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Abstract. Recent results of Neumaier for irreducible matrices on the equality case of a classical matrix
inequality due to Ostrowski are generalized to general matrices. Several graph and number theoretic concepts
are employed in the proof of various further results.
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1. Introduction. Let A be a complex n n matrix and define the absolute value
matrix B [AI ofA by b0 [a0[, i, j l, n. Let p(A) be the spectral radius ofA.

Let q/be the set of all complex matrices A such that p([A[) < 1. In [7] Ostrowski
proves the now very well known result that, for A e //,

(1.1) [(I-A)-ll _--< (I-IAI)-1,

where the inequality is entrywise.
In [6] Neumaier shows that for A e , the set of n n irreducible matrices A e //,

(1.2) I(I-A)-ll (I-IAI)-1,

if and only if

(1.3) all circuit products ofA are positive.

It is well known ([2], [3]) that for irreducible A, (1.3) is equivalent to

A is diagonally similar to [A[, i.e., there exists a diagonal matrix X such(1.4) that A X[A[X-.
Neumaier also shows in [6] that the condition

(1.5) [(I-A-l)[i.i (I-[A[-l)0., for some i,j, <-- i,j <= n,

which is apparently weaker than (1.2), is in fact equivalent to (1.2)-(1.4) for A . (We
have stated special cases ofthe results ofOstrowski and Neumaier, from which, however,
the general theorems may easily be derived.)

In this paper we generalize Neumaier’s results in various directions. We consider
the equality (1.2) for general A e //, omitting the requirement of irreducibility. We use
the concept of two-twisted chain of the graph G(A) of A, which was defined in [5] (see
also 2 of this paper). Intuitively, a chain in a directed graph is obtained by putting a
pointer at a vertex and moving it either in the direction or against the direction of a
connected sequence of arcs to another vertex. Each change in direction is a twist. A two-
twisted chain (e.g., cycle) is a chain with at most two twists. Thus, a circuit (directed
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cycle) is a special case of a two-twisted cycle. We show that, for A e o//, condition (1.2)
is equivalent to

(1.6) all cycle products ofA corresponding to two-twisted cycles are positive

(and other conditions). This generalizes (1.3).
If C is an s s matrix and A is an n n matrix, where s =< n, we generalize both

the Kronecker and Hadamard products in [4] by defining the n n matrix C A, see
also 3. Thus, if A is partitioned into s2 matrices A0, i, j 1, s, then C A is
the matrix whose blocks are coAo, i, j 1, s. Here we show that if A //is in
Frobenius normal form then A satisfies (1.2) if and only if

A is diagonally similar toC IAI, where C is an upper triangular
(1.7) s s matrix (s =< n) such that Ic01 is or 0, Cii is or 0, i,j 1, ..., s,

and zC satisfies (1.2) for 0 < z < 1.

This generalizes (1.4).
We also generalize (1.5) by defining the concept of a G(A)-access cover, see also

2. A subset I’ of (n) (n), where (n) { 1, n}, is a G(A)-access cover if for each
(i,j) (n) (n) there is an (h, k) r such that h has access to/in G(A) andj has access
to k in G(A). We observe that {(i, j)} is a G(A)-access cover for all (i, j) e (n) (n) if
and only ifA is irreducible (or equivalently, G(A) is strongly connected). Thus, if r is a
G(A)-access cover and A e o//, then (1.2) is equivalent to

(1.8) I(I-A)-Io (I-Ihl) for (i,j)er.

The results above may be found as part of Theorem 5.14.
It is easily seen that (1.2) is equivalent to

(1.9) , ASl , .A.
eN seN

for A e //, where N is the set of natural numbers. Since, for all subsets S of N,

(1.10) .,ASl<= _, ]A],
S sS

it is natural to define Equ (sO, I’, S) to be the set of all A s such that

(1.11) IAsl ]AI for(/,j)I’,

where s _c //, I’ c_ (n) (n) and S
___

N.
The equivalences stated above, and others, are stated in terms of Equ (//, r, N). It

is clear that Equ (, I’, S)
___
Equ (, I’, N) for S c_ N. We therefore call a subset S of

N (sO, I’)-sufficient if Equ (1, I’, S) Equ (, r, N).
We give conditions equivalent to (, (n) (n))-sufficiency and (//, (n) (n))-

sufficiency The general problem of characterizing (sO, r)-sufficient sets and minimal
(/, r)-sufflcient sets, for

___
//and r c_ (n) (n), is open.

Section 2 contains graph theoretic preliminaries. Section 3 contains preliminaries
from combinatorial matrix theory. The basic definitions and results on Equ (, I’, S)
are collected in 4. Sections 5 and 6 contain our principal results on Equ (, r, N) and
(], r)-sufficient and (//, r)-sufficient sets.
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2. Graph theoretic definitions and preliminaries.
DEFINITION 2. I. A (simple, directed) graph G (V, E) is a pair of finite sets with

E
_
V V. An element of V is called a vertex of G, and an element ofE is called an arc

of G. We call G (V’, E’) a subgraph of G if V’
_
V and E’

_
E.

DEFINITION 2.2. Let G be a graph. A chain in G of length s from a vertex io to a
vertex is of G is a sequence

(2.3)

where either ep and (ip_ 1, ip) is an arc of G or ep -1 and (ip, ip_ 1) is an arc of G,
p 1, s. The arc (ip_l, ip), [(ip, ip_l)], =< p =< s, is said to lie on 3" if ep
[ep -1 ]. The length of a chain 3" is denoted by I1. The chain 3" is simple if the
vertices i0, is are distinct. The chain 3" is closed if i0 is, and 3’ is called a cycle
if it is closed and the vertices il, is are distinct. A chain given by (2.3) such that
el es is called a path. A path that is a cycle is called a circuit. A closed chain
of form

will be called trivial. The empty chain will be considered a chain oflength 0 from any
vertex to itself and is defined to be simple. The set io, im} is called the vertex set
of the chain g given by (2.3).

Thus the empty chain is the only simple circuit.
Intuitively, the chain (i, e, j) is a step from vertex to vertex j along the

arc (i, j) if e and a step from to j along the arc (j, i) if e -1. We normally
write -- j or j in place of (i, e, j) accordingly as e or e -1. For example,-- 2 -- 3 -- is a circuit and -- 2 -- 3 -- is a cycle. Note also that as a
consequence ofthe above definition certain chains are cycles that normally are not con-
sidered as such, e.g., -- 2 -- 1. It would make no difference to our results to elimi-
nate such cycles from consideration.

DEFINITION 2.4. A vertex has access to a vertex j in a graph G if there is a path
from to j in G and we write >-j orj -< i. If U, Ware subsets of the vertex set V of
G, then the notation U >- Windicates that every vertex of U has access to every vertex
of W.

Observe that a vertex has access to itself since is a path from to i.
DEFINITION 2.5. A graph G is strongly connected if every vertex of G has access to

every vertex of G. A subgraph H of G is called a component of G if H is a maximal
strongly connected subgraph of V, viz. H is strongly connected but no subgraph properly
containing H is connected.

DEFINITION 2.6. Let G (V, E) be a graph and let (i, j), (h, k) e V V. Then
(i, j) is a G-access cover for (h, k) (or (i, j) G-access covers (h, k)) if >- h and k >- j.
Let I be a subset of V V. Then the set of all (h, k) that are G-access covered by ele-
ments of I’ will be denoted by AG(I’). If A

_
AG(I’), we shall say that I’ is a G-access

cover for A (or that I’ G-access covers A). If a is a chain in G [G’ is a subgraph of G]
with vertex set V’, then I’ will be called a G-access cover for a [G’] if I’ access covers
V’ V’. A G-access cover for V V will be called a G-access cover.

It is easy to show that A considered as an operator from the set of subsets of
V V into itself is a closure operator in the sense of 1, p. 42].

The following lemma is clear:
LEMMA 2.7. Let G V, E) be a graph. Then thefollowing conditions are equivalent:
(i) G is strongly connected.
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(ii) Every nonempty subset of V V is a G-access cover.
(iii) Every pair (i, j) V V is a G-access cover.
Remark 2.8. Let G be a graph and let Hi, Hs be the components of G with

vertex sets Vl, Vs, respectively. It is possible to order the components of G so that

Vp>-Vq=>p<q forp, q=l,...,s.

DEFINITION 2.9. (i)Let /3 and 3’ be the chains (i0, el, ,es, is) and
(jo,fl,"" ,f, Jt), respectively. If is =j0 we define the concatenated chain 3" by
(i0, el, ej, is,j], ,f, jr). (If is 4:J0 then/33’ is not defined.)

(ii) Let a and/3 be chains. We call a an extension (chain) of (and a subchain
of a) if/3 =/31/2 and a =/31a’/2 where/31,/32, and a’ are chains (which may be empty).
Also, an extension of an extension of t is defined to be an extension of/3.

It is easy to see that if a is an extension of/3 then a and/3 may be written in the
forms 12 p and a aolal pap, where the ai, O, p, Bi,

1, ,p are chains and ag, 1, ,p- is closed.
DEFINITION 2.10.
(i) Let 3’ be the chain given by (2.3). Then the reverse chain of 3" is defined to be

(is, -es, is-l, -el, io), and is denoted by 3"*.
(ii) We call el [es] the initial [final] sign of 3".
DEFINITION 2.1 1. Let 3" be a chain given by (2.3).
(i) If ep 4: ep+ 1, <= p < s, then we say that 3" has a twist at p (or that p is a twist

of 3"). If 3" is a closed chain then we allow p 0 and we let eo
(ii) If 3" has exactly k twists then 3" is said to be exactly k-twisted and we put

t(’r) k.
(iii) If t(3’) =< rn for an integer rn then 3" is said to be m-twisted.
Note that if 3" is not closed then t(3") is equal to the number of sign changes in the

sequence e, es. If 3" is closed then t(3") is equal to the number of sign changes in
the sequence el, "", es, el. Also note that a closed chain in form (2.3) may have a twist
at0,...,s- but not at s.

Observe that a chain [cycle] is 0-twisted if and only if it is a path [circuit] or a
reversed path [reversed circuit], and that a closed chain has an even number of twists.

LEMMA 2.1 2. Let G be a graph.
(i) Ifa is a chain in G and 3" is a subchain ofa then

(2.13) t(’r) =< t(a) + 1.

(ii) If further, a and 3" are closed then

(2.14) t(3") <= t(a).

Proof (i) Let 3" 3"1 3"p and a a03"la OI.p--13"pOlp. We shall establish a
mapping of the set of twists of 3" (excluding a possible twist at 0) into the set of

twists of a. Suppose that [ag[ sg, 0, p and that [3"A tg, l, p. Let
<= r <- t + + tp and suppose that 3" has a twist at r. Then

r=tl + +ti+q

where0=<i<pandl-<q_-<ti+l. Ifq<ti+lthenahasatwistatr+s0+... + si. If
q ti+l then < p (since 3" does not have a twist at tl + + tp) and, since the
final sign of 3"+ and the initial sign of 3"i+ 2 are inequal, it follows that a must have a
twist at r + s + + si + q’ for some q’ satisfying 0 =< qg _-< s+l. This proves the
existence of the claimed injection and (i) follows.

(ii) If a and 3" are closed, then t(a) and t(3") are both even and (ii) follows
from (i).
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3. Definitions and preliminaries in combinatorial matrix theory.
DEFINITION 3.1. Let c be a complex number. The sign of c is defined by

c/Ic], if c 4: O.
sgn (c)

O, if c O.

We call a complex number c a sign if Icl is either 0 or 1. IfA Cnn, then we call A
a sign matrix if a0 is a sign for i, j 1, n.

DEFINITION 3.2. Let A Cnn.
(i) Then C IAI Cnn is defined by co laol for i, j 1, n.
(ii) The matrix A is called nonnegative (A >= 0) if ao >= O, i, j 1, n.
DEFINITION 3.3. IfA Cn (the set of n n complex matrices) then the graph G(A)

ofA is defined to be ((n), E) where (n) {1, n} and (i, j) E whenever ao 4 O.
DEFINITION 3.4. Let A Cn and let a (io, el, il, eq, iq) be a chain in G(A).

Then we define the chain product I-I,(A) by
q

I-[,(A) 1-[ a_,i,.
p=l

We put 1-I(A) 1. If a is a cycle (path, circuit) we call the ]-I(A) a cycle (path,
circuit) product.

Note that if c (io, el, il, "", eq, iq) is a closed path and

3 (i,e+ l, ,eq, io,el, ...,i), O<-_k<q,

then I-I(A)= I-[a(A).
DEFINITION 3.5. Let A, B C"n. We say that A and B are diagonally similar ifthere

exists a nonsingular diagonal matrix X such that B X-lAX, and we say that A and B
are sign similar ifthere exists a nonsingular diagonal sign matrix Xsuch that B X-lAX.
We say that A and B are permutation similar if there exists a permutation matrix P such
that B P-lAP. We say that A and B are diagonally equivalent ifthere exist nonsingular
diagonal matrices X and Y such that B YAX.

DEFINITION 3.6. Let A, B Cnn. We say that A and B are c-equivalent if
G(A) G(B) and for all circuits a in G(A) we have I-I(A) ]-I,(B).

Definition 3.6 and some implications may be found in [2]. In particular, it is well
known that for irreducible matrices A and B, the matrices A and B are diagonally similar
if and only if they are c-equivalent (see [2, Thm. 4.1]).

DEFINITION 3.7. If V, W
_
(n and A C"", then A[V, W] is the submatrix ofA

whose rows are indexed by V and whose columns are indexed by W (in their natural
orders).

DEFINITION 3.8. Let A 6 C"n.
(i) The matrix A is called irreducible if G(A) is strongly connected.
(ii) The matrix A is said to be in Frobenius normal form if A may be written in

the block form

(3.9) A

All AI2

where A, is an irreducible square matrix, 1, s.
(iii) Let B e Cn". The matrix B is said to be a Frobenius normalform ofA if B is

in Frobenius normal form and ifA and B are permutation similar.
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Remark 3.10. Let A Cnn. We may obtain a Frobenius normal form ofA by reor-
dering the vertices of G(A) so that Vp consists of consecutive integers, p 1, , s, and
so that (2.8) holds. It follows from Definition 3.8 that a Frobenius normal form ofA is
unique up to permutation similarity. The diagonal blocks of a Frobenius normal form
ofA will be called the components ofA.

In [4, 4] we introduced the inflation product C A of two matrices where
C Css, A Cnn, and A is partitioned into s blocks. In this paper we use the notation
C A only in the special case when A is in Frobenius normal form and C satisfies
(3.12) below.

DEFINITION 3.1 1. Let A Cn be in Frobenius normal form (3.9) and suppose that
C Css satisfies

(3.12) C is a sign matrix,

(3.13) Cpp is equal to 0 or 1, pc (s),
(3.14) Cpq O.c: apq O, p, qe (s).

Then the matrix B C A e Cn is defined to be the matrix with blocks
Bm cpqApq, p, q - (s).

4. Preliminaries on equality classes and sufficient sets.
Notation 4.1. We use the following notation:

N=theset(0, 1,2,...)
A the set {(i, i): e (n)}.

Notation 4.2. Let A Cnn.
p(A) the spectral radius ofA.
//, the set {A e c"n: 0([AI) < 1}.
We normally write //in place of
o the set of irreducible matrices contained in //.
If G ((n), E) is a graph, then //(G) is the set {A e //: G(A) G}.

Note that for every A e C"n we have cA li for all complex numbers c whose
absolute value is sufficiently small. Let A //and let S

_
N. Observe that

(4.3) A -< E IAI =< 2 IAI= (I-IAI)-.
S sS seN

Hence the series in (4.3) converge. In order to discuss the cases when the equalities hold
in (4.3) we shall make several definitions. The first of these allows us to discuss the case
of equality in the first inequality in (4.3).

DEFINITION 4.4. Let F
__
(n) (n), let S_ N, and let

_
//. Then the

(, , S)-equality class is defined to consist of all A such thin

(
for all (i, j) e P, and it is denoted by Equ (, r, S).

