proof. The proof is Corollary 2 of [J]. 0O

To apply these facts to our situation, we first note a familiar fact. If 4 = (a;) is an
irreducible n-by-n matrix whose graph G is a tree, then there is a positive diagonal matrix
D such that symmetrically placed off-diagonal entries of DA are the same in absolute
value. It follows that if 4 is a real matrix in the class associated with a t.s.p. matrix B,
then there is a factorization

A=D|A|

in which D, is a nonsingular diagonal matrix and A, is a diagonal matrix plus a skew-
Hermitian matrix and a factorization

A= DzAz

in which D, is a nonsingular diagonal matrix and A4, is symmetric. These correspond to
the skew-symmetric and symmetric factorizations of B, and each is unique if the 1, 1
entry of D;, i = 1, 2, is taken to be one.

Note that if S is a signature (sign pattern) matrix, i(S) is well defined as the inertia
of any matrix in the class associated with S.

The two results of this section are the following.

THEOREM 1. Let B = S| B, be the skew-symmetric factorization of the n-by-n t.s.p.
matrix B. If no diagonal entries of B, are —, then

HA)=i(S) and i_(A=i(S)
Jor all matrices A in the class associated with B. If no diagonal entries of B, are +, then
A= (S) and i(A=i(S)

for all matrices A in the class associated with B.
Proof. The two conclusions are equivalent via replacement of B by —B. The first
conclusion is an application of Lemma 1, as each A4 in the class associated with B may
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be factored:
D 1_ ! A=A 1
with i(D7") = i(S) and 4, = E + T, in which E is a positive semidefinite diagonal matrix
and T is skew-symmetric. O
THEOREM 2. Let B = S, B, be the symmetric factorization of the n-by-n t.s.p. matrix

B. If B is potentially stable, there is a symmetric matrix A, in the class associated with
B, such that

(A7) = n—i4(S2).
Proof. Lemma 2 may be applied using the same ideas as in the proof of Theo-
rem 1. a
We illustrate the use of Theorems 1 and 2 to verify sign instability with some ex-

amples.
Example 1. Any t.s.p. matrix associated with the signed tree

—O——@®
@ "\ .
is sign unstable using Theorem 2. For example, the symmetric factorization of

S

0 - +

is

+ 0 097+ + O
S232=[0 - 0] + + —]
0 0 +JLO0 - +

We notice that

+ 0]
0 +]

is the principal submatrix of B, in rows and columns 1 and 3, so i(4;) = 2. Also
i4+(S7) = 2. Hence, the necessary condition of Theorem 2 cannot be met, and B cannot
be potentially stable. In this particular case it is quite complicated to verify that B, is
sign unstable by direct calculation. This example illustrates a general way in which Theo-
rem 2 may be applied.

If a lower bound on i,(4,) may be found which is greater than n — i,(S,) (e.g., if
we extract a large principal submatrix of B, with obvious inertia and realize that this
bounds the inertia of 4, because of the interlacing inequalities), then Theorem 2 implies
that B is sign unstable. Since a tree is bipartite, a diagonal principal submatrix of size at
least 47 is always available. In case of the graph

a diagonal principal submatrix of size (n — 1) is available.
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Example 2. If

[— + + + + + + +]
+ +
- +
+ +
B=| _ + ,
+ —_
L+ +
then
(_+ F— + + + + 4+ + +
+ + +
—_ + _
+ + +
B= _ + _
+ + -
- + +
L +d L+ +

is the symmetric factorization of B. Since i,(S,) = 5 and i,(4,) = 4, B is sign unstable.
Example 3. The t.s.p. matrices associated with the signed tree

O——0—=0

i

are sign unstable as may be seen from Theorem 1 but not Theorem 2. The skew-symmetric
factorization of

+ o+
-0 + +
B= + 0
+ -+
- 0
is
+ + +
+ - 0 + +
- - 0 =S|B1.
_ —_ + —_
- + 0

Thus B is sign consistent and by Theorem 1, i_(4) = 3 for any A in the class associated
with B (actually i(4) = (2, 3, 0) for such an A4), and B is sign unstable. The symmetric
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factorization of B, however, is

+

o +

- - 0 =S232.
— —_ + —_
+ -0

Since the determinant of any matrix A, in the class associated with B, is positive,
i(4) = (3, 2, 0) for any such matrix. As i.(S;) + i+(4;) = 5, Theorem 2 does not preclude
the (potential) stability of B as Theorem 1 did. It should be noted that the potential
stability of the matrix in Example 1 is not precluded by Theorem 1 as it is by
Theorem 2.

3. Sign pattern matrices with constant inertia. We recall from [JvdD] two color
tests. In the 0-color test (read “‘zero color test’”) we color each vertex of the (tree) graph
of an irreducible matrix black or white so that

(i) no black vertex is a neighbor of exactly one white vertex;

(ii) each maximal white block as a subgraph is either: a single undistinguished vertex;
or a subgraph which has at least 2 vertices, which has each end vertex distin-
guished, and which is not sign consistent.

We define an Im-coloring of vertices of G to be again a scheme for coloring each

vertex black or white so that condition (i) is fulfilled as well as

(ii) each maximal white block as a subgraph of G contains at least one “—” edge
and is not sign consistent.

The dynamical system X = 4x admits a constant (resp. sinusoidal) trajectory if and
only if some A in the sign pattern class has O (resp. V=1) as eigenvalue if and only if G
admits a O-coloring (resp. Im-coloring) with at least one white vertex [JvdD, Thms. 3
and S).

THEOREM 3. Suppose n > 1 and G is a tree graph of an irreducible sign pattern
matrix. Then there is only one 0-coloring (all black) and only one Im-coloring (all black)
Jfor G if and only if i(A) = 0 for any matrix A of the given sign pattern. (In such case
i.(A) and i_(A) are necessarily constants for all such A.)

Proof. Let us identify in a natural way n X n matrices and n>-dimensional space.
Consider a continuous curve in #*>-dimensional space lying in the cone of all matrices of
the given sign pattern. To each point on the curve are associated the n eigenvalues of the
corresponding # X n matrix. The fundamental theorem of algebra, the fact that the
determinant function is continuous, and the fact that the zeros of a polynomial depend
continuously on its coefficients together imply that the eigenvalues of a matrix on the
curve move about continuously in the complex plane. In particular, since the theorems
in [JvdD] preclude the occurrence of any eigenvalues on the imaginary axis, the number
of eigenvalues with positive real parts is conserved throughout the cone. Of course, the
same can be said of eigenvalues with negative real parts. A corollary of the same theorems
is that if inertia is constant with io(4) = 0 throughout the cone, then the only colorings
are all black.

Consider a matrix 4 = (a;) in the cone having entries of large magnitude and a
matrix B, the graph of which is the sign completion of G. Suppose, in fact, that b; = a;
ifa; # 0 and 0 < |b;| < ¢ if a;; = 0. If ¢ is suitably small then the eigenvalues of B are
arbitrarily close to the eigenvalues of 4. In particular, the inertia of B can be assumed
1o be the inertia of A.
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Since inertia is conserved throughout the cone in n?-dimensional space of
matrices of the sign pattern of B, choose such a matrix B having (BU) <éfori#j
and |b;| = 1. For § suitably small, the characteristic polynomial of B is approximately
(x — 1)*9D(x + 1)-4, (]

Theorem 3 can be applied to the graph

O—— OO0 —0

to show any matrix of the sign pattern has inertia (6, 2, 0). That is, the graph is sign
consistent and so every subgraph is sign consistent. The color tests are therefore not
difficult to check. The sign completion of the graph has six “+” vertices and two “—>
vertices.

Authors’ note. Based, in part, upon the results of this paper, T. Summers has been
classifying t.s.p. matrices with regard to potential stability in hopes of gaining insight
into the general problem. A summary of the results is available from C. Johnson.
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A TREE MODEL FOR SPARSE SYMMETRIC INDEFINITE
MATRIX FACTORIZATION*

JOSEPH W. H. LIUt

Abstract. A tree model is presented to study the sparse factorization of large symmetric indefinite matrices
by the diagonal pivoting method. The basic structure uses the elimination tree of symmetric matrices and the
notion of delayed elimination. The factorization process for indefinite systems can be viewed as a sequence of
tree transformations based on both the structural information and numerical data values. This provides a model
as a common basis to study various numerical aspects of sparse symmetric indefinite decomposition.

Key words. sparse matrix, indefinite symmetric matrix, tree model, diagonal pivoting, elimination tree,
delayed elimination

AMS(MOS) subject classifications. 65F50, 65F25

1. Introduction. In this paper, we study the diagonal pivoting method [4] in factoring
large sparse symmetric indefinite matrices. The method uses a mixture of 1 X 1 and
2 X 2 pivots to produce an LBLT decomposition, where the factor matrix L is unit lower
triangular and B is block diagonal with blocks of size of either 1 or 2.

The method will be considered in connection with the so-called elimination tree
structure [13], [17], which is defined for each sparse symmetric matrix structure. The
elimination tree represents a class of ideal elimination sequences if we assume that no
pivoting for numerical stability is necessary. Our approach is to use the tree structure as
a pivot selection guide, so that even with the added stability requirement, the sequence
of stable pivots selected will form an elimination tree that deviates as little as possible
from the original one.

In this paper, we consider the notion of delayed elimination in sparse decomposition.
In the dense case [2], [11], when row/column j is considered not suitable for elimination
as a 1 X 1 pivot, some later row/column will be moved forward to form a 2 X 2 pivot
with j. However, in the sparse case, it is more appropriate to delay the elimination of
row/column j to a later stage. The notion of delayed elimination first appears in the
multifrontal work by Duff and Reid [7]. Our treatment here helps to bring out the im-
portant role of this idea in the context of sparse symmetric factorization. Furthermore,
we provide some quantitative bounds on the impact of delayed elimination on fills in
the resulting triangular factors.

A tree model can be formulated according to the use of delayed elimination on an
elimination tree. This model provides a systematic view of the elimination process. At
each step, pivots can only be selected from the nodes in a specific subtree, which represents
the set of preferred candidates. Nodes from this subtree will incur the least amount of
structural damage if selected as pivots. The actual pivots selected depend on the partial
pivoting strategy and the numerical values of the matrix.

This tree model plays an important role in symmetric factorization. It provides a
better understanding in the choice of 2 X 2 pivots and it helps to reveal the fundamental
importance of delayed elimination. On the basis of the model, researchers can focus

* Received by the editors October 3, 1986; accepted for publication (in revised form) April 21, 1987. This
research was supported in part by the Natural Sciences and Engineering Research Council of Canada under
grant A5509, by the Applied Mathematical Sciences Research Program, Office of Energy Research, U.S. De-
partment of Energy under contract DE-AC05-840R21400 with Martin Marietta Energy Systems Inc., and by
the U.S. Air Force Office of Scientific Research under contract AFOSR-ISSA-85-0083.
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more on other algorithmic aspects of sparse symmetric factorization, especially on the
design of data structures and the numerical computations.

The reader is assumed to be familiar with the graph-theoretic terminology associated
with sparse matrix computation: adjacent set, subgraph, fill, ordering, elimination graph
and other related concepts. All the necessary material can be found in [10]. Moreover,
notions related to tree structures are also assumed: parent/child nodes, ancestor/descen-
dant nodes, root, paths, subtrees. The reader is referred to [1].

An outline of this paper follows. In § 2, we provide a brief overview of background
material in symmetric matrix factorization. In particular, we review the diagonal pivoting
method for indefinite matrices and consider the elimination graph model in this context.
The elimination tree structure is also defined and some relevant properties are stated.

Section 3 considers the impact on the structure of a given elimination tree due to
relabeling. We establish the observation that any relabeling within a subtree will not
affect parts that are outside this subtree. This leads to the notion of delayed elimination.
An upper bound on possible fill increase due to delayed elimination is given.

The tree model is described in § 4. The entire elimination process can be viewed as
a sequence of tree transformations starting with the elimination tree. At each step, the
tree provides the structural information necessary to guide the selection of the next pivot.
Moreover, each transformation is a simple tree manipulation function.

In § 5, we relate the tree model to the multifrontal scheme of Duff and Reid [7].
The multifrontal method can be considered as one way of implementing the tree model.
There are other ways depending on the data storage scheme, pivoting strategy, and nu-
merical computation method. To substantiate this observation, we provide a different
and new sparse factorization scheme for indefinite systems based on the tree model.
Section 6 contains our concluding remarks.

2. Background on symmetric matrix factorization.

2.1. Diagonal pivoting method for indefinite matrices. In this paper, we employ the
diagonal pivoting method [2]-[4] in the symmetric factorization of sparse indefinite ma-
trices. The method is a variant of symmetric Gaussian elimination, wherein pivots are
always taken from the diagonal but they may be of order 1 or 2. With an appropriately
chosen pivoting strategy, the method is known to be nearly as stable as conventional
Gaussian elimination with pivoting. However, symmetry can now be exploited through
the use of 2 X 2 block pivots.

There are many appropriate ways to select stable pivots for elimination. The one
by Bunch and Parlett [4] can be viewed as a complete/total pivoting strategy. The later
ones by Bunch and Kaufman [2], Dax [5], and Fletcher [9] can all be classified as methods
using partial pivoting.

In [2], Bunch and Kaufman provide a number of partial pivoting strategies tailored
for this approach. In particular, Algorithm D [2, pp. 169-170] seems to be most appro-
priate for sparse matrices. Indeed, the authors point out that “whenever a 1 X 1 pivot is
used in Algorithm D, no interchanges are performed, which means . . . fewer opportunities
to interfere with the structure of the system.” The essence of the diagonal block pivoting
approach using Algorithm D can be expressed algorithmically as follows:

forj:= 1tondo
if column j has not been eliminated then
begin
if column j is a suitable 1 X 1 pivot then
eliminate column j



28 JOSEPH W. H. LIU

else
begin
find a column i (i > j) such that columns i and j form
a suitable 2 X 2 pivot;
eliminate columns i and j together
end
end;

In [8], Duff et al. consider the use of block diagonal pivots in the factorization of
large sparse indefinite matrices. They recommend a partial pivoting strategy geared for
sparse systems. In [7], Duff and Reid combine this pivoting strategy with the multifrontal
approach to devise a very effective scheme for sparse indefinite matrix factorization. The
author [12] provides a simple improvement to their pivoting strategy.

2.2. Elimination graph model for diagonal pivoting. From the pioneering work of
Parter [15] and Rose [16], the symmetric factorization of large sparse positive-definite
matrices can be conveniently studied by the elimination graph model. The factorization
process can be viewed as generating a sequence of elimination graphs, each reflecting the
structure of an intermediate matrix to be factored. For more details, the reader is referred
to [10].

The basis of the model is the rule for transforming the elimination graphs. Let
G = G(A) be the undirected graph associated with a given sparse symmetric matrix A,
and x be a node in G. Consider the elimination of the node x. We obtain the resulting
elimination graph from G by deleting the node x and its incident edges, and making the
nodes adjacent to x into a clique (or complete subgraph). Since we are dealing with a
possible mixture of 1 X 1 and 2 X 2 pivots in symmetric indefinite factorization, let us
first extend the elimination graph transformation to allow for block elimination.

Let K be a connected subgraph of G. Consider the elimination of nodes in K from
G. It is easy to see that the resulting elimination graph can be obtained from G by deleting
the subgraph K and edges connecting nodes in K to G — K, and making the nodes
adjacent to K into a clique. Note that the transformed elimination graph is independent
of the order in which the nodes in K are eliminated. Our context of using 2 X 2 pivots
corresponds to the case where the connected subgraph K has exactly two nodes. It should
be mentioned that the resulting elimination subgraph has the same structure whether
two consecutive columns/vertices are eliminated individually as two 1 X 1 pivots or
together as a 2 X 2 block pivot.

Therefore, for a given elimination sequence of node subsets (of size either 1 or 2)
in block diagonal pivoting, the associated elimination graph sequence can be generated
easily. However, this graph sequence is of little use in practice, since the node subset
sequence is not known a priori. The choice of 1 X 1 or 2 X 2 block pivots depends on
the numerical values of the matrix under consideration, and they cannot be determined
with only the sparsity structure of the matrix.

2.3. Elimination tree structure for sparse matrices. One of the key structures in the
study of symmetric sparse Cholesky factorization is the elimination tree [13], [17]. For
a sparse symmetric matrix with a given row/column ordering, the elimination tree struc-
ture can be used to determine a class of orderings that are equivalent in terms of fills and
operations. We shall be using the structure of an elimination tree to study block diagonal
pivoting for indefinite matrices.

In this subsection, we provide a brief review on this tree structure. Let 4 be a given
n X n sparse symmetric matrix. Consider the numerical symmetric LDL” decomposition
of 4 (see, for example, [11, Chap. 5]). It is well known that if 4 is indefinite, this numerical
decomposition can be unstable. Furthermore, for certain nonsingular 4, such a factori-
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zation may not even exist. We shall use the notation L[A4] to represent the numerical
triangular factor (if it exists) of 4 in the symmetric decomposition. When the matrix 4
is clear from context, L will be used.

In spite of the numerical shortcoming in factoring general symmetric 4 into LDL7,
it is still meaningful to consider the structural symmetric factorization of the structure
of A. In the literature, there are existing efficient algorithms and robust implementations
which will determine the structure of the triangular factor using the structure of 4. Often,
this is referred to as the symbolic factorization process [10].

Assume that all diagonal entries of A are logically nonzero and no pivoting is per-
formed in the structural decomposition. Let L[A] be the structural triangular factor of
A. Again, if 4 is clear from context, L will be used. We can now introduce the elimination
tree in terms of L[A].

We define the elimination tree 7(4) of 4 to be the tree with n nodes
{x1, x2, -+, x,}, where node x; is the parent of node x; if and only if

i=min {r>j|L;#0},
that is, if i is the row subscript of the first off-diagonal nonzero in column j of L. Here,
each node Xx; is associated with row/column i of the matrix. We further assume that the
matrix A is irreducible, so that the structure is indeed a tree, and X, is the root of this
tree. (If A is reducible, then the elimination tree defined above is actually a forest consisting
of several trees.)

Figure 2.1 contains an 8 X 8 symmetric matrix structure A. The diagonal entries
are labeled with their corresponding equation/variable numbers. Note that this matrix
suffers two fills at locations (2, 8) and (6, 7), and each fill is depicted by an “O” in the
matrix structure L [4] in the figure. The corresponding undirected graph and elimination
tree is displayed in Fig. 2.2. This matrix and tree structure will be referred to throughout
the remainder of this paper.
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FIG. 2.1. A matrix example and its structural triangular factor.
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FIG. 2.2. The graph G(A) and elimination tree T(A) of matrix A in Fig. 2.1.
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We introduce a depth function [1] here to be used later in the next section. For the
root x,, we define

depth (x,)=0.
For any node x; (j < n), its depth value is defined to be
depth (x;) =depth (x,) + 1,

where X, is the parent node of x; in the elimination tree. For example, in Fig. 2.2, we
have depth (x¢) = 2, and both depth (x;) and depth (x,) are 4. Clearly, depth (x;) is the
length of the path from x; to the root x,.

We also introduce the subtree notation to facilitate future discussion. Let y be a
node in the elimination tree 7. We shall use 7[y] to refer to the subtree rooted at the
node y in the elimination tree. Moreover, T[y] will also be used to refer to the set of
nodes in this subtree. For example, in Fig. 2.2, the subtree 7'[xs] contains the node subset
{x3, X4, X5, X6}.

We shall now state some properties of the elimination tree that are relevant to our
study of indefinite factorization.

Observation 2.1. Any reordering that numbers child nodes before parent nodes in
the elimination tree is equivalent to the original ordering.

In other words, the number of fills and the number of arithmetic operations to
perform the factorization remain unchanged. Such orderings are referred to as topological
orderings of the tree in the literature [19]. The tree structure provides some degree of
flexibility in terms of the node elimination sequence without affecting the amount of fills
and computation.

Observation 2.2. [13] For i > j, l:ij is nonzero if and only if x; € Adj (T'[x;]), where
the Adj operator is taken in the graph G(4).

By Observation 2.2, the number of nonzeros in the jth column of L is given by
|Adj (T'[x;])| + 1. It should be noted that each T'[x;], as a subgraph, is connected in the
original graph G(4). Furthermore, each node x; adjacent to T'[x;] is an ancestor node of
x; in the elimination tree.

Our strategy in using the elimination tree for sparse symmetric indefinite matrix
factorization is as follows. From the symmetric matrix structure, determine its elimination
tree. This tree structure will define a class of (equivalent) ideal orderings for fill and
operation reduction, taking only the structure of the matrix into account. We shall use
the tree structure as a pivot selection guide, so that any necessary reordering due to the
use of 2 X 2 pivots for numerical stability reasons will deviate as little as possible from
this tree.

3. Structural changes to the elimination tree.

3.1. Subtree relabeling. In practice, the block elimination sequence from the di-
agonal pivoting method is not known a priori. However, based on the structural infor-
mation of the symmetric matrix, a fill-reducing node sequence (and hence its elimination
tree) can be determined if we assume that no pivoting is necessary. The tree represents
a class of ideal orderings for sparse elimination without taking the numerical values into
consideration. In this section, we investigate the impact of relabeling on the structure of
the elimination tree, when a rearrangement of node sequence is performed to obtain
suitable 1 X 1 and 2 X 2 numerical pivots.

Observation 3.1. Consider a given subtree T[y]. If the nodes in T[y] are to be
ordered before the ancestors of y (that is, nodes on the path from y to the root), any
relabeling of nodes in T[y] will not alter the structure of the elimination tree associated
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with nodes not in T[] (assuming that the relative order of nodes outside 7'[y] remains
unchanged).