The first two parameters in Equ (, P, S) are optional and default to and
(n) X n), respectively. Thus (by convention)

Equ (r, S) Equ (, r, S),
Equ S) Equ (n) X (n), S),
Equ (S)= Equ (*, (n) X (n), S).
We have the following easy but fundamental lemma.
LEMMA 4.6. Let i,j (n) and &t S N. Then thefollowing conditions are equivalent:
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(i) A e Equ ((i, j), S).
(ii) sgn (]-I(A))= sgn (Ha(A)), for all paths a, 13 from to j in G(A) such that

Proof Note that (i) is equivalent to (4.5) by definition ofEqu ((i,j), S). The equiv-
alence of (i) and (ii) follows from the conditions for equality in the triangle inequality
and the result that for i, j (n) and s N we have

(4.7) A, E H(A)
P(i,j;s)

where P(i, j; s) is the set of all paths from to j of length s in G(A). [2]

The proof of the following lemma is easy and will be omitted.
LEMMA 4.8. Let 1

_
1
_

tl and let r, r’, A be subsets of(n) (n) such that
F
_

A. Let S
_
T
_

N. Then

(4.9) Equ (./, I’, S)= Equ (#3, I’, S) f3 ,
(4.10) Equ r r’, s)= Equ (M, I’, S) c Equ (, I", S),

(4.1 l) Equ (9’, A, T)_ Equ (03, r,S).

Let S
_

N. Then by Lemma 4.8 it follows that Equ (f, I’, N)
_
Equ (, I’, S) for

all a
_
q/and I’

_
(n) (n). This remark motivates the following definition which

allows us to discuss the case of equality in the second inequality in (4.3).
DEFINITION 4.12. We say that the subset S of N is (, I’)-sufficient if

Equ (, F, S)= Equ (, I’, N). We say that S is minimal (1, I’)-sufficient if S is
(, I’)-sufflcient but no proper subset of S is (, I’)-sufficient. We say that S is optimal
(1, I’)-sufficient if S is an (a, I’)-sufficient of minimal cardinality, viz. there exists no
(, I’)-sufflcient set of lower cardinality. The two parameters in the term (minimal,
optimal) (, I’)-sufficient are optional and default to q/and (n) (n), respectively. Thus
S is F-sufficient means that S is (q/, I’)-sufficient, S is M-sufficient means that S is
(, (n) (n))-sufficient, S is sufficient means that S is (o//, (n) (n))-sufficient.

Of course, an optimal (, I’)-sufficient set is minimal (, I’)-sufficient.
LEMMA 4.13. Let 1

_
1

_
ll, let I’

_
(n) (n), and let S

_
T
_

N. IfS is
1, I’)-sufficient then T is (1, I’)-sufficient.

Proof By Lemma 4.8 we have

Equ (#3, I’, N)_ Equ (03, I’, T)
_
Equ (#3, I’, S).

But by our hypothesis Equ (#3, I’, S) Equ (0, I’, N) and it follows that

Equ (3, I’, T) Equ (3, r, N).
Therefore, by (4.9), it follows that

Equ (, I’, T) Equ (3, I’, T) f"l Equ (3, I’, N) f) za Equ (, I’, N).

5. The equality class of N. In this section we prove necessary and sufficient con-
ditions for A e Equ (I, N) for irreducible and general A //. In view of Definition 4.4,
A e Equ (I’, N) is equivalent to

(5.1) I(I-A)-’li=(I-Ia]) for(i,j)eI’.

THEOREM 5.2. Let i, j (n), and let A be a subset of (n) (n) such that
(i, j) A and (i, j) access covers A. Let A ll. Then thefollowing conditions are equivalent.

(i) A Equ ((i, j), N).
(ii) sgn (I-I(A)) sgn (I-[a(A)), for all paths a, 3from to j in G(A).
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(iii) sgn (1-I,(A))= sgn (Ha(A)), for all paths a, from h to k in G(A), where
(h, k) e A.

(iv) A e Equ (A, N).
(v) Both

(a) sgn (I-[a(A)) sgn (I-Iv(A)), for all simple paths [3, . from toj in G(A)
and
(b) If is a circuit of G(A) which is G(A)-access covered by (i, j) then

I’I(A) > 0.
(vi) All chain products oftwo-twisted closed chains ofG(A) which are G(A)-access

covered by (i, j) are positive.
(vii) All cycle products oftwo-twisted cycles ofG(A) which are G(A)-access covered

by (i, j) are positive.
Proof We shall show that (i) , (ii) (iii) (iv) (i), (ii) , (v), and (ii) ,

(vi) o (vii).
(i) (ii). This is given by Lemma 4.6.
(ii) (iii). Suppose (ii) holds. Let (h, k) A and let a and be paths from h to k

in G(A). Since (i, j) is a G(A)-access cover for (h, k) there exist paths -y and i in G(A)
from to h and k to j, respectively. Since

by (ii), and since

1-I,() 1-I,(A) 1-I(A) H,(A),

II,a,(A) H,(A) II() II,(A),

we obtain (iii).
(iii) (iv). By (4.10) and Lemma 4.6.
(iv) (i). By (4.11), since (i, j) A.
(ii) (v). Suppose (ii) holds. Then obviously we have (a). To prove (b), let

a (io, is) be a circuit of G(A) that is G(A)-access covered by (i, j). Then there is a
vertex k of a for which there exist paths t from to k and from k to j. Without loss of
generality we may assume that k i0. By (ii) the path products corresponding to the
paths/ and/a6 have the same (nonzero) sign. It follows that 1-I,(A)> 0 and (v) is
proved.

(v) (ii). Suppose that (a) and (b) hold. Let /i be a path in G(A) from to j.
Then I-[(A) is a product of I-[a(A) and factors of type I-[,(A), where/ is a simple path
from to j and a is a circuit of G(A) for which (i, j) is a G(A)-access cover. By (b),
sgn (II,(A)) sgn (I-[a(A)). Hence it follows from (a) that products corresponding to
every pair of paths from to j have the same sign.

(ii) (vi). Let a (i0, el,-", im) with i0 =im be a two-twisted closed chain
which is G(A)-access covered by (i, j). If t(a) 0 then the positivity of I-I(A) follows as
in the proof of (ii) implies (v) with "circuit" replaced by "closed path." Suppose
t(a) 2. Let a have twists at p and q, respectively. Without loss of generality we may
assume that p 0 and el 1. Observe that eq/l -1. Let a (i0, iq) and let
o2 (iq, is)*. Observe that both al and a2 are paths from io to iq. Since (i, j) is a
G(A)-access cover for a, there exists paths from to io and from iq to j. By (ii), the
nonzero path products corresponding to iak and iSa2k have the same sign. Thus the
path products corresponding to a and a2 have the same sign. Since a ac our claim
follows.
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(vi) (ii). Let a and be two paths from to j in G(A). Then a* is a two-twisted
closed chain (possibly trivial). Since

1-I.() 1-I()/1-I,()
clearly (vi) implies (ii).

(vi) (vii). This is trivial.
(vii) (vi). Assume that (vii) holds and let a (io, "-, i), io i, be a two-twisted

closed chain which is G(A)-access covered by (i, j). The proof is by induction on the
length s. If s 1, then a is a cycle and the result holds. So let s > and assume that
I-[,(A) > 0 for every two-twisted closed chain 3’ that is G(A)-access covered by (i, j) and
such that ][ < s. If a is a cycle the result holds. Otherwise, there exist p and q, 0 -< p <
q < s, such that 6 (i, i) is a cycle. Further, (io, iv, i+ , i) is a
closed chain of length less than s which is G(A)-access covered by (i, j). By Lemma 2.12,
6 and 3 are two-twisted and hence by the inductive assumption the corresponding chain
products are positive. But H(A) 1-I(A) Ha(A), and hence ]-I(A) > 0. We now de-
duce (vi). V1

It is easy to construct an example to show that the assumption (i, j) e A cannot be
omitted from the hypothesis of Theorem 5.2. However, we have the following corollary.

COROLLARY 5.3. Let A .nn and let i, j, h, k (n). Let (i, j) be a G(A)-access cover
for (h, k). Then Equ ((i, j), N)

_
Equ ((h, k), N).

Proof Let A Equ ((i, j), N). Let a and/3 be paths in G(A) from h to k. Since
(i, j) G(A)-access covers (h, k), there exist paths 3’ from to h and i from k to j in G(A).
By Theorem 5.2,

and it follows that

H,() H,,()

1-I() 1-I().
Hence, by Theorem 5.2, A

COROLLARY 5.4. Let G ((n), E) be a graph and let I’
_
A A(F)

_
(n) X

(n). Then

Equ (//(G), A, N)= Equ (//(G), I’, N).

Proof Since I’
_

A, it follows from (4.11) that

Equ (//(G), A,N)
_
Equ (//(G), r,N).

Hence we need only prove that

(5.5) Equ (//(G), r,N)_= Equ (//(G), A,N).

By (4.10) we have

(5.6) Equ (//(G), I’,N) f3 {Equ (//(G), (i,j),N):(i,j)e I’}.
and similarly

(5.7) Equ (//(G), A,N) f3 {Equ (ll(G), (h, k),N):(h, k) A}.
It follows from the definition ofAa(I’) that for each (h, k) e A there exists (i, j) e F

such that (i, j) G-access covers (h, k). Hence (5.5) now follows from (5.6), (5.7), and
Corollary 5.3.

As a special case of Theorem 5.2 we obtain the following corollary, which is essen-
tially known.



10 DANIEL HERSHKOWITZ AND HANS SCHNEIDER

COROLLARY 5.8. Let A 11. Then thefollowing are equivalent:
(i) A e Equ (A, N).
(ii) Every circuit productfor G(A) is positive.
Proof. (i) (ii). Let A e Equ (A, N). Since A is a G(A)-access cover for every circuit

it follows by Theorem 5.2, Part (v) that every circuit product is positive.
(ii) (i). This follows from Theorem 5.2, Part (v), since the only simple paths from

to i, (n, are circuits. V1

For irreducible matrices there is the following stronger result which is essentially
due to Neumaier [6] and which motivated our investigations.

COROLLARY 5.9. Let F be a nonempty subset of(n (n and let A . Then
thefollowing are equivalent:

(i) A e Equ (N).
(ii) A Equ (F, N).
(iii) All circuit products ofG(A) are positive.
(iv) All closed path products ofG(A) are positive.
(v) A is sign similar to IAI.
Proof (i) (ii). This implication follows from Lemma 4.8.
(ii) (iii). Suppose that (ii) holds. Since G(A) is strongly connected, it follows from

Lemma 2.7 that F is a G(A)-access cover for (n) and (iii) follows immediately from
Theorem 5.2.

(iii) (iv). Every closed path product is a product of circuit products.
(iv) (v). Suppose (iv) holds. Then corresponding circuit products ofA and [AI are

equal. Thus, since A is irreducible, as is well known (e.g., [2, Thm. 4.1 ]), there exists a
diagonal matrix X such that X-lAX IAI. Let D [X-IIX. Then D is a diagonal sign
matrix satisfying D-lAD IAI.

(v)(i). Let D be a diagonal sign matrix such that D-AD IAI. Since
IAIk D-AkD and p(A) < 1, it follows that

D-(I-A)-D=(I-IAI)-.
Hence, since D is a diagonal sign matrix, (5.1) holds for I’ (n) (n) and (i)is

proved.
LEMMA 5.10. Let A >= 0 be an n n matrix in Frobenius normalform and let C

be an (upper triangular) s s matrix satisfying (3.12)-(3.14). Let B C A. Let
i, j (n and suppose that aij is an element ofA,q, where <-_ p, q <- s. Then for every
path [3 in G(B)from to j there is a path " in G(C)from p to q such that

(5.11) sgn (Ha(B)) I-I(C).
Conversely, for every path f in G(C)from p to q there is a path [3 in G(B) from to

j such that (5.1 l) is satisfied.
Proof. Suppose the rows and columns of the component Arr of A are indexed by

the subset Vr of (n, r l, s. Since A and B are in Frobenius normal form, there
exist Pt, O, k, <- Pt <-- s with Po P and pg q and it, Jt in Vpt, 0, k,
with i0 and jk j, such that

(5.12) [3 [3o[3 [3k,

where/St is a path from it to jt in G(Bp,,), O, k and/it jr- -- it, 1,
k. Since A >- 0 and c,,, or 0, 1, k and c,,p, 0 if and only if B,, is a zero

block in which case t is empty, we have I-I,(B) > 0 and I-[,(B) c,,,,. Hence
if we define
(5.13) 3 =Po- ")’Pk,

then , is a path in G(C) from p to q such that (5.1 l) holds.
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Conversely, let B C IAI and let 3" given by (5.13) be a path in G(C) from
p to q. We may choose it, jt E Vpt 0, k and paths/3t from it to jt in G(Bp),

0, k. If t is again defined to be Jt- - it, 1, k and/3 is defined by
(5.12) then (5.11) holds, since Cpp

We now apply Theorem 5.2 to obtain the final result in this section.
THEOREM 5.14. Let A ll and let F be a G(A)-access cover. Then thefollowing are

equivalent.
(i) A E Equ (F, N).
(ii) sgn (I-[,(A))= sgn (YIt(A)), for all paths a, [3 in G(A) from to j, where

(i,j)e F.
(iii) sgn (I].(A))= sgn (IIa(A)), for all paths a, in G(A) from to j, where

i,y (n) (n).
(iv) A e Equ (N).
(v) Both

(a) sgn (I](A)) sgn (1-[(A)), for all simple paths [, 3" in G(A) from to j,
where i, j) I’,

and
(b) l-[,(A) > Ofor all circuits a ofG(A).

(v’) Both
(a’) sgn (I](A)) sgn (I-[(A)), for all simple paths r, 3" in G(A) from to j,

where (i, j) (n)
and
(b’) 1-I,(A) > 0 for all circuits a ofG(A).

(vi) All chain products oftwo-twisted closed chains ofG(A) are positive.
(vii) All cycle products oftwo-twisted cycles are positive.
(viii) IfA is in Frobenius normalform (3.9) then there exists an s s sign matrix

C such that zC Equ (oils, N), for 0 < z < andA is sign similar to C AI.
Proof The equivalence of conditions (i)-(vii) follows immediately from the equiv-

alence of the correspondingly numbered conditions in Theorem 5.2 and the fact that

Equ (r,N) C {Equ ((i,j),N):(i,j)e F}

by (4.10). The equivalence of conditions (v) and (v’) is easily derived by means of Con-
ditions (iv) and (v) of Theorem 5.2. So it suffices to prove the equivalence of Conditions
(iv) and (viii).

(iv) (viii). Suppose that (iv) holds. Since App is irreducible, p 1, s, by
Corollary 5.9 there exist diagonal sign matrices Xp that satisfy X-AXp IAppl, p 1, ...,
s. Let X X X and let B X-lAX. Then [B[ [A[ and Bpp >= 0, p 1,
s. We shall show that B C [A[, where C is a suitably chosen sign matrix satisfying
conditions (3.12)-(3.14).

Let _-< i, j, h, k _-< n and suppose that both b0 and bhk are nonzero elements of Bpo,
where _-< p, q _-< s. Since Bpp and Boo are irreducible, there exist chains a and 3’ in G(Bp)
from to h and in G(Bg) from k toj, respectively. Since Bpp >= 0 and Bgq >- 0, the products
I-I,(B) and I-I,(B) are positive. Let/3, di be chains h -- k and -- j of length 1, respec-
tively. Then a/33" and 6 are paths from to j in G(B). Since A e Equ (N) we also have
B e Equ (N) and it follows from (ii) of Theorem 5.2 that

sgn (1-I,e,(B))= sgn (I-[(B)).

We deduce that sgn (bhk) sgn (bo).
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Thus we may define

0
Cpq=

sgn (b0.)

ifBo 0

if Bpq 4 0, where bo is any nonzero entry of B,q.

Then c is equal to 0 or since Bpp >- 0, p 1, s. Thus C e Css is an (upper
triangular) matrix that satisfies conditions (3.12)-(3.14). Further, B C IAI.

We must still show that zC Equ (o//, N) for 0 < z < 1. Let p, q e (s and let 3’ be
a chain from p to q in G(C). Let and j be elements of the sets V and Vq (which index
the corresponding components), respectively. Then by Lemma 5.10 there exists a chain
from to j in G(B) such that (5.11) holds. It follows that path products corresponding to
any two paths from p to q in G(B) have the same sign. Let 0 < z < 1. Since o(zC) < 1,
we now obtain zC Equ (N) by Theorem 5.2.

(viii) (iv). Suppose that (viii) holds and put B C [AI. Let i, j (n) and let
a,/3 be paths from to j in G(B). It follows from Lemma 5.10 that there exists a path
in G(C) such that

sgn (I-[,(B))= sgn (I],(C))= sgn (H(B)).

Hence B Equ (N) by Theorem 5.2. Since A is sign similar to B we obtain (iv).
For the terminology and definitions employed in the following remark see [5].
Remark 5.15. (i) Our proofof (vii) (vi) ofTheorem 5.2 shows that every algebraic

two-twisted chain in a graph G is an integral linear combination of algebraic two-twisted
cycles.

(ii) Suppose that A //and let Wbe the subspace of the flow space of G(A) which
is spanned by the algebraic two-twisted closed chains ofG(A). LetXbe an integral spanning
set for W. If the chain products corresponding to the closed chains in X are positive,
then all chain products corresponding to chains in Ware positive. Hence (vi) ofTheorem
5.14 holds, and it follows that A e Equ (N). However, this conclusion does not follow
for arbitrary (nonintegral) spanning sets as one may see from Example 5.2 in [8]. A
similar remark may be made concerning (vi) of Theorem 5.2.

6. Sufficient sets. We begin this section with some applications of Corollary 5.4.
COROLLARY 6.1. Let G ((n), E) be a graph. Let I’ A (n) (n) and sup-

pose that F is a G-access cover for A. Let S N. IfS is (Ig(G), I’)-sufficient then S is
(ll(G), A)-sufficient.

Proof By (4.11) we have

(6.2)

By assumption,

(6.3)

and by Corollary 5.4,

(6.4)

Equ (//(G), A, S)
_
Equ (//(G), r, S).

Equ (//(G), I’,S) Equ (//(G), r,N),

Equ (Y(G), r,N) Equ (//(G), A,N).

It follows from (6.2)-(6.4) that

Equ (//(G), A,S)_ Equ (a(r), a, N).
But hence by (4.11) we obtain

Equ (o//(G), A, S) Equ (//(r), A, N)

which proves the corollary.
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Example 6.5. Let (n) 4 and let G be given by Fig. 1. Let Sl {2, 3 }. Then Sl
is (ohC(G), (1, 4))-sufficient but not (//(G), (2, 4))-sufficient. Since (1, 4) is a G-access cover
for (2, 4), this shows that the condition I’

_
A cannot be omitted in Corollary 6.1.

Next let $2 {0} and let F {(3, 4)}. Then $2 is (’(G), F)-sufficient but not A-
sufficient if (2, 4) A

_
(n) (n). By choosing {(2, 4), (3, 4)}

_
A, we obtain an

example with $2 is (//(G), I’)-sufficient but not (//(G), A)-sufficient even though
I’ A, and thus the condition that F is a G-access cover for h cannot be omitted in
Corollary 6.1. Finally, observe that Sl is (//(G), A)-sufficient for any set A such that
(1, 4)e A

_
(n) (n). Choosing {(1, 4), (2, 4)} A and putting I’ {(2, 4)} it fol-

lows from our previous remarks that Sl is (/(G), 5_)-sufficient, but not (//(G), I’)-suffi-
cient. Note that I’

_
A. Thus there appears to be no simple relation in general (with-

out the condition that F is a G-access cover for 3_) between (//(G), F)-sufficiency and
(ll(G), A)-sufficiency when I’

_
A.

We shall give two proofs ofour next corollary. The first is an application ofCorollary
6.1 and the second is based directly on Lemma 4.6.

COROLLARY 6.6. Let F
_
A
_

(n) (n) where 4: . Let S
_

N. IfS is (a, F)-
sufficient then S is (o, A)-sufficient.

First proof Let A Equ (), A, S). Then A Equ (II(G(A)), A, S). Since

olI(G(A))
_ ,

it follows from Lemma 4.13 that S is (//(G(A)), F)-sufficient. But since G(A) is strongly
connected it follows from Lemma 2.7 that I’ is a G(A)-access cover for 3-. Hence, by
Corollary 6.1, S is (OY(G(A)), 3_)-sufficient. It follows that

A e Equ (lg(G(A)), A,N)_ Equ (, 3-, N).

The result follows.
Second proof Let A e Equ (, 3-, S). Then, by Lemma 4.6, for all (i, j) F,

sgn YI,(A) sgn I-[e(A), for all paths a,/3 from to j in G(A) such that I1, Itl s,
Hence, since S is (o, F)-sufficient, it follows that A e Equ (), I’, N) and consequently
sgn I-[,(A) sgn lie(A) for all paths a,/3 from to j in G(A), where (i, j) F, without
restriction on the lengths of a and/3. Hence, also, sgn I-[(A) sgn I-[(A) for all paths
% 6 from h to k in G(A), where (h, k) e 3_, since, by Lemma 2.7, these paths can be
extended to paths a,/3, respectively, from to j with (i, j) e F. But this proves that S is
(o, F)-sufflcient.

Of course, the most interesting case of Corollary 6.6 arises when

{(i,j)} F A (n) (n.

DEFINITION 6.7. Let S be a nonempty subset of N. Then we define

D(S) {s t: s, e S and s > t},
gcd (S) the greatest common divisor of the elements of S,

C(S) {gcd (T): T_ S, T :/: },
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CD(S) C(D(S)),
D() C() .

Observe that S
_

C(S). For example, if S 3, 9, 13, 18 } then

D(S)= {4,5,6,9, 10, 15}
and CD(S)= 1, 2, 3, 4, 5, 6, 9, 10, 15}. Note also that C(C(S))= C(S). Since
C(CD(S)) CD(S), it follows that every element of CD(S) is a multiple of the minimal
element of CD(S).

LEMMA 6.8. Let S
_
N and let A Equ (S). Thenfor a closed path c in G(A) with

length s CD(S) we have I-I(A) > O.
Proof Let

a= io i- io.

We first show 1-[(A)> 0 for s e D(S). Then s v- u, where u, v S. Write
u as + t, where a and are nonnegative integers and < s. Then v (a + 1)s + t. We
take/3[3’] to be the path from i0 to it of length u[v] obtained by repeating a[a + 1] times
the path a and adjoining io -- -- it. Since A Equ (S), it follows from Lemma 4.6
that the nonzero path products I-[e(A) and I-I(A) I-[a(A)I-I(A) have the same sign.
Hence I-I(A) > 0.

We now consider the general case of s CD(S). Then there exist s, s2, Sk in
D(S) whose gcd is s. As is well known, there exist integers ai, 1, k, such that

k

(6.9) s= , aisi.
i=1

Without loss of generality, assume that a =< 0 if and only if _-< =< q. Let o be the
closed path from i0 to i0 obtained by repeating s/s times the path a. By the first part
of the proof, o has a positive path product. Let t[u] be the closed path from io to io ob-
tained by repeating lal times the path w, 1, ..., [i + 1, k]. By (6.9), u is
obtained by adjoining a to u. Since g and u have positive path products it follows that
1-I,(A) > 0.

COROLLARY 6.10. IfA Equ (S) then A Equ (A, CD(S)).
Proof. Immediate by Lemmas 6.8 and 4.6. E3
The converses ofLemma 6.8 and Corollary 6.10 are false if n > even for irreducible

matrices. In fact, we shall give an example of an irreducible matrix A and a set S, for
which every closed path of length s CD(S) has positive path product, yet the matrix A
is not even in Equ ((i, i), S), for any e (n).

Example 6.11. Let A be the n n matrix with all entries on and above the diagonal
equal to and all entries below the diagonal equal to -1. Let S { 1, 2} and let
i, j e (n), 4: j. Observe that the circuit product corresponding to -- is positive
while the circuit product corresponding to -- j is negative. Hence, by Lemma 4.6,
A Equ ((i, i), S). However CD(S) { } and all circuit products of length are posi-
tive. Hence A e Equ (CD(S)), by Lemma 4.6.

THEOREM 6.12. Let S be a subset ofN. Then thefollowing are equivalent.
(i) S is A-sujficient.
(ii) S is (, A)-sufficient.
(iii) S is -sufficient.
(iv) CD(S) contains (n).
(v) For all A Equ (S), all circuit products ofA are positive.
(vi) For allA Equ (S), A is diagonally similar to a matrix B such that all irreducible

diagonal blocks in the Frobenius normalform ofB are nonnegative.
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Proof. (i) (ii) is obvious.
(ii) (iii). By Corollary 6.6.
(iii) (iv). Let k (n) and let , be a nonzero complex number. Suppose that

k CD(S). We shall prove the claimed implication by constructing an irreducible
n X n matrix A(k, ) such that, for suitable ,, A(k, ) Equ (, S)\Equ (a, N). If
k 1, we let A(k, ) be the n X n matrix all of whose entries are . If k {2, n}
we define A(k, ) A by

e.g., for n 5 and k 4

ai,i+l 1, 1, ,k-2,

ak_.j =, j=k,...,n,

aj, 1, j=k,...,n,

ai 0, otherwise, i,je (n),

A(k, ,)

0 0 0 0

0 0 X
0 0 0
0 0 0

Note that for all k (n) the matrix A(k, ) is irreducible and the length of every closed
path of A(k, ) is a multiple of k and, provided that k >= 2, every circuit product of
A(k, ) equals . For all k e (n), it follows that for every closed path 6 of G(A(k, )) we
have

(6.13) 1-I(A(k, h)) ,h, where lal hk.

We now choose , depending on two cases.
(a) No multiple of k lies in CD(S). Then let -1.
(b) Some positive multiple ofk is in CD(S). Then let pk be the smallest such multiple

and be a primitive pth root of unity. Since k CD(S) we have p > 1.
Let i, j e (n) and let a and/3 be paths from to j in G(A). Suppose that I1 and I1

belong to S and assume without loss of generality that I1 >-- I1. Let d I1 I1. Let 3"
be a path from j to in G(A(k, ,)), which exists since A(k, ) is irreducible. Observe that
a3’ and/3" are closed paths and hence d I1 I1 is divisible by k.

Suppose first that d 0. Then a3" and/33" are closed paths of the same length. It
follows from (6.13) that the closed path products corresponding to a3’ and/33’ are equal.
Suppose now that d > 0. Then d D(S)

_
CD(S). Hence (b) above holds. We recall that

C(CD(S)) CD(S). Hence, since pk is the minimal multiple of k in CD(S), it follows
that d must be a multiple of pk. But (6.13) then again implies that the closed path
products corresponding to a3" and/33" are equal. Hence, in either case, I-I(A) I-[a(A).
Since i, j are arbitrary in (n), it follows from Lemma 4.6 that A e Equ (S).

On the other hand, since A(k, ) has a circuit a of length k and I[(A(k, ,)) is not
positive, we have by Theorem 5.2 that A(k, ) q Equ (N). The implication (iii) (iv) is
proved.

(iv) (v). Immediate by Lemma 6.8.
(v) (vi). By Fiedler and Ptak [3] or Engel and Schneider [2] an irreducible matrix

that satisfies (v) is diagonally similar to a nonnegative matrix. By applying this result to
the Frobenius normal form ofA we obtain (vi) from (v).

(vi) (i). Let A e Equ (A, S) and let B be a matrix diagonally similar to A and
such that B has nonnegative diagonal blocks in a (and therefore every) Frobenius
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normal form. Since the diagonal blocks of B are clearly in Equ (A, N) it follows that
B Equ (A, N). Hence A Equ (A, N) and (i) follows from (vi). V1

THEOREM 6.14. Let S
_

N.
I. Ifn <- 2, then thefollowing are equivalent.

(i) S is sufficient,
(ii) (n)

__
CD(S).

II. Ifn >-_ 3, then (i) is equivalent to
(iii) (a) {n- 1, n}

__
CD(S).

and
(n __q S.

Proof. I: Let n _-< 2.
(i) (ii). Since S is sufficient, it is also A-sufficient and the result follows from

Theorem 6.12.
(ii) (i). Let (n) c_ CD(S). Suppose A e Equ (S). Then, by Lemma 6.8 all circuit

products of A are positive. Since, for i, j e (n) there is at most one nonempty simple
path from to j in G(A), the conditions of Theorem 5.14, Part (v) are satisfied for all
i, j e (n). Hence, by Theorem 5.14, A e Equ (N) and the implication (ii) (i) follows.

II: (i) (iii), Part (a). With the same proof as in Part I, we have (n)
_

CD(S).
(i) (iii), Part (b). Let 2 =< k _-< n 1. To prove this implication it is enough to

construct a matrix B(k) e Equ (S)\Equ (N) if either g S or k g S. We let the arc set of
G(B(k)) consist of -- k + 1, and -- + 1, 1, ..., k. We define the (1, k + 1)-
element of B(k) to be -1 and all other nonzero elements to be 1. For example, if k 2
and n 4, then

B(k)

0 -1 0
0
0 0
0 0

Let i, j e (n). If either g S or k S then there is at most one path from to j in G(B(k))
whose length lies in S. Hence, by Lemma 4.6, we have A e Equ (S). But there are two
paths from to k in G(B(k)) whose corresponding products have different signs. Hence,
again by Lemma 4.6, A g Equ (N).

(iii) (i). Suppose that (iii) holds. Let A e Equ (S). Let i, j (n). Let a and
/3 be simple paths in G(A). Since [a[ < n, and I/3[ < n, we have by Lemma 4.6 that
I-[,(A) I-[e(A). Since (n)

_
CD(S), it follows from Lemma 6.8 that all circuit prod-

ucts of A are positive. Hence the conditions of Theorem 5.2, Part (v) are satisfied. By
Theorem 5.2 we now obtain A Equ (N) and (iii) (i) is proved.

We note that, for n >= 3, neither of the conditions (iii)(a) or (iii)(b) of Theorem 6.14
alone implies that S is sufficient, or even that S is A-sufficient. This is clear from Theorem
6.12 since neither condition implies that (n)

_
CD(S).

COROLLARY 6.15. Let n >- 3. Let S
_

N.
I. IfS is sufficient then iS[ >-- n.

II. Thefollowing conditions are equivalent:
(i) S is sufficient and IS[ n.
(ii) S= (1,...,n- 1, m} wheren+ <-m<-2n-2.
(iii) S is optimal sufficient.

Proof
I. This is obvious by Theorem 6.14.

II. (i) (ii). By Theorem 6.14 we have S {1,..., n 1, m}. If rn 0 or
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m n then n CD(S) and S is not sufficient by Theorem 6.14. Hence m > n. Suppose
that m > 2n 2. Then it follows that

(6.16) D(S) {1, ,n-2,m-n+ 1, ,m- 1}.

Let p, q D(S) where p < q. Then, by (6.16), either p < n or q p < n 1. Hence,
gcd (p, q) < n 1. It follows that gcd (T) < n for any subset T of D(S) with
TI > 1. Since n D(S) and just one positive multiple of n belongs to D(S) we
also have n CD(S), which contradicts Theorem 6.14. The implication is now
proved.

(ii) (iii). By Theorem 6.14, S is sufficient. The optimal sufficiency of S follows
from Part I.

(iii) (i). Let S be an optimal sufficient set. Then clearly S is sufficient. By Theorem
6.14 the set T 1, n 1, n + 1) is sufficient with TI n. Hence, by Part I we
have ISI- n. D

We now use Corollary 6.15 to show that a minimal sufficient set is not necessarily
an optimal sufficient set.