This observation is key to the study of relabeling strategy due to stability requirement.
It says that any renumbering of nodes in a subtree will not incur any structural damage
to the remaining part of the elimination tree. In other words, the structural change is
only local to the subtree involved. For example, consider the matrix 4 in Fig. 2.1. No
matter how we rearrange symmetrically rows/columns 3, 4 and 5 of 4 among themselves,
the corresponding elimination tree of any such renumbering will only affect the subtree
T[xs). There is no structural change in the part of the tree outside this subtree, namely
the part involving the nodes {x;, x,, Xs, X7, Xg}. This structural preservation is important
in terms of fills because of Observation 2.2.

3.2. Delayed elimination. In order to minimize structural changes to a given elim-
ination tree, the previous subsection offers the observation that any relabeling should be
confined locally to subtrees. What we discuss now is the actual relabeling strategy within
a subtree.

Consider Algorithm D of Bunch and Kaufman [2]; an algorithmic version is given
in § 2.1. If row/column j is viewed as an inappropriate 1 X 1 pivot, a later row/column
i is determined and brought forward to be eliminated with j as a 2 X 2 pivot. In other
words, row/column i is eliminated earlier than as scheduled. We shall refer to this as
advanced elimination. In all other block pivoting algorithms for dense systems, the re-
labeling strategies use some form of advanced elimination. This is a satisfactory scheme
for dense matrices since the reordered matrix structure remains unchanged.

However, it may be undesirable for sparse systems due to possible structural damage
from the relabeling. Figure 3.1 gives a 6 X 6 matrix example, where “¢” is used to denote
a numerical value much smaller than normal values indicated by “@®”’. Advanced elim-
ination will bring row/column 6 forward to go with row/column 1 as a 2 X 2 pivot. This
obviously will cause severe fill-in.

The other alternative is the use of delayed elimination. This notion is implicit in
the multifrontal scheme for indefinite sparse systems by Duff and Reid [7]. This means
when a node (row/column) is deemed as inappropriate for a 1 X 1 pivot, its elimination
will be delayed. For the example in Fig. 3.1, if we delay the elimination of the first row/
column until after the last node, we obtain a much more desirable elimination sequence.
In this case, no fill will occur.

We now consider the effect of delayed elimination on the structure of the elimination
tree. Let 4 be the given symmetric matrix having

xl,"',xks"'rxj,”’sxn
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3 ° ® 2 4 °
4 ] . 3 5 e
5 e ° 4 e o 0o 00 o
oo 0 0 0 86 ° 5 ® ¢
Matrix Advanced elim. Delayed elim.

FIG. 3.1. Advanced and delayed elimination on a matrix example.
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as its node elimination sequence, with k < j. Consider delaying the elimination of node
X until immediately after x;, so that the new node elimination sequence is given by

X1 " s Xk—1sXk+15 """ 5 Xjs Xy Xj+15 °°° 5 Xp.

Let the correspondingly permuted matrix be 4 = PAPT, which is obtained by moving
the kth row/column to be after the jth row/column of 4. That is, the jth row and column
of A4 is the same as the kth row and column of A.

Observation 3.2. To delay the elimination of the node x; immediately after x; is the
same as delaying the elimination of x; to be immediately after the last ancestor of x;
before and including x;.

By this observation, when we study the delayed elimination of a node x; after x;, it
is sufficient to consider the case where X; is an ancestor node of xi, that is, xx € T[x;].
We shall assume this in the remainder of this section.

Let T be the elimination tree of 4, and T be that of 4 = PAPT. We shall provide
some observations on the structural change from T to T as a result of the delayed elim-
ination of the node x;. The proofs are quite simple and they are omitted.

Observation 3.3. If x, is a node not on the path from x; to x;, then T[x.] and T[x,]
are identical as tree structures (and hence are the same as node subsets).

Observation 3.4. As node subsets, we have T[x;] = Tx;).

Observation 3.5. If x, is a node on the path from x; to x; other than x;, then we
have

(a) as node subsets, T[x.] < T[x.] — {x};

(b) xx € Adj (Tx.]);

(©) Adj (TTx.]) € Adj (TTx.]) U {xi}.
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FI1G. 3.2. A permuted matrix structure of Fig. 2.1.
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FIG. 3.3. The elimination tree T of 4 in Fig. 3.2.
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To illustrate the structural change, we again use the matrix example in Fig. 2.1.
Consider the delayed elimination of the node x; to be after x;. The corresponding reor-
dered matrix A and its triangular structure is given in Fig. 3.2. The elimination tree T
for the permuted matrix is provided in Fig. 3.3. It is clear that the subtrees 7'[xs], T[xs]
and T[x;] are the only subtrees in Fig. 2.2 with their node subsets changed in T. The
node subsets in both T[xs] and T[x;] are shrunk from T[xs] and T'[x;], respectively.
Moreover, T[xs] is the only subtree in T that has its node subset enlarged from that
of T.

3.3. Fill increase due to delayed elimination. We now consider the impact of delayed
elimination on the number of fills in the triangular factor matrix. As before, we are
delaying the elimination of x; until immediately after its ancestor x;. We shall use the
notation 7 (M) to represent the number of nonzeros in “W”, which is either a vector or a
matrix. For notational convenience, let ¥ = L[A], and W = L[PAPT].

LEMMA 3.6. Forc=1, -+, k—1landj+ 1, -+, n,

N(Wie) =n1(Vio).
Proof. 1t follows directly from Observations 3.3 and 2.2. O
LEMMA 3.7. n(Wy;) = n(Vy)).
Proof. By Observation 2.2, we have

1(W.y) = Adj (TTx )] + 1

and
1(Viy) = |Adj (TTx;DI + 1,

and hence they are the same by Observation 3.4. O

LEMMA 3.8. Forc=k+ 1, ---,j, if x. is on the path from x; to x;, then

N(Wic-1)=20(Vio) + 15
otherwise,
N(Wie—1) =1(Vie).

Proof. If x. is not on the path, then n(W,._ ) = |Adj (T(x.))| + 1, since the node
X, is labeled ¢ — 1 in the new ordering. By Observation 3.3, this value is the same
as (V). On the other hand, if x, is on this path, the result follows from Observa-
tion 3.5. O

THEOREM 3.9. With the new ordering, the number of fills in the structural matrix
Sactor will be increased by no more than

depth (x;) — depth () +1(Vij) = 0(Vik)-

Proof. From the definition of depth, note that depth (xx) — depth (x;) is simply the
number of nodes along the path from x; to x; not counting x;. Combining Lemmas 3.6~
3.8, we have

(W)= 2 n(Wy)

c=1

= 2 (W) +n(Wy))

c#j

= 20 n(Vic) +depth (x;) — depth (x;) +n(Vy;)
c#k

= (V) +depth (x;) —depth (x;) + n (Vi) = n(Vik). O



34 JOSEPH W. H. LIU

COROLLARY 3.10. The increased number of fills due to the delayed elimination of
the node x; is always less than n — k.
Proof. The result follows from Theorem 3.9 and the fact that

depth (x;) —depth (x;) =j—k,
n(Vy)Sn—j+1,
N(Vi)> 1. g

The actual number of fills increased due to delayed elimination depends on the
matrix structure, and in practice, it is usually quite modest. For example, the matrix in
Fig. 3.3 is obtained by delaying the elimination of the node x5 to after x; in Fig. 2.1.
Then, by Theorem 3.9, the number of fills increased is bounded by

depth (xs) —depth (x7) + n(Ls7) —n(L4s)=3—1+2-3=1,

and in this case, there is actually no increase in fills.
It should be noted that the quantity

depth (x;) —depth (x;) +9(V,;) —n(Vik)

is the exact difference in number of nonzeros between the jth row/column of W and the
kth row/column of the original factor V. However, this quantity represents only an upper
bound on the actual increased number of fills of the entire factor matrix as given in
Theorem 3.9. It is due to possible reduction in fills in other rows/columns.

It is interesting to point out that moving a column forward to eliminate in advanced
elimination can be treated as a sequence of delayed eliminations. Indeed, to elimi-
nate x; before x; is the same as delaying the columns associated with nodes x., from
c=j—1,j—2,--+, k (in decreasing order) to be after x;. Therefore, the increased
number of fills for advanced elimination is potentially much greater than that of delayed
elimination.

4. The tree model. Let A be the given sparse symmetric matrix. We assume further
that the matrix 4 has been ordered to reduce fills. In this section, we consider the use of
the elimination tree structure to generate a stable block elimination sequence with
1 X 1 and 2 X 2 pivots based on the numerical values in the given matrix. Let x,,

X3, *** , X, be a given node elimination sequence on (the structure of) the matrix 4,
and T, = T(A) be the corresponding elimination tree. The following algorithm uses a
sequence of tree structures T;, 15, - -+, T, to determine a block sequence.

ALGORITHM 4.1 (Block elimination sequence).
begin
T,:=T(4);
forj:= 1tondo
begin
if there is a suitable 2 X 2 pivot using x; and x; for some x; € T;[x;]
then eliminate {x;, x, } and transform the tree 7 to Tj .,
else
begin
if x; is a suitable 1 X 1 pivot
then eliminate x; and transform the tree T;to T}, ,
elseset 7;,, := T; /* delay elimination of x; */
end
end;
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eliminate the remaining nodes in the tree 7, , ;.
end.

In this algorithm, we use the notation T;[x;] to denote the subtree rooted at the
node x; in the tree T;. The tree T; contains nodes that have not been eliminated. In
particular, T;[x;] represents the set of nodes in T'[x;] whose elimination has been thus
far delayed (except x;). In the algorithm, preference is given to 2 X 2 pivots over 1 X 1
pivots if the 2 X 2 involves a node that was delayed earlier on.

As in Algorithm 2.1, we have left the numerical conditions for suitable 1 X 1 and
2 X 2 pivots unspecified for the time being. However, we need to provide the tree trans-
formation rules for

T>T,—> - >T,>T,.,.

This is important since the domain to search for suitable 2 X 2 pivots in step j is given
by the subtree T;[x;]. It should also be pointed out that some nodes in T;[x;] may become
suitable pivots after the elimination of x; or {x;, x, }. For simplicity, we have not taken
this into consideration in Algorithm 4.1.

To facilitate the discussion of the tree transformation rules, we introduce a tree
manipulation function. Let 7 be a given tree and x be a node in T which is not the root.
Consider the removal of the node x and its incident edges from the tree T so that the
children nodes of x (if any) will become the children nodes of the parent of x. This will
give rise to another tree, and we shall use remove (x, T') to denote the resulting tree.

The tree transformation rules for Algorithm 4.1 can then be described in terms of
the function remove (x, T'). Consider the transformation from 7; to 7. . We have the
following three cases.

Case 1. The node x; is delayed for elimination:

T =T,
Case 2. The node x; is eliminated as a 1 X 1 pivot:
T;+ 1 :=remove (x;, T}),
Case 3. {x;, x;} are eliminated as a 2 X 2 pivot:

T;+ 1 :=remove (x;, remove (xi, T)).

To illustrate the tree transformation sequence, we use the matrix structure of Fig.
3.1 and its elimination tree of Fig. 3.2. Figure 4.1 displays the sequence of trees resulting
from Algorithm 4.1. It corresponds to the following block elimination sequence:

X1,X3,Xs, {Xe,Xa}, X7, {Xs, X2}

We assume that the nodes x, and x; have been delayed for elimination until xg and X,
respectively, due to stability consideration on the numerical values.