Example 6.17. Let n >= 3 and let S {1,..., n 1, 2n 1, 3n 2}. Then
(n> CD(S) and so, by Theorem 6.14, S is sufficient. Let S’ be a subset ofS ofcardinality
n. Observe that S’ cannot satisfy condition (ii) of Corollary 6.15. Hence, by Corollary
6.15, S’ is not sufficient. Thus, S is a minimal sufficient set, but, again by Corollary 6.15,
S is not an optimal sufficient set.

It is clear that our definitions and results raise a number of interesting questions.
Some are purely number theoretic, others involve a mixture of matrix and number
theory. A general problem is to characterize the (/, I’)-sufficient [minimal (, I’)-
sufficient, optimal (/, r)-sufficient] sets for given 1

__
0//and r

_
(n) (n).

In view of Theorem 6.12 the following open questions are of interest.
Open Questions 6.18.
(i) Characterize subsets S ofN such that CD(S)

_
(n).

(ii) Characterize subsets S of N which are minimal with respect to the property
CD(S)

_
(n).

Remark 6.19. In Definition 4.4 the restriction to A 6 ’ (viz. A C such that
p(IAI) < 1) and the use of power series with all coefficients equal to are technicalities.
Alternatively, we could have considered throughout arbitrary A C and nonnegative
sequences

(c) (c,, c,

such that ZsN cs]A[ converges. In this approach one then defines the equality class
Equ (1, I’ S) to consist of all A such that for some nonnegative sequences (C)
with G 4:0 if and only if s S, ZN c,lAI converges and

Z (cslA[)r
sN

Since the proof of our fundamental lemma, Lemma 4.6, is unchanged, our results
go through to this more general situation and reduce to the previous results for A e .
The concept of sufficiency remains unchanged. We illustrate by means of an example.

Example 6.20. Let n =< 10. If S { 3, 9, 10, 13, 18 } then CD(S) (1O) U { 15 }
and hence, by Theorem 6.12, Sis(, (n))-sufficient. In other words, letA be an irreducible
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n n matrix, n =< 10, and let cs be positive, s 3, 9, 10, 3, 8. Then the equality

IC3A3 + C9A9 + CI0A10 + C13AI3 + ClsA

c3lhl + 9IAI9 q- ClolAI 1 + c131AI 3 + c81AI 8

implies that for all nonnegative ds, s e N, we have

dA= dlal,
seN seN

provided that the second series converes. In particular, if p(IA]) < 1, then

I(I- h)-ll (I-
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SOME SIGN PATTERNS THAT PRECLUDE MATRIX STABILITY*
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Abstract. The principal concern of this paper is with real matrices whose undirected graphs are trees. To
better understand potential stability of sign pattern classes, two simple criteria are given that preclude stability
throughout a sign pattern class. In addition, those sign patterns that preclude eigenvalues with real part equal
to 0 are characterized and the constant inertia within such classes is determined. Such tests may be computationally
significant, as calculations with specific matrices may be subject to round off error uncertainties.
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1. Introduction. The inertia of an n-by-n real matrix A is the triple

i(A) (i+(A), i-(A), io(A))

in which i+(A) is the number ofeigenvalues ofA with positive real part, i_(A) the number
with negative real part and io(A) the number with zero real part--each counting
any multiplicity; necessarily, i+(A) + i_(A) + io(A) n. The matrix A is called stable if
i_(A) n because the equilibrium f 0 will be globally stable in the dynamical system

Ax if and only ifA is stable.
We are interested here in what may be concluded about the stability or instability

of A purely from the +, -, 0 sign pattern of the entries of A (aij). For this reason,
we call an n-by-n matrix B (bij) whose entries are chosen from among the symbols
(+, O, -} a sign pattern matrix, and we identify with each sign pattern matrix the natu-
ral class of all real matrices A (ai2) such that ai2 > 0 (resp. =, < 0) if and only if b2
+ (resp. 0, =-). Matrix operations with sign pattern matrices are carried out in the
obvious way when unambiguous. For example, we call a diagonal sign pattern matrix
none of whose diagonal entries is 0 a signature matrix, and left multiplication of a sign
pattern matrix by a signature matrix uniformly affects the signs within each row.

A sign pattern matrix is called sign stable (respectively, potentially stable) [H], [Q],
[B] if every (respectively, some) real matrix in the associated class is stable. The sign
stable matrices have been characterized in [JKvdD], and several authors have discussed
potential stability without any definite results thus far. Our interest here is in further
understanding potentially stable sign patterns; however, our results are ofa negative sort.
We call a sign pattern matrix that is not potentially stable sign unstable; thus a sign
pattern matrix is sign unstable if no matrix in the associated class is stable. Our goal is
a characterization ofcertain sign unstable sign patterns. Clearly such sign patterns cannot
be potentially stable.

By the (undirected) graph G of an n-by-n sign pattern matrix B (bi), we mean a
graph on vertices l, 2, n with an undirected edge between and j if and only if bj
or b O. We concentrate here upon sign pattern matrices whose graphs are trees. Such
a matrix is irreducible ifand only ifai 0 whenever ai :/: O, and the eigenvalue possibilities
within the class depend only upon the signs of the aii and of the products aaji. We
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describe in a natural way all relevant information about such a sign pattern class in a
signed tree whose vertices may be signed +, -, or 0 and whose edges may be signed
+, -. For example, we identify the sign pattern matrix

+ + 0 0 0
0 + 0

0 0 0
0 + 0
0 0 0 + +

with

Here, a + edge between andj means that b0 and bji are both + or both and a edge
means that one is + and one is -; the sign of vertex (+, -, or 0) is simply the sign of
the i, entry. Ifthe sign is not zero, the vertex is called distinguished. We call an irreducible
sign pattern matrix whose graph is a tree a tree sign pattern (t.s.p) matrix. As there is a
one-to-one correspondence between t.s.p, matrices and signed trees, we shall use these
interchangeably; we shall also move freely between concepts about graphs and matrices,
when any ambiguity is benign. We call a t.s.p, matrix symmetric if each edge of the tree
is + and skew-symmetric if each edge is

Two useful factorizations may be associated with each t.s.p, matrix. If B is an
n-by-n t.s.p, matrix the skew-symmetricfactorization of B is

B= SIBI
in which SI is a signature matrix whose 1, entry is + and BI is a skew-symmetric t.s.p.
matrix. We call B sign consistent if not both + and occur as diagonal entries in BI. If
B is sign consistent, let/ be obtained from B by sign consistently replacing all 0 diagonal
entries with + or We call/ the sign completion ofB. Ifany vertex in a sign consistent
B is not signed 0, then/ is uniquely determined. Otherwise/ can be one of two t.s.p.
matrices with opposite (+ and interchanged) signs. In any/, nodes connected by a
+ [resp. -] edge are of opposite [same] sign.

The symmetricfactorization of B is

B= S2B
in which $2 is a signature matrix whose 1, entry is +, and B2 is symmetric t.s.p, matrix.
Each factorization is unique, and the matrices S; and Bi, 1, 2, are easily determined
from B. It is a very open question to determine whether a t.s.p, matrix is potentially
stable or sign unstable. All (irreducible) sign stable matrices have been classified and are
t.s.p, matrices [JKvdD].

2. Sign instability tests. We present here two simple results which allow many t.s.p.
matrices to be identified as sign unstable. For this we require two lemmas.
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LEMMA 1. If for a given n-by-n matrixA, there exists a nonsingular n-by-n Hermitian
matrix G such that

GA =H+S

with H positive semidefinite Hermitian and S skew-Hermitian, then

i+(A) <= i+(G) and i_(A) <= i_(G).

Proof IfH is positive definite, then io(A) 0, and this is the well-known equality
of inertias result [CDJ]. In our case, choose e > 0 sufficiently small so that the perturbed
matrix A + eG- satisfies

However, we have

i+(A) <- i+(A + tG-1) and i_(A) <- i_(A + eG-).

G(A + eG-I) (H+ eI) + S

so that i/(A + eG-l) i/(G) and i_(A + eG-l) i_(G) because H + el is positive definite.
The asserted conclusions follow from these equalities and inequalities. [3

LEMMA 2. IfA and B are n-by-n Hermitian and nonsingular, then i/(BA) 0
implies i/(B) + i/(A) n.

Proof The proof is Corollary 2 of [J]. [3

To apply these facts to our situation, we first note a familiar fact. IfA (ae) is an
irreducible n-by-n matrix whose graph G is a tree, then there is a positive diagonal matrix
D such that symmetrically placed off-diagonal entries of DA are the same in absolute
value. It follows that if A is a real matrix in the class associated with a t.s.p, matrix B,
then there is a factorization

A =DIAl

in which D is a nonsingular diagonal matrix and A is a diagonal matrix plus a skew-
Hermitian matrix and a factorization

A =D2A2

in which D2 is a nonsingular diagonal matrix and A2 is symmetric. These correspond to
the skew-symmetric and symmetric factorizations of B, and each is unique if the l,
entry of Di, l, 2, is taken to be one.

Note that if S is a signature (sign pattern) matrix, i(S) is well defined as the inertia
of any matrix in the class associated with S.

The two results of this section are the following.
THEOREM 1. Let B SB be the skew-symmetricfactorization ofthe n-by-n t.s.p.

matrix B. Ifno diagonal entries ofB are-, then

i/(A) <= i+(S) and i_(A) <= i_(S)

for all matrices A in the class associated with B. Ifno diagonal entries ofB are +, then

i/(A) <= i_(S) and i_(A) <= i+(S)

for all matrices A in the class associated with B.
Proof. The two conclusions are equivalent via replacement of B by -B. The first

conclusion is an application of Lemma 1, as each A in the class associated with B may
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be factored:

D-IA =AI
with i(D-{ 1) i(S) and AI E + T, in which E is a positive semidefinite diagonal matrix
and T is skew-symmetric. [3

THEOREM 2. Let B $2B2 be the symmetricfactorization ofthe n-by-n t.s.p, matrix
B. IfB is potentially stable, there is a symmetric matrix A2 in the class associated with
B2 such that

i+(A2) n- i+(S2).

Proof Lemma 2 may be applied using the same ideas as in the proof of Theo-
rem 1. [3

We illustrate the use of Theorems and 2 to verify sign instability with some ex-
amples.

Example 1. Any t.s.p, matrix associated with the signed tree

is sign unstable using Theorem 2. For example, the symmetric factorization of

+ + 0]B +
0 +

is

8292 0 0 + +
0 0 + 0 +

We notice that

+ 0

is the principal submatrix of B2 in rows and columns and 3, so i+(A2) >= 2. Also
i+($2) 2. Hence, the necessary condition of Theorem 2 cannot be met, and B cannot
be potentially stable. In this particular case it is quite complicated to verify that B2 is
sign unstable by direct calculation. This example illustrates a general way in which Theo-
rem 2 may be applied.

If a lower bound on i+(A2) may be found which is greater than n i+(S2) (e.g., if
we extract a large principal submatrix of B2 with obvious inertia and realize that this
bounds the inertia ofA2 because ofthe interlacing inequalities), then Theorem 2 implies
that B is sign unstable. Since a tree is bipartite, a diagonal principal submatrix of size at
least 1/2 n is always available. In case of the graph

a diagonal principal submatrix of size (n 1) is available.
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Example 2. If

+ + + + + +

then

+
+
+
+
+
+
+

+ + + + + +
+

is the symmetric factorization of B. Since i/($2) 5 and i+(A2) >= 4, B is sign unstable.
Example 3. The t.s.p, matrices associated with the signed tree

@ @ +

are sign unstable as may be seen from Theorem but not Theorem 2. The skew-symmetric
factorization of

+ +
0 + +

B= + 0
+ +

0

is

+ + +
+ 0 + +

0

+ 0

SIB1.

Thus B is sign consistent and by Theorem 1, i_(A) =< 3 for any A in the class associated
with B (actually i(A) (2, 3, 0) for such an A), and B is sign unstable. The symmetric
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factorization of B, however, is

+ + +
+ 0

0

+

$2B2.

Since the determinant of any matrix A2 in the class associated with B is positive,
i(A2) (3, 2, 0) for any such matrix. As i+($2) + i+(A2) 5, Theorem 2 does not preclude
the (potential) stability of B as Theorem did. It should be noted that the potential
stability of the matrix in Example is not precluded by Theorem as it is by
Theorem 2.

3. Sign lattern matrices with constant inertia. We recall from [JvdD] two color
tests. In the 0-color test (read "zero color test") we color each vertex of the (tree) graph
of an irreducible matrix black or white so that

(i) no black vertex is a neighbor of exactly one white vertex;
(ii) each maximal white block as a subgraph is either: a single undistinguished vertex;

or a subgraph which has at least 2 vertices, which has each end vertex distin-
guished, and which is not sign consistent.

We define an Im-coloring of vertices of G to be again a scheme for coloring each
vertex black or white so that condition (i) is fulfilled as well as

(ii) each maximal white block as a subgraph of G contains at least one "-" edge
and is not sign consistent.

The dynamical system Ax admits a constant (resp. sinusoidal) trajectory if and
only if some A in the sign pattern class has 0 (resp. Z-) as eigenvalue if and only if G
admits a 0-coloring (resp. Im-coloring) with at least one white vertex [JvdD, Thms. 3
and 5].

THEOREM 3. Suppose n > and G is a tree graph ofan irreducible sign pattern
matrix. Then there is only one O-coloring (all black) and only one Im-coloring (all black)
for G ifand only if io(A) 0 for any matrix A of the given sign pattern. (In such case
i/(A) and i_(A) are necessarily constantsfor all such A.)

Proof. Let us identify in a natural way n n matrices and n2-dimensional space.
Consider a continuous curve in n2-dimensional space lying in the cone of all matrices of
the given sign pattern. To each point on the curve are associated the n eigenvalues ofthe
corresponding n n matrix. The fundamental theorem of algebra, the fact that the
determinant function is continuous, and the fact that the zeros of a polynomial depend
continuously on its coefficients together imply that the eigenvalues of a matrix on the
curve move about continuously in the complex plane. In particular, since the theorems
in [JvdD] preclude the occurrence of any eigenvalues on the imaginary axis, the number
of eigenvalues with positive real parts is conserved throughout the cone. Of course, the
same can be said ofeigenvalues with negative real parts. A corollary ofthe same theorems
is that if inertia is constant with io(A) 0 throughout the cone, then the only colorings
are all black.

Consider a matrix A (aij) in the cone having entries of large magnitude and a
matrix B, the graph of which is the sign completion of G. Suppose, in fact, that bij ai
if ag 0 and 0 < Ibiil < if aii 0. If e is suitably small then the eigenvalues of B are
arbitrarily close to the eigenvalues of A. In particular, the inertia of B can be assumed
to be the inertia of A.
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Since inertia is conserved throughout the cone in n2-dimensional space of
matrices of the sign pattern of B, choose such a matrix / having (bij)< t for 4: j
and Ib, I- 1. For di suitably small, the characteristic polynomial of/ is approximately
(X 1)i+(A)(X -- 1)i-(A).

Theorem 3 can be applied to the graph

) + (D + @ @

to show any matrix of the sign pattern has inertia (6, 2, 0). That is, the graph is sign
consistent and so every subgraph is sign consistent. The color tests are therefore not
difficult to check. The sign completion of the graph has six "+" vertices and two "-"
vertices.

Authors’ note. Based, in part, upon the results of this paper, T. Summers has been
classifying t.s.p, matrices with regard to potential stability in hopes of gaining insight
into the general problem. A summary of the results is available from C. Johnson.
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A TREE MODEL FOR SPARSE SYMMETRIC INDEFINITE
MATRIX FACTORIZATION*

JOSEPH W. H. LIU

Abstract. A tree model is presented to study the sparse factorization oflarge symmetric indefinite matrices
by the diagonal pivoting method. The basic structure uses the elimination tree of symmetric matrices and the
notion of delayed elimination. The factorization process for indefinite systems can be viewed as a sequence of
tree transformations based on both the structural information and numerical data values. This provides a model
as a common basis to study various numerical aspects of sparse symmetric indefinite decomposition.