Note that T = remove (xs, T5), and in the tree T, the node x5 becomes the parent
of x, after the removal of the node x5 from T5. On the other hand, 75 = remove (xg,
remove (x4, T¢)). Since the subtree Tg[xs] contains only the nodes x; and x4, the tree
T; is obtained from Ty by simply the deletion of the entire subtree Tg[xs].

It is important to point out that a different set of numerical values may induce a
different block elimination sequence. Indeed, if the numerical values are given so that
no pivoting is necessary (for example, when the matrix is positive definite), it is simple
to generate the tree sequence. In such case, in each tree Tj, the subtree T;[x;] has the
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T, T, T

FI1G. 4.1. Tree transformation sequence.

only node x; and this node is always a leaf of 7;. Therefore, T;. ; can be obtained by
simply deleting the leaf node x; from the tree 7.

The sequence of tree transformations provides a model to study sparse symmetric
indefinite matrix factorization using a mixture of 1 X 1 and 2 X 2 block pivots. Implicitly
used in the model (or Algorithm 4.1) is the technique of delayed elimination as discussed
in § 4. How far a node is to be delayed depends on the pivoting strategy and the numerical
values. However, irrespective of the strategy, at step j, the subtree T;[x;] contains the set
of candidates for the next block pivot.

5. Use of the model.

5.1. The multifrontal method by Duff and Reid. The tree model described in § 4
captures the important characteristics of delayed elimination. The tree 7; at step j provides
the current structural information necessary for the next elimination. Indeed, the subtree
T;[x;] rooted at x; contains the set of desirable candidates for the next pivot, desirable
from a structural point of view. It represents the set of nodes in T[x;], whose elimination
has been thus far delayed.

Using the tree model as the basis, we can concentrate on other aspects of sparse
indefinite factorization:

(a) Pivoting strategies for numerical stability and factor sparsity,

(b) Algorithms to search for pivots in the subtree T;[x;],

(c) Design of data structures to represent the structural and numerical factors,

(d) Subtree representation of 73,

(e) Efficient numerical sparse factorization,

(f) Forward and backward substitutions.
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Different schemes in each of the above categories can be compared with each other using
the model as the common basis.

It is appropriate at this point to discuss the relation of the tree model with the
multifrontal method by Duff and Reid [7] for sparse indefinite systems. The notion of
delayed elimination first appears in their paper [7]. Our work in § 3 considers this notion
in the context of elimination trees, and provides some quantitative bounds on possible
structural damages due to delayed eliminations. Furthermore, we have incorporated this
important idea to give a tree model to study sparse indefinite factorization.

Naturally, there are many ways to implement the tree model depending on the
pivoting strategy, pivot searching algorithm, data structures and numerical solution ap-
proaches. Indeed, the multifrontal method by Duff and Reid can be treated as one way
of implementing the tree model. They have employed the threshold pivoting strategy
from [8] for the selection of stable 1 X 1 and 2 X 2 pivots. A slightly improved version
appears in [12]. Other competitive pivoting schemes exist; one such example is the use
of a threshold version of the Bunch-Kaufman pivoting strategy [2], [14].

The main feature in the multifrontal method is the use of full matrices in the course
of factorization. Each frontal matrix is stored as a full matrix. This choice of data structure
greatly facilitates the search for pivots and adapts extremely well on vector machines.
Furthermore, the subtrees T;[x;] are represented implicitly in the full submatrix scheme.
However, it should be emphasized again that this is only one of many possibilities.

In terms of numerical factorization, the multifrontal method uses an outer product
form of factorization. When a row/column is eliminated, its modification to the remaining
submatrix is applied. Furthermore, Duff and Reid uses a version of implicit (asymmetric)
block factorization whenever the diagonal block is 2 X 2. In other words, if Disa 2 X 2
diagonal pivot, and F is the corresponding off-diagonal block, they opt to store D! and
F rather than D and FD™!. This helps to reduce storage as reported in [8].

5.2. New sparse factorization schemes: an example. To illustrate our point that the
tree model forms an important basis for different sparse factorization schemes for indefinite
matrices, we shall provide one such scheme as an example. It should be stressed that we
are not advocating this scheme over other methods, but it serves the purpose of showing
the fundamental importance of the model.

A node can be delayed for elimination to be after any one of its ancestor nodes in
the elimination tree. A simple scheme is to always force the delayed elimination to be
after the root x, of the tree. This actually produces an effective and elegant overall solution
method provided that the number of delayed eliminations is relatively small. Algorithm
4.1 to determine block elimination sequence can be reformulated as follows.

ALGORITHM 5.1.
begin
T, :=T(A);
forj:=1tondo
begin
if xj_ € Tj[x;] and {x;_,, x;} forms a suitable 2 X 2 pivot
then eliminate {x;_,, x;} and transform the tree
T; . :=remove (x;, remove (x;_, T;))
else
if x; is a suitable 1 X 1 pivot
then eliminate x; and transform the tree 7}, , := remove (x;, T})
elseset 7, , := T; /* delay elimination of x; */
end;
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eliminate the remaining nodes in 7}, ;.
end.

Towards the end of the algorithm, the tree T, , ; contains all the nodes that have
been delayed for elimination. After the numerical elimination of all previous pivots
(IX1{x}or2xX2{x_y, x,}), we can treat the matrix remaining to be factored as a
dense matrix. In practice, this is almost always the case. The standard routines from
LINPACK [6] for factoring indefinite symmetric dense matrices can be used on this
submatrix.

A slight improvement in Algorithm 5.1 is in the choice of 2 X 2 pivots. If x. € T;[x;]
and x, is a child of x; in the original elimination tree, then x, is also a potential candidate
for stable 2 X 2 pivots to go with x; (without affecting the structure of L). In the algorithm,
c is always taken to be j — 1.

We can actually consider the scheme from a matrix partitioning point of view. Let
A be the given matrix, and P be the permutation matrix corresponding to all the delayed
eliminations. Then we can view the permuted matrix as partitioned into:

E FT]

PAPT=
[¥ e

where E is n — k by n — k, C is k by k, and k is the number of delayed eliminations in
Algorithm 5.1.
This view allows the use of asymmetric block factorization [10]:

E FT1 _[E 0][1 E'FT
[F C] [F C][o I ]
where C = C — FE™'FT. Of course, the matrix E itself will be decomposed into its
triangular factors, and the pivots will be governed by Algorithm 5.1. On the other hand,
C, which is treated as dense, is factored using a mixture of 1 X 1 and 2 X 2 pivots. Note
that within C, we are free to interchange rows/columns without causing structural
problems.

In terms of storage, it is important to realize that we need only to store the factors
of E and C together with the off-diagonal block F of the original matrix. The matrix
product E~'FT is never stored nor computed. An important consequence of this obser-
vation is that the compressed data structure obtained by a symbolic factorization of 4
(see, for example, [10]) is appropriate for the matrix factors of E. Moreover, for those
columns corresponding to C in the data structure, their column data storage can be used
to keep the associated rows of F. This means the only additional data storage required
is a full matrix of size k.

For this approach to be successful, it is crucial that the number of delayed eliminations
k must be kept as small as possible. Any extra effort to ensure this seems to be worthwhile.
Provided k is small, this scheme is quite attractive. Its data structure is similar to those
for sparse Cholesky factorization with an additional k X k full matrix. It also allows an
efficient implementation of the numerical factorization and solution phases.

6. Concluding remarks. In sparse Cholesky factorization, the elimination graph
model [15], [16] plays a central role. It provides a clear conceptual picture of the elim-
ination process and hence facilitates the development of other important ideas for sparse
factorization. Some of the key results include: the improvement on symbolic factorization,
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the compressed column data structure by Sherman [18], the significant advance in the
implementation of the minimum degree ordering algorithm [10].

The tree model introduced in this paper for sparse symmetric factorization plays a
similar role. It captures most of the structural aspects of the elimination process using
delayed elimination. This will allow researchers to focus and improve on other algorithmic
aspects of factorization based on the model.

There are many ways to implement this tree model, the multifrontal method by
Duff and Reid being one of them. The author is currently investigating other practical
ways for its efficient implementation. One such scheme is suggested in this paper, which
works well if the number of delayed eliminations is small.
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ON THE SPECTRAL DECOMPOSITION OF HERMITIAN
MATRICES
MODIFIED BY LOW RANK PERTURBATIONS
WITH APPLICATIONS*

PETER ARBENZ'! AND GENE H. GOLUB!?

Abstract. We consider the problem of computing the eigenvalues and vectors of a matrix
H = H + D which is obtained from an indefinite Hermitian low rank modification D of a Hermitian
matrix H with known spectral decomposition. It is shown that the eigenvalues of H can easily be
located to any desired accuracy by means of the inertia of a Hermitian matrix of small order whose
elements depend nonlinearly on the eigenvalue parameter A. The results are applied to the singular
value decomposition of arbitrary modified matrices and to the spectral decomposition of modified
unitary and of Hermitian Toeplitz matrices.

For both the singular value decomposition and the unitary eigenvalue problem, divide and con-
quer algorithms based on rank one modifications are presented.

Key words. Modified eigenvalue problem, Hermitian matrix, Toeplitz matrix, Unitary matrix,
Modified singular value decomposition

AMS(MOS) subject classifications. 15A18, 65F15

1. Introduction. Let H € €C™*" be a Hermitian matrix with known spectral
decomposition

(1) H = QAQH
where @ = [g1, -, ¢gn) is unitary and A = diag(A1,---,An). A1 = -+ > A, are the
eigenvalues and ¢;, 7 = 1,---,n, the corresponding orthonormal eigenvectors of H.

We denote the spectrum of H by A(H) := {A1,---, A}
Let D € C™*" be an arbitrary Hermitian matrix of small rank r < n. We consider
the problem of finding the eigenvalues and vectors of the matrix

(2) H:=H+D

using the already known spectral decomposition of H. Let V € C™*" be a matrix of
maximal rank r with columns spanning R(D). Then V (VHV)~1VH s the orthogonal
projection onto R(D). Therefore, because N (D) = R(D)* [14, p. 21] we have

(3) D =V (VEV)~lyHEpy (vHY)=lyH =y AVH
where
A= (VEY)"lWvHDY (VHY) L e €7%7

is a nonsingular Hermitian matrix. Thus the problem considered can be reformulated
in

4) Hz := (H+VAVH)z = Az,
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or equivalently according to (1) in
(5) A+UAUM)y =Dy, y=QU, z=Qy.

If D is positive semidefinite, V can be chosen such that A is the identity matrix. This
special case has been considered by the authors in an earlier paper [2].

In §2 we use a similar analysis to show that the numbers P()) and P(}) of the
eigenvalues of H and H that are > X, respectively, are related through the equation

(6) PA)+n(A™H) =P\ +7(A™ = VEOL-H)"V), X ¢ MH),

where m(A~1) and (A~ — VE()A — H)~V) are the numbers of positive eigenvalues
of A™! and A~ — VH(X — H)~1V, respectively.

A formula equivalent to (6) has apparently been stated for the first time by Beat-
tie and Fox [4]. A corresponding formula for restricted matrix eigenvalue problems
was given by Simpson [23]. Numerical computations using that formula have been
performed by Simpson and his collaborators for the frequency analysis of mechanical
structures [22], [24].

A slight modification of the matrix A~! — VH(X — H)~!V permits the extension
of statement (6) to the case where ) is an eigenvalue of H. The theory developed in
§2 holds for any r < n. A reasonable application in numerical computations,however,
seems to be restricted to an r that is small.

In §3 we apply the theory of §2 to the modified singular value problem: Let
A € C™*",m > n, be a matrix with known singular value decomposition. We
consider the problem of computing the singular value decomposition of

(7 A:=A+X

where the perturbation X € €™*" is again assumed to be a matrix of low rank.
Because the singular values of A and A are the positive square roots of the eigenvalues
of AHA and of A" A, it is possible to apply the results of §2 setting H = A¥A and
H = AHA,

In §4 we show how the divide and conquer algorithm that has been proposed by
Cuppen for the tridiagonal symmetric eigenvalue problem (8], [10] can be applied on
the singular value decomposition of upper bidiagonal matrices. It is surprising that
X in (7) can be chosen such that the modification D = AHA — A¥ A has rank one.
This is in contrast with the approach made by Jessup and Sorensen [19] which leads
to a rank two change.

The results of §2 apply also to the eigenvalue problem of Toeplitz matrices and to
the eigenvalue problem of unitary matrices as will be shown in §§ 5 and 6. In the latter
we consider the eigenvalue problem SHUz = Az, where U € C™*" is a unitary matrix
with known spectral decomposition and § € C™*" is a unitary matrix such that I —S
has low rank (S may, e.g., be a Householder transformation [17, p. 4]). By means
of the Cayley transform [12] the unitary eigenvalue problem can be transformed in a
Hermitian one permitting again the application of the theory of §2.

In §7 we discuss some questions that arise when the derived results are to be
applied numerically.

2. Locating the eigenvalues of H = H + VAVY. In [1], [2] the eigenvalue
problem (5) with A = I has been investigated. In this section we generalize the
analysis developed there to the more general case where A is an arbitrary nonsingular
matrix. We first show the basic lemma.
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LEMMA 2.1. Let A € R be arbitrary but fized and let p = u(A) > 0 be the
multiplicity of A as eigenvalue of H. Let W € C™** be a matriz the columns of which
form an orthonormal basis of the eigenspace N(\ — H) corresponding to A. Then the
matrices

A-H 0 0
8) B:= 0 A=l 0| e gintrtp)x(ntrtu)
0 0 o0
and
A—-H 0 0
© C:=| 0 A '-VEQ-H)tV VHW | e rtrimxntrim
0 wHy 0

are congruent. Here (A — H)T s the Moore-Penrose pseudoinverse of (A — H).
Proof. A simple computation shows that

(10) MEBM =C
with

I-wwi o w I 00
M = 0 I of (AVEI-wwH) T 0

wH 0 0 0 0 I

[1 0 0 I —-(A-H)*V 0
(11) -lo 1 AVHW] [0 I 0]

00 I 0 0 I

I-wwH —-(A=H)tV w
AVE(I -WWH) T-AVE(N-H)'V AVEW
wH 0 0

Recall that (A — H)*T(A—H)=1-WWH. 0O
If ) is not an eigenvalue of H then Lemma 2.1 reduces to Corollary 2.2.
COROLLARY 2.2. If X ¢ A(H), then the matrices

. A= f{ 0 (n+r) X (n+7r)
(12) B:= [ 0 A'l] eC
and
— |A-H 0 (n4r) X (ntr)
(13) C"[ 0o A —VH(,\—H)—IV] €0

are congruent.
Proof. Equation (10) holds with
| I -(A-H)"v
(14) M= [AVH I— AVHE() —H)—lv]'
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Since det M = 1, (10) yields

—s
—_
>
|
>
<
~

Il
-

(15) g = det(A)det(A~! — VE(A — H)™1V), A ¢ A(H).

=
—_
>
|
>
<
~—

<.
1l
-

Thus, the eigenvalues of H can in principle be obtained from those of H by an
investigation of the zeros and poles of the function on the right-hand side of (15). This
function is a generalization of the Weinstein-Aronszajn determinant known from the
methods of intermediate problems [2], [15], [27]. .

Let P()) and P()) be the number of eigenvalues of H and H, respectively, that
are > A. We denote by (v(A), ¢(A), m(A)) the inertia [14], [20], i.e., the number
of negative, zero, and positive eigenvalues of a Hermitian matrix A. Then we have
Theorem 2.3.

THEOREM 2.3. Let A € R be arbitrary but fized and let u be the multiplicity of
A as eigenvalue of H. Let W € C™**,WBW = 1,,, be such that R(W) = N(A — H).
Then the equality

(16) P(A) +7(Z()) = P(A) + m(4)
holds with
(17) Z(\) = [A—l - V;}({}; H)*v VI:)W] e Qrtmx(r+u)

Furthermore, the mapping

a: N(Z(N) — N —H)

(18)
|

g] —z:=A—H)TVy+Wz

18 bijective.

Proof. By Sylvester’s law B and C have the same inertia [20]. The number of
nonpositive eigenvalues of B is P(A) + r — m(A™!) + u. This number equals P(\) +
r+p—m(Z())), the number of nonpositive eigenvalues of C. As m(A~!) = w(A), this
proves (16).

M in (11) bijectively maps

NE©C) = {[g] eC™ttHlze NA-H) C c"}

(19) 0
ea{ H eqrtrty [Z] € N(Z) c(l)'*"}
2
onto
0
T€ N(,\—fl)} ® { [0] € QrtrtH ze(l)“} .
z

(20) N(B) = { [g} € griria
0
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From (11) it is seen that the first summand in (19) is mapped bijectively onto the
second summand in (20) by

(21) z+— 2z = WHg,

while the second summand of N (C) is bijectively mapped onto the first of N(B) b
a. This completes the proof. O
If A is not an eigenvalue of H then Theorem 2.3 reduces to Theorem 2.4.
THEOREM 2.4. Let A ¢ A(H), i.e., u(A) =0, and

(22) Z\) =A"-VEQ - )7V
Then (16) holds and the mapping

a: N(Z(N) — N —H)

(23) ] —x:=(A-H)"'Vy

18 bijective.

Proof. Theorem 2.4 follows similarly from Corollary 2.2 as Theorem 2.3 from
Lemma 2.1. O

Remarks. (1) We may write (16) in the form

(24) Mpa) 2 AABoy+1

where P()) = P(A) + m(A) — m(Z(})), or, since ¢(Z(A)) is the multiplicity of A as
eigenvalue of H, in the form

(25) Me-sz)) > A 2 Appy—s(z()+1-

These inequalities render it possible to compute any eigenvalue of H to any desired
accuracy by a bisection algorithm [14].

(i) If we define N()) and N()) to be the number of eigenvalues of H and H that
are < A then the inequality

(26) N +v(Z()\) = N(A) +v(A)

holds, the proof being similar to the one of (16).
Note that, using the spectral decomposition of H, Z(A) in (22) can be written as

(27) ZOA) =A"1-UBN - A"l

Since A — A is diagonal the computation of Z()) is cheap. If r is sufficiently small it
may thus be advantageous to compute the eigenvalues and vectors by means of (26)
instead of forming the whole matrix H and apply one of the classical algorithms such
as the QR-algorithm. 5
The following Theorem gives useful a priori inclusions for the eigenvalues of H.
THEOREM 2.5. Letry =m(A) and r_ = v(A) =r —ry. Setting \j = 400 for
J <1 and A\j = —o0 for j > n, the inequalities

(28) Xicre 28 2 Ajr, j=1,--,n

are valid.
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Proof. Evaluating (16) at the point :\j we obtain

P(};) = P(}) — (&) +m(2Z(};))
> P(A)—ry 25—y
which proves the left-hand-side inequality. Similarly, by evaluating (16) at A; one
obtains
P(3;) = P(X) +7(8) = n(Z(A}))
2 j+r—r-—r+v(Z(X) +6(Z(}))
Z .7 -T-,
from which the right-hand-side inequality follows. 0O
Remark. Inequalities (28) are well known in the case ry = r (r— = 0) [26], [27].
They are usually proved by means of the Courant-Weyl principle. The use of this

principle is now hidden in the proof of Sylvester’s law on inertia [14], [20] which was
used in the proof of Theorem 2.3.

3. On the modified singular value decomposition. Let now A € C™*",
m > n, be a matrix with known singular value decomposition

(29) A=F%G", where F € C™ ™ and G € C™*" are unitary matrices

and

(30) r= [EOI:I Emena 21 =diag(01,---,an),

contains the singular values 03 > --- > 0, > 0 of A in its diagonal. We consider the
problem of computing the singular value decomposition

(31) A=F3SGH

of the matrix A := A + X. Here it is assumed that X has low rank, say p. This
implies that X can be represented in the form

(32) X =X X,

where both X,, € C™*? and X, € C"*? have maximal rank p.
As is well known, the singular values of A and A are the positive square roots of
the eigenvalues of the positive semidefinite matrices H := AHA = GZ2GH and

(33) H:=A%4=(A+X)%(A+ X)=H+D e ™",
respectively, where
(34) D : =AX + xHA 4 xHX

= AUX, XB + X, XBA+ X, X2 x,, xH

is a Hermitian and in general indefinite matrix. From (34) it is seen that its range
R(D) is spanned by the columns of X and AHX. Recalling that rank X = p we get
p <r:=dimR(D) < 2p.
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As shown in §1, D can be represented in the form
(35) D=VAVHE vec™, AeC™,

where A is diagonal. Then Theorem 2.3 is easily rewritten for the present case.

THEOREM 3.1. Let A € R be arbitrary and let u be the multiplicity of o :=
sign(A\)v/[A] as singular value of A. Let P(\) and P()\) denote the numbers of singular
values of A and /i, respectively, that are > o and let the columns of W € C™*¥, form
an orthonormal basis of N(A — AHA). Then the equality

(36) P +7(Z(\) = P(\) + n(A)
holds with
(37) Z() = [A—l VgAY VW

Furthermore, the mapping

a: N(Z()) — N\ — ABA)
(38) [y

z] — oz = (A — AMA)TVy + W2

18 bijective.

Note that the matrix W can be formed with the columns of G corresponding to
the singular value o.

For o not a singular value of A we get with (29)

(39) Z(\) = AT —VE( - AH )"y,
1 (GRV)E(A - 22)7Y(GHY),

with A = sign(o)o?, a substitution that makes a repeated computation of Z(\) much
cheaper.

The mapping « gives the columns of Gin (31) corresponding to the singular value
o. The corresponding columns of F could be obtained in a similar way if one works
with AAH instead of AHA. A better way to get F is via the QR-decomposition with
column pivoting of the matrix AG [14, p. 289]:

(40) QR = AGTL.