Key words, sparse matrix, indefinite symmetric matrix, tree model, diagonal pivoting, elimination tree,
delayed elimination

AMS(MOS) subject classifications. 65F50, 65F25

1. Introduction. In this paper, we study the diagonalpivoting method [4] in factoring
large sparse symmetric indefinite matrices. The method uses a mixture of and
2 2 pivots to produce an LBLr decomposition, where the factor matrix L is unit lower
triangular and B is block diagonal with blocks of size of either or 2.

The method will be considered in connection with the so-called elimination tree
structure [13], [17], which is defined for each sparse symmetric matrix structure. The
elimination tree represents a class of ideal elimination sequences if we assume that no
pivoting for numerical stability is necessary. Our approach is to use the tree structure as
a pivot selection guide, so that even with the added stability requirement, the sequence
of stable pivots selected will form an elimination tree that deviates as little as possible
from the original one.

In this paper, we consider the notion ofdelayed elimination in sparse decomposition.
In the dense case [2], 11 ], when row/columnj is considered not suitable for elimination
as a pivot, some later row/column will be moved forward to form a 2 2 pivot
with j. However, in the sparse case, it is more appropriate to delay the elimination of
row/column j to a later stage. The notion of delayed elimination first appears in the
multifrontal work by Duff and Reid [7]. Our treatment here helps to bring out the im-
portant role of this idea in the context of sparse symmetric factorization. Furthermore,
we provide some quantitative bounds on the impact of delayed elimination on fills in
the resulting triangular factors.

A tree model can be formulated according to the use of delayed elimination on an
elimination tree. This model provides a systematic view of the elimination process. At
each step, pivots can only be selected from the nodes in a specific subtree, which represents
the set of preferred candidates. Nodes from this subtree will incur the least amount of
structural damage if selected as pivots. The actual pivots selected depend on the partial
pivoting strategy and the numerical values of the matrix.

This tree model plays an important role in symmetric factorization. It provides a
better understanding in the choice of 2 2 pivots and it helps to reveal the fundamental
importance of delayed elimination. On the basis of the model, researchers can focus
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more on other algorithmic aspects of sparse symmetric factorization, especially on the
design of data structures and the numerical computations.

The reader is assumed to be familiar with the graph-theoretic terminology associated
with sparse matrix computation: adjacent set, subgraph, fill, ordering, elimination graph
and other related concepts. All the necessary material can be found in [10]. Moreover,
notions related to tree structures are also assumed: parent/child nodes, ancestor/descen-
dant nodes, root, paths, subtrees. The reader is referred to [1 ].

An outline of this paper follows. In 2, we provide a brief overview ofbackground
material in symmetric matrix factorization. In particular, we review the diagonal pivoting
method for indefinite matrices and consider the elimination graph model in this context.
The elimination tree structure is also defined and some relevant properties are stated.

Section 3 considers the impact on the structure of a given elimination tree due to
relabeling. We establish the observation that any relabeling within a subtree will not
affect parts that are outside this subtree. This leads to the notion of delayed elimination.
An upper bound on possible fill increase due to delayed elimination is given.

The tree model is described in 4. The entire elimination process can be viewed as
a sequence of tree transformations starting with the elimination tree. At each step, the
tree provides the structural information necessary to guide the selection ofthe next pivot.
Moreover, each transformation is a simple tree manipulation function.

In 5, we relate the tree model to the multifrontal scheme of Duff and Reid [7].
The multifrontal method can be considered as one way ofimplementing the tree model.
There are other ways depending on the data storage scheme, pivoting strategy, and nu-
merical computation method. To substantiate this observation, we provide a different
and new sparse factorization scheme for indefinite systems based on the tree model.
Section 6 contains our concluding remarks.

2. Background on symmetric matrix factorization.
2.1. Diagonal pivoting method for indefinite matrices. In this paper, we employ the

diagonal pivoting method [2]-[4] in the symmetric factorization of sparse indefinite ma-
trices. The method is a variant of symmetric Gaussian elimination, wherein pivots are
always taken from the diagonal but they may be of order or 2. With an appropriately
chosen pivoting strategy, the method is known to be nearly as stable as conventional
Gaussian elimination with pivoting. However, symmetry can now be exploited through
the use of 2 2 block pivots.

There are many appropriate ways to select stable pivots for elimination. The one
by Bunch and Parlett [4] can be viewed as a complete/total pivoting strategy. The later
ones by Bunch and Kaufman [2], Dax [5], and Fletcher [9] can all be classified as methods
using partial pivoting.

In [2], Bunch and Kaufman provide a number of partial pivoting strategies tailored
for this approach. In particular, Algorithm D [2, pp. 169-170] seems to be most appro-
priate for sparse matrices. Indeed, the authors point out that "whenever a pivot is
used in Algorithm D, no interchanges are performed, which means.., fewer opportunities
to interfere with the structure ofthe system." The essence ofthe diagonal block pivoting
approach using Algorithm D can be expressed algorithmically as follows:

for j := to n do
if column j has not been eliminated then

begin
if column j is a suitable pivot then

eliminate column j
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else
begin

find a column (i > j) such that columns and j form
a suitable 2 2 pivot;

eliminate columns and j together
end

end;

In [8], Duff et al. consider the use of block diagonal pivots in the factorization of
large sparse indefinite matrices. They recommend a partial pivoting strategy geared for
sparse systems. In [7], Duffand Reid combine this pivoting strategy with the multifrontal
approach to devise a very effective scheme for sparse indefinite matrix factorization. The
author 12] provides a simple improvement to their pivoting strategy.

2.2. Elimination graph model for diagonal pivoting. From the pioneering work of
Parter 15] and Rose 16], the symmetric factorization of large sparse positive-definite
matrices can be conveniently studied by the elimination graph model. The factorization
process can be viewed as generating a sequence ofelimination graphs, each reflecting the
structure ofan intermediate matrix to be factored. For more details, the reader is referred
to [101.

The basis of the model is the rule for transforming the elimination graphs. Let
G G(A) be the undirected graph associated with a given sparse symmetric matrix A,
and x be a node in G. Consider the elimination of the node x. We obtain the resulting
elimination graph from G by deleting the node x and its incident edges, and making the
nodes adjacent to x into a clique (or complete subgraph). Since we are dealing with a
possible mixture of X and 2 2 pivots in symmetric indefinite factorization, let us
first extend the elimination graph transformation to allow for block elimination.

Let K be a connected subgraph of G. Consider the elimination of nodes in K from
G. It is easy to see that the resulting elimination graph can be obtained from G by deleting
the subgraph K and edges connecting nodes in K to G K, and making the nodes
adjacent to K into a clique. Note that the transformed elimination graph is independent
of the order in which the nodes in K are eliminated. Our context of using 2 2 pivots
corresponds to the case where the connected subgraph Khas exactly two nodes. It should
be mentioned that the resulting elimination subgraph has the same structure whether
two consecutive columns/vertices are eliminated individually as two pivots or
together as a 2 2 block pivot.

Therefore, for a given elimination sequence of node subsets (of size either or 2)
in block diagonal pivoting, the associated elimination graph sequence can be generated
easily. However, this graph sequence is of little use in practice, since the node subset
sequence is not known a priori. The choice of or 2 2 block pivots depends on
the numerical values ofthe matrix under consideration, and they cannot be determined
with only the sparsity structure of the matrix.

2.3. Elimination tree structure for sparse matrices. One ofthe key structures in the
study of symmetric sparse Cholesky factorization is the elimination tree [13], [17]. For
a sparse symmetric matrix with a given row/column ordering, the elimination tree struc-
ture can be used to determine a class of orderings that are equivalent in terms of fills and
operations. We shall be using the structure ofan elimination tree to study block diagonal
pivoting for indefinite matrices.

In this subsection, we provide a brief review on this tree structure. Let A be a given
n n sparse symmetric matrix. Consider the numerical symmetric LDLT decomposition
ofA (see, for example, 11, Chap. 5]). It is well known that ira is indefinite, this numerical
decomposition can be unstable. Furthermore, for certain nonsingular A, such a factori-
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zation may not even exist. We shall use the notation L[A] to represent the numerical
triangular factor (if it exists) ofA in the symmetric decomposition. When the matrix A
is clear from context, L will be used.

In spite ofthe numerical shortcoming in factoring general symmetric A into LDL,
it is still meaningful to consider the structural symmetric factorization of the structure
ofA. In the literature, there are existing ecient algorithms and robust implementations
which will determine the structure ofthe triangular factor using the structure ofA. Often,
this is referred to as the symbolicfactorization process [10].

Assume that all diagonal entries ofA are logically nonzero and no pivoting is per-
formed in the structural decomposition. Let [A] be the structural triangular factor of
A. Again, ifA is clear from context, will be used. We can now introduce the elimination
tree in terms of [A].

We define the elimination tree T(A) of A to be the tree with n nodes
{x, x2, x }, where node xg is the parent of node x if and only if

i=min {r>j[rj#O},
that is, if is the row subscript of the first off-diagonal nonzero in column j of. Here,
each node x is associated with row/column of the matrix. We further assume that the
matrix A is irreducible, so that the structure is indeed a tree, and x= is the root of this
tree. (IrA is reducible, then the elimination tree defined above is actually a forest consisting
of several trees.)

Figure 2.1 contains an 8 8 symmetric matrix structure A. The diagonal entries
are labeled with their corresponding equation/variable numbers. Note that this matrix
suffers two fills at locations (2, 8) and (6, 7), and each fill is depicted by an "(C)" in the
matrix structure [A] in the figure. The corresponding undirected graph and elimination
tree is displayed in Fig. 2.2. This matrix and tree structure will be referred to throughout
the remainder of this paper.
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FIG. 2.1. A matrix example and its structural triangularfactor.

G(A) T(A)

FIG. 2.2. The graph G(A) and elimination tree T(A) ofmatrix A in Fig. 2.1.
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We introduce a depth function here to be used later in the next section. For the
root xn, we define

depth (xn) 0.

For any node xj (j < n), its depth value is defined to be

depth (xj) depth (xv) / 1,

where xp is the parent node of xs in the elimination tree. For example, in Fig. 2.2, we
have depth (Xr) 2, and both depth (x3) and depth (x4) are 4. Clearly, depth (x) is the
length of the path from xs to the root

We also introduce the subtree notation to facilitate future discussion. Let y be a
node in the elimination tree T. We shall use T[y] to refer to the subtree rooted at the
node y in the elimination tree. Moreover, T[y] will also be used to refer to the set of
nodes in this subtree. For example, in Fig. 2.2, the subtree T[xr] contains the node subset

x,, x6}.
We shall now state some properties of the elimination tree that are relevant to our

study of indefinite factorization.
Observation 2.1. Any reordering that numbers child nodes before parent nodes in

the elimination tree is equivalent to the original ordering.
In other words, the number of fills and the number of arithmetic operations to

perform the factorization remain unchanged. Such orderings are referred to as topological
orderings of the tree in the literature 19]. The tree structure provides some degree of
flexibility in terms ofthe node elimination sequence without affecting the amount of fills
and computation.

Observation 2.2. 13] For > j,/-]i is nonzero if and only if xi Adj (T[xj]), where
the Adj operator is taken in the graph G(A).

By Observation 2.2, the number of nonzeros in the jth column of L is given by
[mdj (T[x])[ / 1. It should be noted that each T[xj], as a subgraph, is connected in the
original graph G(A). Furthermore, each node xi adjacent to T[x] is an ancestor node of
x in the elimination tree.

Our strategy in using the elimination tree for sparse symmetric indefinite matrix
factorization is as follows. From the symmetric matrix structure, determine its elimination
tree. This tree structure will define a class of (equivalent) ideal orderings for fill and
operation reduction, taking only the structure of the matrix into account. We shall use
the tree structure as a pivot selection guide, so that any necessary reordering due to the
use of 2 2 pivots for numerical stability reasons will deviate as little as possible from
this tree.

3. Structural changes to the elimination tree.
3.1. Subtree relabeling. In practice, the block elimination sequence from the di-

agonal pivoting method is not known a priori. However, based on the structural infor-
mation ofthe symmetric matrix, a fill-reducing node sequence (and hence its elimination
tree) can be determined if we assume that no pivoting is necessary. The tree represents
a class of ideal orderings for sparse elimination without taking the numerical values into
consideration. In this section, we investigate the impact of relabeling on the structure of
the elimination tree, when a rearrangement of node sequence is performed to obtain
suitable and 2 2 numerical pivots.

Observation 3.1. Consider a given subtree T[y]. If the nodes in T[y] are to be
ordered before the ancestors of y (that is, nodes on the path from y to the root), any
relabeling of nodes in T[y] will not alter the structure of the elimination tree associated



A TREE MODEL 31

with nodes not in T[y] (assuming that the relative order of nodes outside T[y] remains
unchanged).

This observation is key to the study ofrelabeling strategy due to stability requirement.
It says that any renumbering of nodes in a subtree will not incur any structural damage
to the remaining part of the elimination tree. In other words, the structural change is
only local to the subtree involved. For example, consider the matrix A in Fig. 2.1. No
matter how we rearrange symmetrically rows/columns 3, 4 and 5 ofA among themselves,
the corresponding elimination tree of any such renumbering will only affect the subtree
T[xs]. There is no structural change in the part of the tree outside this subtree, namely
the part involving the nodes {X1, X2, X6, X7, XS}. This structural preservation is important
in terms of fills because of Observation 2.2.

3.2. Delayed elimination. In order to minimize structural changes to a given elim-
ination tree, the previous subsection offers the observation that any relabeling should be
confined locally to subtrees. What we discuss now is the actual relabeling strategy within
a subtree.

Consider Algorithm D of Bunch and Kaufman [2]; an algorithmic version is given
in 2.1. If row/column j is viewed as an inappropriate pivot, a later row/column
is determined and brought forward to be eliminated with j as a 2 2 pivot. In other

words, row/column is eliminated earlier than as scheduled. We shall refer to this as
advanced elimination. In all other block pivoting algorithms for dense systems, the re-
labeling strategies use some form ofadvanced elimination. This is a satisfactory scheme
for dense matrices since the reordered matrix structure remains unchanged.

However, it may be undesirable for sparse systems due to possible structural damage
from the relabeling. Figure 3.1 gives a 6 6 matrix example, where "e" is used to denote
a numerical value much smaller than normal values indicated by "O". Advanced elim-
ination will bring row/column 6 forward to go with row/column as a 2 2 pivot. This
obviously will cause severe fill-in.

The other alternative is the use of delayed elimination. This notion is implicit in
the multifrontal scheme for indefinite sparse systems by Duff and Reid [7]. This means
when a node (row/column) is deemed as inappropriate for a pivot, its elimination
will be delayed. For the example in Fig. 3.1, if we delay the elimination of the first row/
column until after the last node, we obtain a much more desirable elimination sequence.
In this case, no fill will occur.

We now consider the effect ofdelayed elimination on the structure ofthe elimination
tree. Let A be the given symmetric matrix having
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FIG. 3.1. Advanced and delayed elimination on a matrix example.
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as its node elimination sequence, with k < j. Consider delaying the elimination of node
Xk until immediately after xj, so that the new node elimination sequence is given by

Let the correspondingly permuted matrix be PAPr, which is obtained by moving
the kth row/column to be after thejth row/column ofA. That is, thejth row and column
ofA is the same as the kth row and column ofA.

Observation 3.2. To delay the elimination ofthe node Xk immediately after xs. is the
same as delaying the elimination of Xk to be immediately after the last ancestor of Xk
before and including xj.

By this observation, when we study the delayed elimination of a node Xk after x, it
is sufficient to consider the case where x is an ancestor node of Xk, that is, Xk T[x].
We shall assume this in the remainder of this section.

Let T be the elimination tree of A, and 7 be that of. PAPr. We shall provide
some observations on the structural change from T to T as a result of the delayed elim-
ination of the node Xk. The proofs are quite simple and they are omitted.

Observation 3.3. Ifxc is a node not on the path from Xk to Xj, then f[Xc] and T[xc]
are identical as tree structures (and hence are the same as node subsets).

Observation 3.4. As node subsets, we have f[Xk] T[xj].
Observation 3.5. If Xc is a node on the path from Xk to X other than Xk, then we

have
(a) as node subsets, T[xc]

_
T[xc]- {Xk}’

(b) Xk Adj (T[xc]);
(c) Adj (T[xc])

_
Adj (T[xc]) t_J {Xk }.
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FIG. 3.2. A permuted matrix structure ofFig. 2.1.

FIG. 3.3. The elimination tree " of in Fig. 3.2.



A TREE MODEL 33

To illustrate the structural change, we again use the matrix example in Fig. 2.1.
Consider the delayed elimination of the node x5 to be after x7. The corresponding reor-
dered matrix A and its triangular structure is given in Fig. 3.2. The elimination tree T
for the permuted matrix is provided in Fig. 3.3. It is clear that the subtrees T[xs], T[x6]
and T[x7] are the only subtrees in Fig. 2.2 with their node subsets changed in T. The
node subsets in both T[x6] and T[X7] are shrunk from T[x6] and T[x7], respectively.
Moreover, T[x5] is the only subtree in T that has its node subset enlarged from that
of T.

3.3. Fill increase due to delayed elimination. We now consider the impact ofdelayed
elimination on the number of fills in the triangular factor matrix. As before, we are
delaying the elimination of Xk until immediately after its ancestor xj. We shall use the
notation /(m) to represent the number of nonzeros in "m", which is either a vector or a
matrix. For notational convenience, let V [A], and W [PAPr].

LEMMA 3.6. For c l, ..., k- andj + l, ..., n,

n(w,)= n(v,).

Proof It follows directly from Observations 3.3 and 2.2. V3

LEMMA 3.7. /(W,j) q(V,j).
Proof. By Observation 2.2, we have

r/(W,j) IAdj T[Xk])l +
and

rl(V,j) JAdj (T[xj])l + 1,

and hence they are the same by Observation 3.4. V3

LEMMA 3.8. For c k + 1, ..., j, ifxc is on the pathfrom Xk tO Xj, then

n(w,- ,) <= n(v,) + ;
otherwise,

n(w,- ) n( v,).

Proof If xc is not on the path, then rt(W,c-) IAdj ((Xc))l + l, since the node
xc is labeled c- in the new ordering. By Observation 3.3, this value is the same
as rl(V,). On the other hand, if x is on this path, the result follows from Observa-
tion 3.5. [2]

THEOREM 3.9. With the new ordering, the number offills in the structural matrix

factor will be increased by no more than

depth (Xk)-- depth (xj)+ (V,j)-(V,k).

Proof. From the definition ofdepth, note that depth (Xk) depth (xj) is simply the
number ofnodes along the path from Xk to Xj not counting Xk. Combining Lemmas 3.6-
3.8, we have

n(w) Z n(w,)
c=l

Z n(w,) + n(w,)
c#j

_--< r/(V,) + depth (x) depth (xj) + (V,j)
c#k

rt(V) + depth (Xk) depth (xj) + I(V,j)- (V,k). [’-I
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COROLLARY 3.10. The increased number offills due to the delayed elimination of
the node Xk is always less than n k.

Proof The result follows from Theorem 3.9 and the fact that

depth (xk) depth (xj)

_
j k,

(V,) <- n-j + 1,

rt(V,k) > 1.

The actual number of fills increased due to delayed elimination depends on the
matrix structure, and in practice, it is usually quite modest. For example, the matrix in
Fig. 3.3 is obtained by delaying the elimination of the node x5 to after x7 in Fig. 2.1.
Then, by Theorem 3.9, the number of fills increased is bounded by

depth (xs)- depth (x7)+ (,7)--(,5)--3-- + 2-3 1,

and in this case, there is actually no increase in fills.
It should be noted that the quantity

depth (Xk) -depth (x) + rl(V,)- rt(V,k)

is the exact difference in number of nonzeros between thejth row/column of Wand the
kth row/column ofthe original factor V. However, this quantity represents only an upper
bound on the actual increased number of fills of the entire factor matrix as given in
Theorem 3.9. It is due to possible reduction in fills in other rows/columns.

It is interesting to point out that moving a column forward to eliminate in advanced
elimination can be treated as a sequence of delayed eliminations. Indeed, to elimi-
nate xj before Xk is the same as delaying the columns associated with nodes x, from
c j 1, j 2, k (in decreasing order) to be after xj. Therefore, the increased
number of fills for advanced elimination is potentially much greater than that ofdelayed
elimination.

4. The tree model. Let A be the given sparse symmetric matrix. We assume further
that the matrix A has been ordered to reduce fills. In this section, we consider the use of
the elimination tree structure to generate a stable block elimination sequence with

and 2 2 pivots based on the numerical values in the given matrix. Let x,
x2, "-’, x be a given node elimination sequence on (the structure of) the matrix A,
and T T(A) be the corresponding elimination tree. The following algorithm uses a
sequence of tree structures T, T2, "", T to determine a block sequence.

ALGORITHM 4.1 (Block elimination sequence).
begin

TI .’= T(A);
for j := to n do

begin
if there is a suitable 2 2 pivot using x and x for some x T[x]

then eliminate {x, xe } and transform the tree T to T +
else

begin
if xj is a suitable pivot

then eliminate x and transform the tree T. to T /

else set T + := T /* delay elimination ofx */
end

end;
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eliminate the remaining nodes in the tree Tn + 1.

end.

In this algorithm, we use the notation T[xj] to denote the subtree rooted at the
node xj in the tree T. The tree T contains nodes that have not been eliminated. In
particular, T[x] represents the set of nodes in T[x] whose elimination has been thus
far delayed (except x). In the algorithm, preference is given to 2 2 pivots over
pivots if the 2 2 involves a node that was delayed earlier on.

As in Algorithm 2.1, we have left the numerical conditions for suitable and
2 2 pivots unspecified for the time being. However, we need to provide the tree trans-

formation rules for
TI- T2-- -- T,-- T+I.

This is important since the domain to search for suitable 2 2 pivots in step j is given
by the subtree T[x]. It should also be pointed out that some nodes in T-[x] may become
suitable pivots after the elimination ofx or {x, x, }. For simplicity, we have not taken
this into consideration in Algorithm 4.1.

To facilitate the discussion of the tree transformation rules, we introduce a tree
manipulation function. Let T be a given tree and x be a node in Twhich is not the root.
Consider the removal of the node x and its incident edges from the tree T so that the
children nodes ofx (if any) will become the children nodes of the parent of x. This will
give rise to another tree, and we shall use remove (x, T) to denote the resulting tree.

The tree transformation rules for Algorithm 4.1 can then be described in terms of
the function remove (x, T). Consider the transformation from T to T. + . We have the
following three cases.

Case 1. The node x is delayed for elimination:

Case 2. The node x is eliminated as a pivot:

T+ :-remove (x, T),

Case 3. {x, x, } are eliminated as a 2 2 pivot:

T+ :-remove (x., remove (x,, T)).
To illustrate the tree transformation sequence, we use the matrix structure of Fig.

3.1 and its elimination tree of Fig. 3.2. Figure 4.1 displays the sequence oftrees resulting
from Algorithm 4.1. It corresponds to the following block elimination sequence:

Xl,X3,Xs, (X6,X4),X7, (X8,X2}.
We assume that the nodes x2 and x4 have been delayed for elimination until xs and x6,

respectively, due to stability consideration on the numerical values.
Note that T6 remove (x5, T), and in the tree T6, the node x6 becomes the parent

of x4 after the removal of the node x5 from T. On the other hand, T7 remove (x6,
remove (xa, T6)). Since the subtree T6[x6] contains only the nodes x4 and x6, the tree
T7 is obtained from T6 by simply the deletion of the entire subtree Tr[xr].

It is important to point out that a different set of numerical values may induce a
different block elimination sequence. Indeed, if the numerical values are given so that
no pivoting is necessary (for example, when the matrix is positive definite), it is simple
to generate the tree sequence. In such case, in each tree T., the subtree T[x] has the
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FIG. 4.1. Tree transformation sequence.

only node xj and this node is always a leaf of T. Therefore, T +, can be obtained by
simply deleting the leaf node xj from the tree T.

The sequence of tree transformations provides a model to study sparse symmetric
indefinite matrix factorization using a mixture of and 2 2 block pivots. Implicitly
used in the model (or Algorithm 4.1) is the technique ofdelayed elimination as discussed
in 4. How far a node is to be delayed depends on the pivoting strategy and the numerical
values. However, irrespective of the strategy, at step j, the subtree T[xj] contains the set
of candidates for the next block pivot.

5. Use of the model.
5.1. The multifrontal method by Duff and Reid. The tree model described in 4

captures the important characteristics ofdelayed elimination. The tree T. at stepj provides
the current structural information necessary for the next elimination. Indeed, the subtree
T[xj] rooted at xj contains the set of desirable candidates for the next pivot, desirable
from a structural point ofview. It represents the set of nodes in T[x], whose elimination
has been thus far delayed.

Using the tree model as the basis, we can concentrate on other aspects of sparse
indefinite factorization:

(a) Pivoting strategies for numerical stability and factor sparsity,
(b) Algorithms to search for pivots in the subtree Tj.[x],
(c) Design of data structures to represent the structural and numerical factors,
(d) Subtree representation of T,
(e) Efficient numerical sparse factorization,
(f) Forward and backward substitutions.
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Different schemes in each ofthe above categories can be compared with each other using
the model as the common basis.

It is appropriate at this point to discuss the relation of the tree model with the
multifrontal method by Duff and Reid [7] for sparse indefinite systems. The notion of
delayed elimination first appears in their paper [7]. Our work in 3 considers this notion
in the context of elimination trees, and provides some quantitative bounds on possible
structural damages due to delayed eliminations. Furthermore, we have incorporated this
important idea to give a tree model to study sparse indefinite factorization.

Naturally, there are many ways to implement the tree model depending on the
pivoting strategy, pivot searching algorithm, data structures and numerical solution ap-
proaches. Indeed, the multifrontal method by Duff and Reid can be treated as one way
of implementing the tree model. They have employed the threshold pivoting strategy
from [8] for the selection of stable and 2 2 pivots. A slightly improved version
appears in 12]. Other competitive pivoting schemes exist; one such example is the use
of a threshold version of the Bunch-Kaufman pivoting strategy [2], [14].

The main feature in the multifrontal method is the use of full matrices in the course
offactorization. Each frontal matrix is stored as a full matrix. This choice ofdata structure
greatly facilitates the search for pivots and adapts extremely well on vector machines.
Furthermore, the subtrees T[xj] are represented implicitly in the full submatrix scheme.
However, it should be emphasized again that this is only one of many possibilities.

In terms of numerical factorization, the multifrontal method uses an outer product
form offactorization. When a row/column is eliminated, its modification to the remaining
submatrix is applied. Furthermore, Duffand Reid uses a version of implicit (asymmetric)
blockfactorization whenever the diagonal block is 2 2. In other words, ifD is a 2 2
diagonal pivot, and F is the corresponding off-diagonal block, they opt to store D-I and
F rather than D and FD-1. This helps to reduce storage as reported in [8].

5.2. New sparse factorization schemes: an example. To illustrate our point that the
tree model forms an important basis for different sparse factorization schemes for indefinite
matrices, we shall provide one such scheme as an example. It should be stressed that we
are not advocating this scheme over other methods, but it serves the purpose ofshowing
the fundamental importance of the model.

A node can be delayed for elimination to be after any one of its ancestor nodes in
the elimination tree. A simple scheme is to always force the delayed elimination to be
after the root xn ofthe tree. This actually produces an effective and elegant overall solution
method provided that the number of delayed eliminations is relatively small. Algorithm
4.1 to determine block elimination sequence can be reformulated as follows.

ALGORITHM 5.1.
begin

TI := T(A);
for j:= ltondo

begin
if xj_ T[x] and {x_ 1, x } forms a suitable 2 2 pivot

then eliminate {x_ 1, xj } and transform the tree

T + := remove (x, remove (x- 1, T))
else

if x is a suitable pivot
then eliminate xy and transform the tree T + .’= remove (xj, Ty)
else set T. + := T /* delay elimination ofx */

end;
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eliminate the remaining nodes in Tn + 1.

end.

Towards the end of the algorithm, the tree Tn / contains all the nodes that have
been delayed for elimination. After the numerical elimination of all previous pivots

(1 {xj } or 2 2 {xj_ 1, x }), we can treat the matrix remaining to be factored as a

dense matrix. In practice, this is almost always the case. The standard routines from
LINPACK [6] for factoring indefinite symmetric dense matrices can be used on this

submatrix.
A slight improvement in Algorithm 5.1 is in the choice of 2 2 pivots. Ifxc T[x]

and xc is a child ofx in the original elimination tree, then xc is also a potential candidate
for stable 2 2 pivots to go with x (without affecting the structure of). In the algorithm,
c is always taken to be j 1.

We can actually consider the scheme from a matrix partitioning point of view. Let
A be the given matrix, and P be the permutation matrix corresponding to all the delayed
eliminations. Then we can view the permuted matrix as partitioned into:

where E is n k by n k, C is k by k, and k is the number of delayed eliminations in

Algorithm 5.1.
This view allows the use of asymmetric blockfactorization [10]:

where C FE-IFr. Of course, the matrix E itself will be decomposed into its

triangular factors, and the pivots will be governed by Algorithm 5.1. On the other hand,, which is treated as dense, is factored using a mixture of and 2 2 pivots. Note
that within , we are free to interchange rows/columns without causing structural
problems.

In terms of storage, it is important to realize that we need only to store the factors
of E and together with the off-diagonal block F of the original matrix. The matrix
product E-IFr is never stored nor computed. An important consequence of this obser-
vation is that the compressed data structure obtained by a symbolic factorization of A
(see, for example, [10]) is appropriate for the matrix factors of E. Moreover, for those
columns corresponding to C in the data structure, their column data storage can be used
to keep the associated rows of F. This means the only additional data storage required
is a full matrix of size k.

For this approach to be successful, it is crucial that the number ofdelayed eliminations
k must be kept as small as possible. Any extra effort to ensure this seems to be worthwhile.
Provided k is small, this scheme is quite attractive. Its data structure is similar to those
for sparse Cholesky factorization with an additional k k full matrix. It also allows an

efficient implementation of the numerical factorization and solution phases.

6. Concluding remarks. In sparse Cholesky factorization, the elimination graph
model [15], [16] plays a central role. It provides a clear conceptual picture of the elim-
ination process and hence facilitates the development ofother important ideas for sparse
factorization. Some ofthe key results include: the improvement on symbolic factorization,
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the compressed column data structure by Sherman 18], the significant advance in the
implementation of the minimum degree ordering algorithm 10].

The tree model introduced in this paper for sparse symmetric factorization plays a
similar role. It captures most of the structural aspects of the elimination process using
delayed elimination. This will allow researchers to focus and improve on other algorithmic
aspects of factorization based on the model.

There are many ways to implement this tree model, the multifrontal method by
Duff and Reid being one of them. The author is currently investigating other practical
ways for its efficient implementation. One such scheme is suggested in this paper, which
works well if the number of delayed eliminations is small.
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WITH APPLICATIONS*

PETER ARBENZ AND GENE H. GOLUB$

Abstract. We consider the problem of computing the eigenvalues and vectors of a matrix
H + D which is obtained from an indefinite Hermitian low rank modification D of a Hermitian

matrix H with known spectral decomposition. It is shown that the eigenvalues of/ can easily be
located to any desired accuracy by means of the inertia of a Hermitian matrix of small order whose
elements depend nonlinearly on the eigenvalue parameter A. The results are applied to the singular
value decomposition of arbitrary modified matrices and to the spectral decomposition of modified
unitary and of Hermitian Toeplitz matrices.