Here IT is a permutation matrix. It is easy to see that R has orthogonal columns.
Indeed

RER = NTGHARQQM AGTI = IS = (1T EMT)?
with & = diag(G1, - -,0,). Without loss of generality we can assume that the diagonal
elements of R are nonnegative. Therefore R = IITLII and with (40) we obtain
(41) A= (QUM)EG,

the desired singular value decomposition of A.
We now apply Theorem 2.5 to obtain an a priori inequality for singular values.
To do that we estimate the number of positive and negative eigenvalues of D. To that
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end we choose a Vo € €™*" of the form Vy = [V}, V3], where V; € €™*?, VHV; =
I, spans R(X,) and V, € €*"P) VHV, = [,_,, spans R(A¥X,,) N R(X,)*.
Then evidentially V'V, = 0 and consequently VX, = 0. Any u € R(D) can be
represented by

(42) u=[V1,V2][;], reCPyeC P
Thus, to any eigenpair (),@) of D there corresponds a vector [g] =Vy'a = Via
satisfying
H | _| B Cll|z|_+|=z
43) vow ] =g §]15]=7[¢]
where

B =VEARX,, xBv, + VEX, XE AV, + VEX, XE X, X2V,
and
C=VEX,XEAV,.

C clearly has maximal rank r — p. Let C € C?*? be a nonsingular matrix such that
S .
CcC = [ 0 ] .

Then, since the inertia of a matrix is invariant under congruence transforms, the
matrix in (43),

_ - By Byy I._
c o0 B C][CE o0 12 frep
w 5 IE ST ][
0 L, |CY® 0]|0 I L 0 0
and
I 0 0 By, Bz L_,][I 0 o By 0 I,
(45) {0 I —-BR || B, B 0 0 I O0f(=| 0 By 0
0 0 I L., 0 0 0 —Byy I I, 0 0

have the same number of positive and negative eigenvalues. We denote these numbers
by r4 and r_. Since the mentioned matrices are regular we have r = ry + r_.
Furthermore, by (45) we see that r —p <r_ <pandr —p <ry <p (cf. [2]). With
Theorem 2.5 we thus obtain the a priori inequalities

(46) Oj—p 2 Oj—ry 2 0j 2 Ojtr_ 2 Ojtp.

The inclusion 0;_p > 6; > 04, is well known [25].

4. A special case: A divide and conquer algorithm for the singular
value decomposition of bidiagonal matrices. In 1981 Cuppen [8] proposed a
divide and conquer algorithm for the solution of the real symmetric tridiagonal eigen-
value problem. The method has been refined and successfully implemented for vector
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and parallel computers by Dongarra and Sorensen [10]. After the discussion in the
previous section it is of interest to try to generalize this algorithm to the computation
of the singular value decomposition of bidiagonal matrices. This has been done by
Jessup and Sorensen [19]. In this section we reconsider the problem, treating it in a
different way in order for D in (34) to become a matrix of rank one.

Let

01 v

(47) A= o €C™™, 1 #0,
S

bn

be a bidiagonal matrix the singular value decomposition of which is to be found. With-
out loss of generality A can be assumed to be square. It may, for example, have been
obtained from any m x n-matrix by a finite sequence of Householder transformations
[14, p. 170]. i i

We decompose A in the form A =: A+X = A+exv! where v! = Sgef +vit1el,;,
e; denotes the 7’th unit vector,

[ 61 Uy )
Sk—1 Vi
0 0
A= Ok+1 Vi2 ’
Un
L O |
and
00 -
0 0
_ 0k Vit
X= 0 0
0 0
L 0]
The matrix AHA consists of two tridiagonal blocks,
Hy _ [ (AHA) 0

with (AHA); € C*F and (AHA), € C9X("=k) the first of which is always
singular. Because AHX = 0, the matrix D in (33)—(34) becomes

— yHy _ . H _ 161 Gkvksr H
(49) D=X"X=w _[ek’ek+1][6k’7k+l IVk+1l2 [ek,ek.H]

which is equivalent with (35) if one sets A = 1.
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Remark. Jessup and Sorensen chose X = uk+1ekef+1, whence a rank two modi-
fication D results.
The matrix

(50) G= [%1 C‘;?]

in (29) contains the normalized eigenvectors of A® A. It is blockstructured in the same
way as AHA is. Therefore Z()) in (39) becomes

Z\) = 1-v8A = AHA)" v =1 - (GHo)H (A - 2%~ 1GHy

k n
51 |12 12
(51) - 1- |6k|2 |91 5 - IVIc+1|2 2 : ng+1,12| Y )\(AHA).
e~ )\ — 0% ) A =07
j=1 J j=k+1 J

The treatment of the function Z(\) is crucial for the success of a divide and
conquer algorithm. As already mentioned after (15), Z()) contains all the information
needed to determine A(A®A). Although it is easy by Theorem 3.1 to determine the
multiplicity of every A; € A\(A¥A) as eigenvalue of A® A it is preferable in the rank
one case to perform the following deflation process:

Observe that, since [10]

52 I(A84 - 2)Ges|| = IG(E? - o2 + (GHo)(GHo) ey
= 1(GPo)fe;| = v Gey| = (G, ,

o? is a good approximation for an eigenvalue of A" A if |(GHv),] is small. This is
indeed very often the case as has been observed in the tridiagonal case by Cuppen
[8] and Dongarra and Sorensen [10] as well. Therefore those summands in (51) with
sufficiently small coefficients can be neglected, or equivalently, the rows and columns
corresponding to small |(GHv),| can be eliminated from A®A. (For details see [10].)

A special case of the above situation occurs if A" A has multiple eigenvalues. Then
the basis of the corresponding eigenspace can be chosen such that at most one of the
eigenvectors is not orthogonal to v. By consequence the corresponding components
of GHv vanish and can be eliminated in the deflation process.

Finally one is lead to matrices A" A and A" A (we do not change notation) which
both have only simple eigenvalues. By (15) and the form (51) of Z()) it is clear
that A\(AHA) N A(AHA) = 0. Because Z’(A) > 0 for all A ¢ A(A"A), Z()) has a
single simple zero in each open interval (¢7,02,,),1 < j < n, and (02, 00). Bunch
et al. [7] have developed a quadratically convergent zerofinder for the determination
of the roots of Z(A) = 0 based on a rational approximation of Z()). This zerofinder
proved to be very efficient in the symmetric tridiagonal case [10].

If a zero A of Z(\) (i.e., the square of a singular value G of A) is found, a
corresponding right singular vector § is — according to (38) — given by

(53) §=(0—-A%4)"1y =G - 22)"1GHw.
In the absence of round off, a corresponding left singular vector is obtained by

(54) [ = <43

Q| =
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f is normalized if § is so. Note that 6 does not vanish, since possible singular values
zero of A have been ruled out in the deflation process! _
To obtain the singular value decomposition of the original matrix A, the newly
computed singular values and vectors have to be combined with the deflated ones.
Equation (54) may cause inaccurate results if 6 is very small, possessing a large
relative error. To control the accuracy of the computed results we propose to use (54)
together with its dual formula

 R—_
P __14H
(55) §=zA"]
in the following Lanczos process. Starting with j = 1 one defines [13]
(56) 2= Agj, 65:= |zl fi= 265,

where g, fj, and 6, are approximations to gj, fj, and 6;. We consider them to be
accurate if 8; defined by

(57) w; = A¥z; — 6595, By = w2

is sufficiently small, i.e., if its size is of the order of magnitude of the machine precision
[14, p. 33]. If this is not the case, we define

(58) di+1 = w;/B;

and perform the Lanczos steps (56)—(57) again starting with §;41. If we now assume
that 64,-+,05-1, §1," ", 0j—1, and fl,"‘,fj_l are accurate to machine precision,
we can expect the error of §; to lie essentially in the span of g;41, -, gn. Therefore,
by well-known properties of the Lanczos algorithm [14, p. 323], the larger singular
value of the matrix

6 B
(59) [0] &jil]

is a better approximation to ¢, than 6;. Improved approximations to g; and fj are
given by v19; + 720541 and 1 fj + ©2 fj+1, respectively, where (:;) and (g;) are
the right and left singular vectors corresponding to the larger singular value of the
matrix in (59). If Bj=1 = ||A¥fj+1 — 0j4+18j+1] is not small either, the Lanczos
process (56)—(58) may be continued. We believe, however, that one or two steps will
in general suffice to obtain high accuracy.

5. On the banded Toeplitz eigenvalue problem. Let us consider the eigen-
value problem

(60) Hz =)z
where H is a banded Hermitian Toeplitz matrix
[to tp
H= 4, tp
L tp to
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of order n. (We assume 2p < n.) Jain [18] proposed to solve the linear equation
Hz = y by decomposing H in the form H = H — D with

t1 oty ty - t1

tp tp
H =

tp - tp

ts tp ty to

and

K 0 ty t1]

0 t
D =

tp 0

[t ot 0 -+ 0

Here H is a Hermitian circulant and D is a matrix of low rank r = 2p. Clearly,

(61) D=V[}£H }OZ]VH
where
tp tp—1 - t
R= ' t'2 € CP*P
tp
is upper triangular and
I, 0
V={0 0]|eR™.
0 I

Hence we obtain a modified eigenvalue problem of the form (5). The special case
where H is tridiagonal with additional entries in the (1,n)- and (n,1)-corners has
been considered by Bjorck and Golub [5].

Since it is very easy to compute the eigenvalues and vectors of circulant matrices
[9, p. 72] it may be a successful approach to calculate first the spectral decomposition
of H and then treat Hz = Az as a modified eigenvalue problem.
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The knowledge of the eigenvalues and vectors of banded Toeplitz matrices is of
considerable interest in in many applications, especially signal processing.

Note that the eigenvalues of A are given by 01 > 09 2> - >0, > —0p 2> -+ 2>
—o71 where the o0;’s are the singular values of R. Thus the mterlacmg property (28)
holds with ry =7_=1p

Remark. The eigenvalue problem Hz = )z can also be treated as the restriction
of the eigenvalue problem

(62) Hz =)z, H e ¢(ntp)x(n+p)
restricted to
(63) QTz=[0 I,]z=0, QeR™Px*P

The matrix H has the same form as H in (62) but is of order n + p. Restricted
eigenvalue problems can be treated very similarly as low rank modified eigenvalue
problems [2]. Instead of the matrix Z()) in (22) one has to analyse

(64) ZON)=QTH-N'Q

in the present case. Here it is probably advantageous to consider (60) as a restricted
eigenvalue problem since the order of Z in (64) is only p.

6. On the modified unitary eigenvalue problem. Let U € C™*" be a matrix
with known spectral decomposition

(65) U=QTQ", T =diag(r,---,7,), Q unitary,

where the eigenvalues 7; are arranged so that 0 < arg(r) < --- < arg (1) < 2.
Let S be a unitary matrix such that I — S has small rank r. We consider in this
section the modified unitary eigenvalue problem

(66) Uz = SHUz = 7z.

Equation (66) has to be reformulated for the results of §2 to be applicable. Before
doing this we investigate how a unitary S of the above kind must look. To that end
we state Lemma 6.1.

LEMMA 6.1. Let S € C™*™ be unitary such that rank(I — S) =r <n. Then S
can be represented in the form

(67) S=1I-X6xH,

where X € C™*" has orthonormal columns and © = diag(6,,--,0,). The diagonal
entries of © satisfy the equation

(68) 16; —1>=1, 6;#0.
Proof. I — S is normal and thus unitarily diagonalizable. Omitting the trivial

eigenvalues and corresponding eigenvectors we obtain the representation

(69) I-S=X6x" XecC™™  , xUX=1I, ©=diag(4, -,0).
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From S®S = I we immediately get
(70) 6 + 6" = a1,

which is an alternate form of (68). O

Remark. Householder matrices are special cases of (67)-(68) with » = 1 and
0=2.

In order to use the results deduced in §2, we apply the Cayley transform [12,
p. 287] on the matrices U and U. This transform bijectively maps the set of unitary
matrices not having the number 1 in their spectrum on the set of Hermitian matrices.
We therefore have to make the assumption that 1 ¢ A(U) and 1 ¢ A(U). Then the
Cayley transform yields the Hermitian matrices

(71) H:=4i(I-U)"Y(I+U)
and
(72) H:=iI-0U)"'I+0)=4S-U)"Y(S+V0)

which have the real eigenvalues \; = i(1+7,)/(1—=7) = --- 2 Ay =9(1+71)/(1—71)
and Ay = i(1 + 7)/(1 = %) > --- > Ay = (1 + 71)/(1 — 71), respectively. The
eigenvectors remain unchanged. .

The assumption that neither A(U) nor A(U) contains the number 1 is not restric-
tive since premultiplication of U or S¥ by a number a = €'® turns the spectra on
the unit sphere by the angle ¢. Therefore, choosing ¢ properly, the assumptions can
easily be satisfied.

Now we have

(S-U)yYS+U)-(I-U)"'(I+U)
=(I-U)NI-8)(S-U)"(S+U)-(I-9)
(73) =2(I-U)"Y(I-8)(S-U)"'U
=20-U)"YI-8)I-(I-U)tI =9I -U"H)1,

The matrix I—(I-U)~Y(I-S) with I-S = XOXH is a straightforward generalization
of a Householder elementary matrix [17, p. 3] and thus its inverse (if it exists) is known
to be

(74) [I-(I-U)y'xex¥1=1-(I-U)"'XxeBxH
with
B=(I-X%I-U)"'Xx6)leC™.
Setting V := (I — U)~1X, one easily obtains
D=H-H = %[(s —U)" S +U) - (S + UH)(SE — UH)Y)
(75) —[I-0) U +0) - @+ U - U]
= V[e" - e - exMveB + BHefvixeH |yl

which is a representation of D in the form (4). Therefore the results of §2 are appli-
cable.
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We now derive a divide and conquer algorithm for the eigenvalue problem of a
unitary Hessenberg matriz, say C. Let Gy := I — 2w w}! be the Householder matrix
that maps the first column of C on kje;1, |£1| = 1, a multiple of the first unit vector.
Then

_ _[1 oH
IﬁlGlc—[O CI:I’

where () is a unitary Hessenberg matrix of order n — 1. Thus, recursively one obtains
n

(76) C=k1G1 knGn=KG1- Gn, k= []r;
=1

since the G; are Hermitian and G, = I. Note that the vectors w; which define the
Householder reflectors I — w,-w;-*I have at most two nonvanishing components. (For a
similar decomposition of C with Givens rotations see [16].)

Without loss of generality we can assume that £ = 1, which amounts to replacing
EC by C. Let us furthermore assume that we know the spectral decomposition of
Cr = [l;j<x Gj and Cr := [];54 G;. CL and Cr are block diagonal matrices, each
with a Hessenberg and an identity block. Since C = CpGxCpr is similar to

(77 U:=SU:= GrCrCrL, S =Gy, U=CgrCL

we have to compute the eigenvalues of a matrix decomposed in the form (66). The
modification S in the present case is such that I — S has rank 1, while U is blockdi-
agonal with upper Hessenberg blocks of order k and n — k, respectively. From (75)
we obtain

(78) D = 4iv(Botwg — wiv)o,  B=1/(1-2wiv)
= 8Re(fwilv)vv
with
v=I-U)"we = QU - T)"'Q%wx =D _(1—7;) " (q} wk)g;.
j=1

Note that Q is blockdiagonal, too. The scalar Z () in (22) in the present case becomes

Z()) = 8Re(Buwflv) — QA — A)71QMw

(79) = 8Re(Bwilv) — QM —i(I = T)"* (I + T)] Q%
= 8Re(Bwi'v) — wp Qf (A, T)Q M wy

with

(80) JOnt) = .

NI =2 + 2Im(2)’

Since T is diagonal, f(A,T) in (79) is evaluated without difficulty.
Remark. An alternative approach to problem (66) can be made if S¥ and U
commute. We may then define H by

(81) e =U, 0<H<2m
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By (65) we obtain H = QAQY, with A = diag(A1,---,A,). The diagonal entries ),
satisfy the equation A; = —7log7; = arg7;. Analogously we define D by
(82) e?=8" o0<D<2r

By (67) we then get D = X diag(61,---,6,)XH, with €% =1—8;, 0 < §; < 2r. Now
we have

(83) SHY = ¢iDeiH = ¢if
with
(84) H=H+D.

(82) holds if and only if S and U commute [12]. The advantage of this approach is
that both the assumptions 1 ¢ A(U) and 1 ¢ A(U) are not necessary.

The interlacing property (28) of the eigenvalues of the transformed matrices H
and H can be translated in an interlacing property on the unit circle for the eigenvalues
of the original matrices U and U. By

(85) Tjmro S5 < Tigry

we mean that 7; lies on the arc of the unit circle which is passed, when moving from
Tj—r_ t0 Tj4,, counterclockwise. If j + ry > n, we identify 7;4,, with 754, _p.
Likewise we identify 7;_,_ with 7;_,_4, f j—7r_ < 1.

Remark. In the case where U is a real orthogonal matrix, it is possible to complete
the computations in the real field.

7. Numerical considerations. As mentioned after (25) it is easy to determine
any eigenvalue of the modified matrix A at any desired accuracy by bisection: Let
ke N,1<k<nabelR such, that @ < A < b and let € > 0. The following
algorithm determines a number A satisfying |A — Ag| < €/2.

ALGORITHM 7.1.
while b—a > ¢ do
begin ¢ := (a + b)/2;
Compute Z(c);
Determine the inertia (7(Z(c)), ¢(Z(c)), ¥(Z(c))) of Z(c);
if P(c)+m(A) —n(Z(c)) <k then b:=celse a:=c
end;

A= (a+b)/2

To determine starting values for a and b we can skip through the eigenvalues of
A and apply (16) to find a j € IN such that A; < A < A;4+1, use inequality (28), or
both together. Using (28) alone has in general the disadvantage that for each guess ¢
one has to check if ¢ is in A(A).

The iteration in Algorithm 7.1 can eventually be abbreviated if one checks in the
case P(c) + m(A) — w(Z(c)) > k if the additional inequality P(c) +m(A) — w(Z(c)) —
¢(Z(c)) + 1 < k is satisfied. If the latter holds, we have ¢ = Ag.

Since bisection algorithms converge only linearly, it may be desirable to accelerate
the iteration. Beattie and Fox [4] derived an inclusion theorem for the eigenvalues of
H using the smallest eigenvalue of Z()). Using further information they have been
able to prove an exclusion theorem which is interesting because it gives an interval
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centered at A that does not contain an eigenvalue of H, thus making it possible to
shrink the intervals obtained by bisection even more. It is, however, questionable if
the additional labor for the computation of this bound is justified since the rate of
convergence remains linear.

Remark. It is worthwhile noting that the above mentioned inclusion theorem has
already been used by Rutishauser to locate the smallest eigenvalue of a symmetric
matrix. The information obtained made it possible to derive a cubically convergent
LR-algorithm [21].

Obviously a higher rate of convergence is obtained if a superlinearly convergent
zerofinder is applied to det Z()\) = 0 as soon as a sufficiently small neighbourhood of
Ak, has been found. But instead of finding a root of det Z (A) = 0 it is more economical
to solve for d;(\) = 0, where d; is a certain element of the diagonal matrix D stemming
from the LDLT decomposition [14, p. 84] of Z()) subjected to a proper permutation.
To that end we state the following

THEOREM 7.1. Let A ¢ A(A) and P € R™*" be an arbitrary but fized permuta-
tion matriz. Let

(86) LOA)DA)LW® = PTZ(\)P

be the so—called LDLT decomposition of PTZP where L is a unit lower triangular and
D a diagonal matriz. Let € > 0 be such that for all A € Uy :={) € ]R“)\ - A <€}
the elements of L()\), D()\) and Z(\) are bounded and P is invariant. Then

(87) ;—Adi(x\)>0, 1<i<n, peU;,

where d;(A) = eI D(A)e;.
Proof. Let A € Uy+. Since

Z(\) = A1~ VE( - A)7WV = PL(A)D(\)(PL(\)Y,
we have
di(\) = eI L(A)"1PTZ(A\)PL(A) He,.
Shortly writing / for a%, we thus obtain

di(A) = eF (L)Y PTZA)PL(A) " He; + €T L(A\)"1PTZ!(\)PL()) He;

88
(88) +ef L) "1PTZ(\)P(L(A)"H)e;.

Because (LL™1')' = L'L=' + L(L~')' = I' = 0, the first summand in (88) can be
written as

—efL7IL'L"'PTZPL He; = —eT L™ 'L'De; = — (L He;)E L1 L' De;.

Now, L~ He; is a vector whose components are nonzero only for components with index
> ¢ while the first 7 components of L’ De; vanish since L is unit lower triangular. Thus
the first and third summand in (88) are zero and therefore

di(A) = el L(\)"1PTZ'(\)PL()\) " He;
(89) = el L) T'PTVH(A - )72V PL()) " He;
= (A= A)"'WVPL(\)He2 > 0. O
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Remark. Similarly one obtains
(90) d!(\) = —2¢T L) "*PTVE(A — A) 3V PL())He,.

This theorem is very interesting from the numerical point of view since it states
that we can apply the above-mentioned zerofinder on a function with a simple root
whatever the multiplicity of the eigenvalue sought is! It is not yet clear, however,
what happens in the neighbourhood of clustered eigenvalues.

The assumptions made in Theorem 7.1 are satisfied if a stable pivoting strategy
is persued. Sehmi [22] stated (89) for the last diagonal element d, of D for the
neighbourhood of a simple eigenvalue of A. In the cases studied by Sehmi the matrix
Z()) was diagonally dominant and hence a diagonal pivoting strategy sufficed in
the LDLT decomposition of Z()A). This means simply choosing the greatest diagonal
element in modulus as pivot. Simpson [23] proved that d}(X) > 0 under less restrictive
assumptions.