For both the singular value decomposition and the unitary eigenvalue problem, divide and con-
quer algorithms based on rank one modifications are presented.

Key words. Modified eigenvalue problem, Hermitian matrix, Toeplitz matrix, Unitary matrix,
Modified singular value decomposition
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1. Introduction. Let H E Cnn be a Hermitian matrix with known spectral
decomposition

(1) H =QAQH

where Q [ql,’’’,qn] is unitary and A diag(A1,..’,An). /1 _>

_
An are the

eigenvalues and qi, i 1,..., n, the corresponding orthonormal eigenvectors of H.
We denote the spectrum of H by A(H)-= (A1,..., An}.

Let D
_
nxr be an arbitrary Hermitian matrix of small rank r <_ n. We consider

the problem of finding the eigenvalues and vectors of the matrix

(2) U := U + n
using the already known spectral decomposition of H. Let V Cnr be a matrix of
maximal rank r with columns spanning (D). Then v(vHv)-IVII is the orthogonal
projection onto (D). Therefore, because /(D) (D)+/- [14, p. 21] we have

(3)

where

D v(vHv)-IVHDV(VHV)-IvH VAVH,

A ""(vHv)-IvHj-)v(vHv)-1 e

is a nonsingular Hermitian matrix. Thus the problem considered can be reformulated
in

(4) /x := (g + vAVH)x x,
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or equivalently according to (1) in

+ Qu,

If D is positive semidefinite, V can be chosen such that A is the identity matrix. This
special case has been considered by the authors in an earlier paper [2].

In 2 we use a similar analysis to show that the numbers P(A) and P(A) of the
eigenvalues of H and/ that are >_ A, respectively, are related through the equation

(6) P(A) + r(A-x) =/5(A) + r(A- vH(A H)-V), A q A(H),

where r(A-) and r(A-a vH(A H)-aV) are the numbers of positive eigenvalues
of A-1 and A-x vH(A H)-xV, respectively.

A formula equivalent to (6) has apparently been stated for the first time by Beat-
tie and Fox [4]. A corresponding formula for restricted matrix eigenvalue problems
was given by Simpson [23]. Numerical computations using that formula have been
performed by Simpson and his collaborators for the frequency analysis of mechanical
structures [22], [24].

A slight modification of the matrix A-1 vH(A H)-V permits the extension
of statement (6) to the case where A is an eigenvalue of H. The theory developed in

2 holds for any r <_ n. A reasonable application in numerical computations,however,
seems to be restricted to an r that is small.

In 3 we apply the theory of 2 to the modified ingular value problem: Let
A (mXn, m

_
n, be a matrix with known singular value decomposition. We

consider the problem of computing the singular value decomposition of

(7) := A + X

where the perturbation X (mxn is again assumed to be a matrix of low rank.
Because the singular values of A and are the positive square roots of the eigenvalues
of AHA and of H, it is possible to apply the results of 2 setting H AHA and

In 4 we show how the divide and conquer algorithm that has been proposed by
Cuppen for the tridiagonal symmetric eigenvalue problem [8], [10] can be applied on
the singular value decomposition of upper bidiagonal matrices. It is surprising that
X in (7) can be chosen such that the modification D fi.Hfi._ AHA has rank one.
This is in contrast with the approach made by Jessup and Sorensen [19] which leads
to a rank two change.

The results of 2 apply also to the eigenvalue problem of Toeplitz matrices and to
the eigenvalue problem of unitary matrices as will be shown in 5 and 6. In the latter
we consider the eigenvalue problem SHUx Ax, where U E (nn is a unitary matrix
with known spectral decomposition and S E cnn is a unitary matrix such that I-S
has low rank (S may, e.g., be a Householder transformation [17, p. 4]). By means
of the Cayley transform [12] the unitary eigenvalue problem can be transformed in a
Hermitian one permitting again the application of the theory of 2.

In 7 we discuss some questions that arise when the derived results are to be
applied numerically.

2. Locating the eigenvalues of I H + VAVn. In [1], [2] the eigenvalue
problem (5) with A I has been investigated. In this section we generalize the
analysis developed there to the more general case where A is an arbitrary nonsingular
matrix. We first show the basic lemma.
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LEMMA 2.1. Let E lR be arbitrary but fixed and let I #() >- 0 be the
multiplicity of as eigenvalue of H. Let W nu be a matrix the columns of which
form an orthonormal basis of the eigenspace )4(- H) corresponding to A. Then the
matrices

(8) B := 0 A-x 0 @(n+r+U)x(n++U)
0 0 0

and

(9)
A-H 0 0 ]C .= 0 A-x vH(A H)+V VnW (n+r+u)Cn++u)

0 WnV 0

are congruent. Here ( H)+ is the Moore-Penrose pseudoinverse of (- H).
Proof A simple computation shows that

(10) MHBM C

with

I- WW
M := 0

Wn
I 0 AvH(I-WWn) I 0
0 0 0 0 I

(11) 0 I AVnW 0 I 0
0 0 I 0 0 I

I-WWrI -(A H)+V W ]AvH(I WWH) I AvH(A H)+V Avrlw
Wn 0 0

Recall that (A H)+ (A- H) I- WWH.
If A is not an eigenvalue of H then Lemma 2.1 reduces to Corollary 2.2.
COROLLARY 2.2. If A q A(H), then the matrices

A 0 ] (+)x(+)(12) B:=
0 A_ e

and

A-H(13) C:=
0 A- 0 ] (n+r) (n+r)

vH(/ H)-IV

are congruent.
Proof. Equation (10) holds with

I -(- H)-IV ](14) M:= AyH I-AvH(A-H)-IV
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Since det M 1, (10) yields

1-I
(15) ’=1 det(A)det(A-1 Yn( H)-Iv), ,(g).

FI
’=1

Thus, the eigenvalues of/ can in principle be obtained from those of H by an
investigation of the zeros and poles of the function on the right-hand side of (15). This
function is a generalization of the Weinstein-Aronszajn determinant known from the
methods of intermediate problems [2], [15], [27].

Let P(A) and/3(A) be the number of eigenvalues of H and/, respectively, that
are >_ . We denote by (v(A), (A), r(A)) the inertia [14], [20], i.e., the number
of negative, zero, and positive eigenvalues of a Hermitian matrix A. Then we have
Theorem 2.3.

THEOREM 2.3. Let E ]R be arbitrary but fixed and let # be the multiplicity of
as eigenvalue of H. Let W e {nx,wHw I, be such that ](W) )( H).

Then the equality

(16) P(A) + r(Z(A)) P(A) + r(A)

holds with

(17) Z())
A-1 vH(, H)+V

WnV
vHW

Furthermore, the mapping

(18)
x := (A H)+Vy / Wz

is bijective.
Proof. By Sylvester’s law B and C have the same inertia [20]. The numberof

nonpositive eigenvalues of B is/5(A) + r r(A-1) + #. This number equals P(A) +
r /#- r(Z(A)), the number of nonpositive eigenvalues of C. As r(A-1) r(A), this
proves (16).
M in (11) bijectively maps

(19)

)(C) 0 x)g(A-H)cCn

y n+r+ Y E)g(Z)C
Z

Z

onto

(20)
0
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From (11) it is seen that the first summand in (19) is mapped bijectively onto the
second summand in (20) by

(21) x i--.-+ z WH
27,

while the second summand of A/(C) is bijectively mapped onto the first of A/(B) by
a. This completes the proof. [:!

If 2 is not an eigenvalue of H then Theorem 2.3 reduces to Theorem 2.4.
THEOREM 2.4. Let q (H), i.e., #()= O, and

(22) Z() A-x vH( H)-XV.

Then (16) holds and the mapping

(23)

is bijective.
Proof.

Lemma 2.1.

.. B)
y x := (A- H)-IVy

Theorem 2.4 follows similarly from Corollary 2.2 as Theorem 2.3 from

Remarks. (i) We may write (16)in the form

(24) Ap() AA/5(A)+I,

where P(A) =~P(A) + r(A) r(Z(A)), or, since (Z(A)) is the multiplicity of A as
eigenva]ue of H, in the form

(25) /5(A)_(Z(A) > A

_
/5(A)_(Z(A))+ 1.

These inequalities render it possible to compute any eigenvalue of r to any desired
accuracy by a bisection algorithm [14].

(ii) If we define N() and N() to be the number of eigenvalues of H and r that
are g then the inequality

(26) + +

holds, the proof being similar to the one of (16).
Note that, using the spectral decomposition of H, Z() in (22) can be written as

(27) Z() i-1 uH( A)-Iu.

Since A is diagonal the computation of Z(A) is cheap. If r is sufficiently small it
may thus be advantageous to compute the eigenvalues and vectors by means of (26)
instead of forming the whole matrix H and apply one of the classical algorithms such
as the QR-algorithm.

The following Theorem gives useful a priori inclusions for the eigenvalues of .
THEOREM 2.5. Let r+ 7r(A) and r_ u(A) r r+. Setting Aj +cx) for

j < 1 and Aj -oc for j > n, the inequalities

(28) Aj-r+_>j_>Aj+r_, j=l,...,n

are valid.
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Proof. Evaluating (16) at the point . we obtain

p(.) /5(.) r(A) + r(Z(.))
> P(.) r+ > j r+

which proves the left-hand-side inequality.
obtains

Similarly, by evaluating (16) at . one

(,j) P(j) + r(A) r(Z(,j))
_> j + r r_ r + (Z(.)) + c(Z(.))
>_j-r_,

from which the right-hand-side inequality follows.
Remark. Inequalities (28) are well known in the case r+ r (r_ 0) [26], [27].

They are usually proved by means of the Courant-Weyl principle. The use of this
principle is now hidden in the proof of Sylvester’s law on inertia [14], [20] which was
used in the proof of Theorem 2.3.

3. On the modified singular value decomposition. Let now A E (mxn
m _> n, be a matrix with known singular value decomposition

(29) A FEGH, where F mxm and G nxn are unitary matrices

and

(30) E= [,lj mxn .,x diag(al an

contains the singular values al > > O’n _> 0 of A in its diagonal. We consider the
problem of computing the singular value decomposition

(31) ei. =/(H

of the matrix A := A + X. Here it is assumed that X has low rank, say p. This
implies that X can be represented in the form

x
where both Xm cmxp and Xn jnxp have maximal rank p.

As is well known, the singular values of A and A are the positive square roots of
the eigenvalues of the positive semidefinite matrices H "= AHA GE2GH and

(33) / .= .nfi (A + x)H(A + X) H + D E

respectively, where

(34)
D AHx -}- xHA -t- xHx

H HAHXmXHn + xnXHmA + XnXmXmXn
is a Hermitian and in general indefinite matrix. From (34) it is seen that its range
(D) is spanned by the columns of X and AHx. Recalling that rankX p we get

p <_ r :- dim (D) <_ 2p.
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As shown in 1, D can be represented in the form

(35) D VAVH, V E Cnxr A E Crxr

where A is diagonal. Then Theorem 2.3 is easily rewritten for the present case.
THEOREM 3.1. Let ]R be arbitrary and let tt be the multiplicity of a "=

sign() as singular value ofA. Let P() and [() denote the numbers of singular
value8 of A and J, respectively, that are >_ a and let the columns ofW nxu, form
an orthonormal basis of .Y(- AHA). Then the equality

(36) P(2) + r(Z()) P(2) +
holds with

(37) IA-1 vH(A- AHA)+V vHw
wHv 0

Furthermore, the mapping

(38)
---+

[Y]z x :-= AHA)+Vy + Wz

i bijective.
Note that the matrix W can be formed with the columns of G corresponding to

the singular value a.
For a not a singular value of A we get with (29)

(39)
Z(A) A-1 AHA)-Iv,

(GHV)H( -
with A sign(a)a2, a substitution that makes a repeated computation of Z(A) much
cheaper.

The mapping a gives the columns of ( in (31) corresponding to the singular value
a. The corresponding columns of could be obtained in a similar way if one works
with 2n instead of fi.nfi.. A better way to get is via the QR-decomposition with
column pivoting of the matrix ( [14, p. 289]:

(40) QR AGH.

Here 1 is a permutation matrix. It is easy to see that / has orthogonal columns.
Indeed

with diag(51, , 5n). Without loss of enerality we can assume that the diagonal
elements of/ are nonnegative. Therefore R IT-]l and with (40) we obtain

(41) .- (QIIT),
the desired singular value decomposition of A.

We now apply Theorem 2.5 to obtain an a priori inequality for singular values.
To do that we estimate the number of positive and negative eigenvalues of D. To that
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end we choose a Vo e nxr of the form Vo IV1, V2], where V1 E ’x, vHv
Ip, spans (Xn) and V2 e Cnx(r-p), vHv It-p, spans (AnXm) A (Xn)+/-.
Then evidentially VnV1 0 and consequently v2Hxn 0. Any u e (D) can be
represented by

(42) u [V1, V2] [ x ]y x ,y r-p

Thus, to any eigenpair (, fi) of D there corresponds a vector

satisfying

(43) VonDVo[fl] =[B C

where

and

LrHx XHAV1 .+. VIII H HB VHAHXmXHnV1 +’1 n m x.x x x.v 

C clearly has maximal rank r- p. Let (PP be a nonsingular matrix such that

Then, since the inertia of a matrix is invariant under congruence transforms, the
matrix in (43),

(44) 0 Ir--p CH 0 0 Ir- BH2 B22 0
I_v 0 0

and

(45) 0 I --BH2 BH2 B22 0 0 I 0 0 B2z 0
0 0 I Ir-p 0 0 0 -BI2 I Ir-p 0 0

have the same number of positive and negative eigenvalues. We denote these numbers
by r+ and r_. Since the mentioned matrices are regular we have r r+ / r_.

Furthermore, by (45) we see that r-p < r_ _< p and r-p _< r+ < p (cf. [2]). With
Theorem 2.5 we thus obtain the a priori inequalities

(46)

The inclusion ay_, >_ by >_ a.+ is well known [25].
4. A special case: A divide and conquer algorithm for the singular

value decomposition of bidiagonal matrices. In 1981 Cuppen [8] proposed a
divide and conquer algorithm for the solution of the real symmetric tridiagonal eigen-
value problem. The method has been refined and successfully implemented for vector

Vo+ v2

C VpX X2AV .
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and parallel computers by Dongarra and Sorensen [10]. After the discussion in the
previous section it is of interest to try to generalize this algorithm to the computation
of the singular value decomposition of bidiagonal matrices. This has been done by
Jessup and Sorensen [19]. In this section we reconsider the problem, treating it in a
different way in order for D in (34) to become a matrix of rank one.

Let

I /22

A e # 0,
/]n

be a bidiagonal matrix the singular value decomposition of which is to be found. With-
out loss of generality . can be assumed to be square. It may, for example, have been
obtained from any m n-matrix by a finite sequence of Householder transformations
[14, p. 170].

T TWe decompose in the form A+X A+ekvn where v

e. denotes the j’th unit vector,

"t v2

.4=

and

0

"0

0

The matrix AHA consists of two tridiagonal blocks,

(48) AHA= [(AHA)I 0 ]0 (AHA)2

with (AHA)I E ckk and (AHA)2 E (n-k)(n-k), the first of which is always
singular. Because AHx O, the matrix D in (33)-(34) becomes

(49) O xHx vvH [e, e+l]

which is equivalent with (35) if one sets A 1.
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T whence a rank two modi-Remark. Jessup and Sorensen chose X 12k+lekek+l,
fication D results.

The matrix

(50) G [ GIO G20 ]
in (29) contains the normalized eigenvectors of AHA. It is blockstructured in the same
way as AHA is. Therefore Z(A) in (39) becomes

(51)

The treatment of the function Z(A) is crucial for the success of a divide and
conquer algorithm. As already mentioned after (15), Z(A) contains all the information
needed to determine A(H). Although it is easy by Theorem 3.1 to determine the
multiplicity of every Aa E ,(AHA) as eigenvalue of AH it is preferable in the rank
one case to perform the following deflation process:

Observe that, since [10]

(52) I(CHvlne l- IvHCe l-

%2. is a good approximation for an eigenvalue of AHA if I(GHv)a is small. This is
indeed very often the case as has been observed in the tridiagonal case by Cuppen
[8] and Dongarra and Sorensen [10] as well. Therefore those summands in (51) with
sufficiently small coefficients can be neglected, or equivalently, the rows and columns
corresponding to small I(GHv)a.I can be eliminated from AHA. (For details see [10].)