Thus, if a stable pivoting strategy [6] is combined with diagonal pivoting we can
expect that the smallest nontrivial elements in modulus of D will be at the end of its
diagonal and it is therefore reasonable to compute the zeros of d,(A). This has the
further advantage that the derivative of d,()) is easily computed. By (89) we get

(91) d,(\) = (A = A)T'VPLO) e [1F = (A — A) 7'V Per |3,

i.e., d;.(A) is the 2-norm of one of the columns of the matrix (A — A)~!V, which has
to be formed for the computation of Z()). Thus we are led to the following algorithm
which determines a number A that satisfies [A — A| < € by the Newton iteration
method which possesses a locally quadratic order of convergence.

ALGORITHM 7.2.
c:=(a+b)/2
while b—c>e¢ and c—a > e do
begin W := (c — A)~1V; Z(c) := VHW;
Compute L(c)D(c)L(c)" = PTZ(c)P using diagonal pivoting;
Determine the inertia of D(c);
if P(c) +m(A) —7(Z(c)) <k thenb:=celsea:=c

dy == ||W Pe,||3;
i=c—d,/d,;
ifc<aorc>bthenc:=(b+a)/2
end;
A i=c;
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SUPERFAST SOLUTION OF REAL POSITIVE
DEFINITE TOEPLITZ SYSTEMS*

GREGORY S. AMMARYt AND WILLIAM B. GRAGG#

Abstract. We describe an implementation of the generalized Schur algorithm for the superfast solution of
real positive definite Toeplitz systems of order n + 1, where n = 2. Our implementation uses the split-radix
Fast Fourier Transform algorithms for real data of Duhamel. We are able to obtain the nth Szegé polynomial
using less than 8n log? n real arithmetic operations without explicit use of the bit-reversal permutation. Since
Levinson’s algorithm requires slightly more than 2n? operations to obtain this polynomial, we achieve crossover
with Levinson’s algorithm at n = 256.

Key words. Toeplitz matrix, Schur’s algorithm, split-radix Fast Fourier Transform
AMS(MOS) subject classifications. 65F05, 65E05

1. Introduction. Consider the linear system of equations Mx = b, where

(o i w2 pa ]
13! Mo M1 Ctt Mn-1
M=M, \=| w2 w M ., : =[ui-jllj-0
: : M1
| Ba Baer c om mo |

is a real symmetric positive definite Toeplitz matrix of order n + 1. In contrast with the
standard Gaussian and Choleski factorization techniques, which require O(7?) arithmetic
operations, there are several well-known fast, O(n%), methods for solving a Toeplitz system
of equations [21], [29], [4], [17]. More recently, several O(n log? n) methods have been
presented [6], [8] [12], [22], [20]; we refer to these methods as superfast Toeplitz solvers
because they require substantially less computation than the fast Toeplitz solvers for
sufficiently large ».

It is well known (see, e.g., [19], [18], [3]) that fast Toeplitz solvers are based on ideas
from the classical theory of polynomials orthogonal on the unit circle (Szegd polynomials).
In particular, the Szeg6é polynomials can be identified with the columns of the reverse
Choleski factorization of M. This leads to the observation that the classical Szegd
recursions [28], [1], [14] are equivalent with the Levinson-Durbin algorithm for the
Yule-Walker equations [16]. Moreover, the decomposition of M~ given by the Gohberg—
Semencul formula is equivalent with the Christoffel-Darboux-Szegé formula. Schur’s
algorithm [23] provides another connection between Toeplitz solvers and classical analysis.
Schur’s algorithm generates a continued fraction representation of a holomorphic function
mapping the unit disk in the complex plane into its closure, and is known to be closely
related with the fast algorithms for finding the Choleski factorization of the positive
definite Toeplitz matrix M [18], [22].
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A presentation of the superfast algorithm of de Hoog [12] and Musicus [22] that
uses the theory of orthogonal polynomials on the unit circle is given in [2], [3]. This
algorithm is naturally described in terms of a generalization of Schur’s classical algorithm.
The generalized Schur algorithm is a doubling procedure for calculating the linear frac-
tional transformation that results from 7 steps of Schur’s algorithm. This formulation
provides a concise and classically motivated presentation of the algorithm of de Hoog
and Musicus when applied to a positive definite matrix.

The implementation of the generalized Schur algorithm for the superfast solution
of a (Hermitian) positive definite Toeplitz system is described in [2]. By using standard
Fast Fourier Transform (FFT) techniques to perform the required polynomial recursions,
we can construct the linear fractional transformation that results from # steps of Schur’s
algorithm in O(n log? n) complex multiplications. This process yields, without extra
work, all n Schur parameters, also known as reflection coefficients or partial correlation
coefficients. These parameters are often needed in applications.

The de Hoog-Musicus algorithm consists of two phases. First the nth degree Szego
polynomial is contructed from the linear fractional transformation obtained by the gen-
eralized Schur algorithm. Second, the Gohberg-Semencul formula is used to solve the
Toeplitz system in O(n log; n) additional multiplications. Each phase involves the com-
putation of cyclic convolutions. These convolutions are performed using in-place FFTs
without explicit use of the bit-reversal permutation by using “dual codes” and leaving
all transformed data in bit-reversed order. If we insist that the transformed data be in
correct order, the number of necessary data accesses increases. Our implementation of
the algorithm uses 2 7 logd n + O(n log, n) complex multiplications [2]. This operation
count is less than those obtained by de Hoog and Musicus. Moreover, this algorithm
requires the least amount of computation among the other superfast Toeplitz solvers [6],
(8], [20].

In this paper we describe an implementation of the generalized Schur algorithm for
a real positive definite Toeplitz matrix. The implementation of this superfast Toeplitz
solver for real (symmetric) positive definite matrices is conceptually the same. The essential
difference is the use of FFT algorithms that exploit the inherent symmetries of the real
data and their transforms. There are various ways to perform an FFT on real data in
roughly half the computation as in the complex case [27]. We desire the most efficient
algorithms possible since transforms of various size need to be performed repeatedly
during the algorithm. We also want to be able to perform the real convolutions without
explicit use of the bit-reversal permutation. In § 2, we consider some of the real FFT
algorithms and show how the real split-radix FFT of Duhamel [13], [24], [25] suits our
purpose. The generalized Schur algorithm is described in § 3, and in § 4 its implementation
for real input data is described. In § 5 we consider the superfast solution of a real positive
definite Toeplitz system of equations by using the generalized Schur algorithm. We will
see that the nth degree Szegd polynomial can be calculated in less than 87 log3 n total
real operations.

2. Evaluation of real cyclic convolutions. The efficient implementation of the gen-
eralized Schur algorithm relies on the use of FFTs to evaluate cyclic convolutions. Several
methods exist for calculating the Fourier transform of real data in roughly half the com-
putation of the complex case. Each of these methods yields an efficient method for eval-
uating real convolutions, and each results in an implementation of the generalized Schur
algorithm for real data that requires roughly half the computation as in the complex
case. Since convolutions of various sizes are performed repeatedly in the algorithm, we
desire the most efficient real transforms possible. Moreover, we want to implement the
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algorithm without explicit use of the bit-reversal permutation. We avoided this permu-
tation in the complex case, but since the transform of a real vector is not real, some
additional considerations must be made to avoid the bit reversal for the case of real in-
put data.

Recently, real FFT algorithms that can serve as dual codes to allow us to avoid the
shuffling have been presented [9], [13], [24], [25]. In this section we show how the split-
radix FFT for real data suits our purpose. The algorithms are described by considering
the splitting in matrix notation, and precise operation counts are given for use in the
subsequent sections. We will need the following lemmas in our derivation. Assume that
n and ny are powers of two, and let Ig » := log, n.

LEMMA 2.1. If ¢(n) = 2¢(n/2) + 2anlg n + bn + ¢ for n > ny, then

d(m)y=anlg’?n+(@+bnlgn+dn—c,

where d is determined by the initial condition ¢(ny).
LEMMA 2.2. If ¢(n) = ¢(n/2) + 2¢(n/4) + an + b, then

¢(n)=gan Ign— é+cn+d(—l)"
3 2
where ¢ and d are determined by ¢(no) and d(ny/2).
LEMMA 2.3. If ¢(n) = ¢(n/2) + anlgn + bn + ¢ + d(—1)", then

o(n)=2an lgn+2(b—a)n+clgn+§(—l)‘g”+e

where e is determined by ¢(np).

These lemmas are directly verified by induction and are easily derived by considering
the corresponding inhomogeneous linear difference equations for ¢, := ¢(2").

The discrete Fourier transform (DFT) of x € C" is defined by F,x, where nF, :
[w’,,k T 1o, wy is the principal nth root of unity exp (2i/n), and a denotes the complex
conjugate of . The inverse discrete F ourier transform (IDFT') of y € C" is then given by

W,y, where W, := F,;! = nF, = [w,,]o !, There are various ways to compute the DF T

or IDFT in O(n log n) arithmetic operations. Such an algorithm is called a Fast Fourier
Transform (FFT). In the following we focus, without loss of generality, on the compu-
tation of y = W, x.

Let K, = [eo, €x—1, €n—2, * , el and J, = [e,—1, €52, * -, €], respectively, be
the n X n reflection and reversal matrices, where e, - - - , e, are the columns of the
n X n identity matrix. Then we have
@.1) KW= [0 = W,
and
(2.2) T Wo=[wr Y= [0 w;¥1 = W,D,,
where D, := diag [wf,]é’". It is easily seen from (2.1) that whenever x € R", y = F,x
satisfies K,y = y; thatis, n,—; = 7;(j =1, - -+, n/2 — 1) and 7o, 1,2 € R. We will say

the transformed vector y possesses conjugate-even (CE) symmetry. Thus the transform
of a real vector is determined by the n real numbers that constitute its first /2 + 1
components. There are various methods to compute the real to CE transform and its
inverse in roughly half the computation as in the general (complex) case. Some of these
methods are considered below.

Let a¢, uc, respectively, denote a complex addition and multiplication, and simi-
larly for agr, ur. Also let 7 denote a real arithmetic operation. We determine the num-
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ber of real arithmetic operations using a¢ = 2ag, uc = 2ar + 4ur = 67r. In the follow-
ing we ignore multiplication by 1 and i = V=1. We also count the computation of the
product of a complex number with an eighth root of unity as 2ar + 2ugr (since, e.g.,
wler + i) = (o — BY/V2 + i(cx + B)/V2).

Our interest in FFTs is motivated by the desire to efficiently compute products of
polynomials, or equivalently, cyclic convolutions. The cyclic (or periodic) convolution
xxy=:z=[]67 " of x = [£]§ ' and y = [n;]5 ™" is defined by §; = ZRZ4 &xmj—k (Where
Nk = nn—x). Note that from this definition, the computation of z requires O(n?) operations.
It is easily verified, however, that W,z = (W,x)-(W,y) (and F,z = (F,x)-(F,y)), where
u- v denotes the Schur product (componentwise product) of the vectors # and v. Thus,
if ¢(n) denotes the computation required to compute a complex FFT of order n, z =
x*y can be computed using 3 ¢(n) + nuc operations. Moreover, if r(n) denotes the
computation required by a real to CE transform or its inverse tran