A special case of the above situation occurs if AnA has multiple eigenvalues. Then
the basis of the corresponding eigenspace can be chosen such that at most one of the
eigenvectors is not orthogonal to v. By consequence the corresponding components
of Gnv vanish and can be eliminated in the deflation process.

Finally one is lead to matrices AHA and n/ (we do not change notation) which
both have only simple eigenvalues. By (15) and the form (51) of Z(A) it is clear
that A(AHA)t A(n) {. Because Z’(A) > 0 for all A 6 A(AHA), Z(A) has a
single simple zero in each open interval (%2.,ay+1), 1 _< j < n, and (a2n, oo). Bunch
et al. [7] have developed a quadratically convergent zerofinder for the determination
of the roots of Z(A) 0 based on a rational approximation of Z(A). This zerofinder
proved to be very efficient in the symmetric tridiagonal case [10].

If a zero of Z(A) (i.e., the square of a singular value 5 of ./]) is found, a
corresponding right singular vector is according to (38) given by

(53) 0 ( AHA)-iv C( E2)-cnv.

In the absence of round off, a corresponding left singular vector is obtained by

(54)



50 P. ARBENZ AND G. H. GOLUB

] is normalized if is so. Note that 5 does not vanish, since possible singular values
zero of ft. have been ruled out in the deflation process!

To obtain the singular value decomposition of the original matrix , the newly
computed singular values and vectors have to be combined with the deflated ones.

Equation (54) may cause inaccurate results if is very small, possessing a large
relative error. To control the accuracy of the computed results we propose to use (54)
together with its dual formula

1n()

in the following Lanczos process. Starting with j 1 one defines [13]

(56) z. :- ., . :--IIzll, ] :- z/,

where ., ]., and 8j are approximations to ., ]., and 5.. We consider them to be
accurate if . defined by

(57) zoo. -= inz s.O, s "= I1%11,

is sufficiently small, i.e., if its size is of the order of magnitude of the machine precision
[14, p. 33]. If this is not the case, we define

(8) .+ := ./.
and perform the Lanczos steps (56)-(57) again starting with +1. If we now assume
that 5i,"’, 5-1, g)l,"’, -l, and ],..., ]-1 are accurate to machine precision,
we can expect the error of j to lie essentially in the span of y+,..., n. Therefore,
by well-known properties of the Lanczos algorithm [14, p. 323], the larger singular
value of the matrix

is a better approximation to 8 than 8i. Improved approximations to and ] are

given by q + q25+ and xf5 + 215+, respectively, where (_ and

_
are

the right and left singular vectors corresponding to the larger sinlar value of the
matr in (59). If i= [n]+,_ a+0+]] is not small either, the Lanczos
process (56)-(58) may be continued. We believe, however, that one or two steps will
in general suffice to obtain high accuracy.

5. On the banded Toeplitz eigenvalue problem. Let us consider the eigen-
value problem

(60) 9x x
where H is a banded Hermitian Toeplitz matrix

to tp

/it t "’. tp

t to
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of order n. (We assume 2p < n.) Jain [18] proposed to solve the linear equation
Hx by decomposing H in the form H H- D with

tl tp

tp "’...
tp

t tp

tp

tp

tl

tp

and

0 0 tp tl

tp ". ". 0

tl tp 0 0

Here H is a Hermitian circulant and D is a matrix of low rank r 2p. Clearly,

0 R]VH(61) D V RH 0

where

tp tp-1 tl
tp t2

tp

E (PP

is upper triangular and

0]V 0 0 E IRnxr
o

Hence we obtain a modified eigenvalue problem of the form (5). The special case
where H is tridiagonal with additional entries in the (1,n)- and (n,1)-corners has
been considered by BjSrck and Golub [5].

Since it is very easy to compute the eigenvalues and vectors of circulant matrices
[9, p. 72] it may be a successful approach to calculate first the spectral decomposition
of H and then treat/x x as a modified eigenvalue problem.
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The knowledge of the eigenvalues and vectors of banded Toeplitz matrices is of
considerable interest in in many applications, especially signal processing.

Note that the eigenvalues of A are given by al >_ a2 >_ >_ ap > -ap >_ >_
-al where the ai’s are the singular values of R. Thus the interlacing property (28)
holds with r+ r_ p

Remark. The eigenvalue problem/x x can also be treated as the restriction
of the eigenvalue problem

(62) i-Ix x, E (n+p)(n+p)

restricted to

(63) QWx=[0 I]z=0, QelR(+)’.

The matrix /:/has the same form as H in (62) but is of order n / p. Restricted
eigenvalue problems can be treated very similarly as low rank modified eigenvalue
problems [2]. Instead of the matrix Z() in (22) one has to analyse

(64) 2() QT([-I- )-Q

in the present case. Here it is probably advantageous to consider (60) as a restricted
eigenvalue problem since the order of Z in (64) is only p.

6. On the modified unitary eigenvalue problem. Let U (nn be a matrix
with known spectral decomposition

(65) U QTQH, T diag(r,...,rn), Q unitary,

where the eigenvalues vi are arranged so that 0 <_ arg (r) _<

_
arg (rn) < 2.

Let S be a unitary matrix such that I- S has small rank r. We consider in this
section the modified unitary eigenvalue problem

(66) Ox sHux x.

Equation (66) has to be reformulated for the results of 2 to be applicable. Before
doing this we investigate how a unitary S of the above kind must look. To that end
we state Lemma 6.1.

LEMMA 6.1. Let S (nn be unitary such that rank(/- S) r < n. Then S
can be represented in the form

(67) S I XOXH,

where X nxr has orthonormal columns and O diag(0,
entries of {9 satisfy the equation

(68) 10.- 11 1, 0j -0.

#r). The diagonal

Proof. I- S is normal and thus unitarily diagonalizable. Omitting the trivial
eigenvalues and corresponding eigenvectors we obtain the representation

(69) I S XOXH, X (nxr, xHx I, 0 diag(O,..., Or).
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From SHS I we immediately get

(70) O + O OO,
which is an alternate form of (68). rl

Remark. Householder matrices are special cases of (67)-(68) with r 1 and
0--2.

In order to use the results deduced in {}2, we apply the Cayley transform [12,
p. 287] on the matrices U and ’. This transform bijectively maps the set of unitary
matrices not having the number 1 in their spectrum on the set of Hermitian matrices.
We therefore have to make the assumption that 1 (U) and 1 (U). Then the
Cayley transform yields the Hermitian matrices

(71)

and

H .= i(- U)-x ( + U)

(7) / := i( )-( + 3) i(S U)-(S + U)

which have the real eigenvalues 1 i(l+rn)/(1--rn) >_’’" >_ n i(1-1-7"1)/(1--7"1)
and 1 i(1 + n)/(1 n) _> -> n i(1 + 1)/(1 1), respectively. The
eigenvectors remain unchanged.

The assumption that neither/(U) nor/(U) contains the number 1 is not restric-
tive since premultiplication of U or 8H by a number a ei turns the spectra on
the unit sphere by the angle . Therefore, choosing properly, the assumptions can
easily be satisfied.

Now we have

(s u)- (s + u) (- u)-( + u)
( u)-x [( s)(s u)-(s + u) ( s)]

(73) 2(1- U)-(I- 8)(8 U)-Iu
-2(I U)-(I- S)[I (I- U)-I (I- 8)]-1(I- uH)-x

The matrix I-(I-U)-x (I-S) with I-S XOXH is a straightforward generalization
of a Householder elementary matrix [17, p. 3] and thus its inverse (if it exists) is known
to be

(74) [I (I- U)-xoxH]- I (I U)-IXOBXH

with

B (I- xH(I U)-XXO)-x E (13rr.
Setting V := (I- U)-xX, one easily obtains

iD =/ g [(S U)-X(S + U) (SH + uH)(sH uH)-1]
i

(7) -[( v)-x (I + u) (I + v)(I v)-x]
iV[OH O oxHVOB + BHoHvHxoH]vH

which is a representation of D in the form (4). Therefore the results of 2 are appli-
cable.
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We now derive a divide and conquer algorithm for the eigenvalue problem of a
unitary Hessenberg matrix, say C. Let G1 := I- 2wlwS be the Householder matrix
that maps the first column of C on e, I1 1, a multiple of the first unit vector.
Then

IGIC i oH]0 C1

where C is a unitary Hessenberg matrix of order n- 1. Thus, recursively one obtains

(76) C aia.., anG, aG" "Gn,

since the G are Hermitian and Gn I. Note that the vectors w. which define the
Householder reflectors I- wjw have at most two nonvanishing components. (For a
similar decomposition of C with Givens rotations see [16].)

Without loss of generality we can assume that a 1, which amounts to replacing
C by C. Let us furthermore assume that we know the spectral decomposition of
CL := rIi<k Gj and CR :- II1>k Gj. CL and CR are block diagonal matrices, each
with a Hessenberg and an identity block. Since C CLGkCR is similar to

(77) 0 :’-- SU :--- GkCRCL, S Gk, U CRCL

we have to compute the eigenvalues of a matrix decomposed in the form (66). The
modification S in the present case is such that I- S has rank 1, while U is blockdi-
agonal with upper Hessenberg blocks of order k and n- k, respectively. From (75)
we obtain

(78) D 4iv(vHwk wv)v,
8 Re(wv)vvH

fl 1/(1 2wv)

with

v= (I-U)- n

Wk Q(I T)-QHwk Z(1 Tj)-l(qwk)qj.
3"=1

Note that Q is blockdiagonal, too. The scalar Z(2) in (22) in the present case becomes

(79)
Z(A) S Re(/wkHv) vHQ(A A)-IQHv

S Re(wffv) vHQ[AI i(I T) -1 (I + T)]-IQHv
8 Re(flwffv) wQf(, T)QHwk

with

1(80) f(A, t)
All tl + 2 Irn(t)"

Since T is diagonal, f(A, T) in (79) is evaluated without difficulty.
Remark. An alternative approach to problem (66) can be made if Ss and U

commute. We may then define H by

(81) eiH U, O < H < 27r.
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By (65) we obtain H QAQn, with .4 diag(A1,".,Ar). The diagonal entries .
satisfy the equation . -i log U arg T.. Analogously we define D by

(82) eiD SH, 0 _< D < 2r.

By (67) we then get D Xdiag(61,... ,6r)Xn, with ei 1-., 0 _< 6. < 2r. Now
we have

(83) HU eiDeiH eif-I

with

(84) H H d- D.

(82) holds if and only if SH and U commute [12. The advantage of this approach is
that both the assumptions 1 A(U) and 1 A(U) are not necessary.

The interlacing property (28) of the eigenvalues of the transformed matrices H
and H can be translated in an interlacing property on the unit circle for the eigenvalues
of the original matrices U and U. By

we mean that . lies on the arc of the unit circle which is passed, when moving from
v’-r_ to v’+r+ counterclockwise. If j + r+ > n, we identify 7+r+ with
Likewise we identify v-r_ with U-r-+n if j- r_ < 1.

Remark. In the case where U is a real orthogonal matrix, it is possible to complete
the computations in the real field.

7. Numerical considerations. As mentioned after (25) it is easy to determine
any eigenvalue of the modified matrix at any desired accuracy by bisection: Let
k E 1N, 1 < k < n,a,b E ]R such, that a < A < b and let > 0. The following
algorithm determines a number satisfying IA- Akl _< e/2.
ALGORITHM 7.1.

whileb-a>edo
begin c := (a + b)/2;

Compute Z(c);
Determine the inertia (7r(Z(c)), (Z(c)), p(Z(c))) of Z(c);
if P(c) + r(A) r(Z(c)) < k then b := c else a c

end;
"= ( + b)/;

To determine starting values for a and b we can skip through the eigenvalues of
A and apply (16) to find a j IN such that A. < k < A+I, use inequality (28), or
both together. Using (28) alone has in general the disadvantage that for each guess c
one has to check if c is in A(A).

The iteration in Algorithm 7.1 can eventually be abbreviated if one checks in the
case P(c) + r(A) r(Z(c)) >_ k if the additional inequality P(c) + r(A) r(Z(c))
(Z(c)) + 1 <_ k is satisfied. If the latter holds, we have c Ak.

Since bisection algorithms converge only linearly, it may be desirable to accelerate
the iteration. Beattie and Fox [4] derived an inclusion theorem for the eigenvalues of
H using the smallest eigenvalue of Z(A). Using further information they have been
able to prove an exclusion theorem which is interesting because it gives an interval
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centered at A that does not contain an eigenvalue of H, thus making it possible to
shrink the intervals obtained by bisection even more. It is, however, questionable if
the additional labor for the computation of this bound is justified since the rate of
convergence remains linear.

Remark. It is worthwhile noting that the above mentioned inclusion theorem has
already been used by Rutishauser to locate the smallest eigenvalue of a symmetric
matrix. The information obtained made it possible to derive a cubically convergent
LR-algorithm [21].

Obviously a higher rate of convergence is obtained if a superlinearly convergent
zerofinder is applied to det Z(,) 0 as soon as a sufficiently small neighbourhood of
k has been found. But instead of finding a root of det Z(A) 0 it is more economical
to solve for di(A) 0, where di is a certain element of the diagonal matrix D stemming
from the LDLw decomposition [14, p. 84] of Z(A) subjected to a proper permutation.
To that end we state the following

THEOREM 7.1. Let A(A) and P e. ]Rrxr be an arbitrary but fixed permuta-
tion matrix. Let

(86) L(A)D(A)L(A)n PTz(A)P

be the so-called LDLw decomposition ofPTzP where L is a unit lower triangular and
D a diagonal matrix. Let e > 0 be such that for all e U. := {A E ]RIIA A*I < e}
the elements of L(), D(A) and Z(A) are bounded and P is invariant. Then

d
(87) ddi(A)>0, lgin, #eU,

where di(A) eTD(A)ei.
Proo Let A e Ux*. Since

Z(A) A-1 YS(A A)-Iv PL(A)D(A)(PL(A))H,

we have

di(A) eL(A)-IpTz(A)PL(A)-nei.

Shortly writing for d-’, we thus obtain

d() e(L(A)-)’PTZ(A)PL(A)-Hei 4- eL(A)-PwZ’(A)PL(A)-nei
(88) 4-eL(A)-IpTz(A)P(L(A)-n) ei.

Because (LL-1) UL-1 4- L(L-) I O, the first summand in (88) can be
written as

-eL-1L’L-PTZPL-Hei -e’L-1L’Dei -(L-Hei)nL-1

Now, L-nei is a vector whose components are nonzero only for components with index
>_ i while the first i components of LDei vanish since L is unit lower triangular. Thus
the first and third summand in (88) are zero and therefore

(89)
d(A) eTL(A)-IPTZ’(A)PL(A)-He

eL(A)-pTvn(A A)-2VPL(A)-Hei
I1(- A)-IVPL(A)-HeilI > O.
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Remark. Similarly one obtains

(90) d(A) --2eL(A)-IpTvH(A A)-3VPL(A)-Hei.

This theorem is very interesting from the numerical point of view since it states
that we can apply the above-mentioned zerofinder on a function with a simple root
whatever the multiplicity of the eigenvalue sought is! It is not yet clear, however,
what happens in the neighbourhood of clustered eigenvalues.

The assumptions made in Theorem 7.1 are satisfied if a stable pivoting strategy
is persued. Sehmi [22] stated (89) for the last diagonal element dr of D for the
neighbourhood of a simple eigenvalue of . In the cases studied by Sehmi the matrix
Z(A) was diagonally dominant and hence a diagonal pivoting strategy sufficed in
the LDLw decomposition of Z(A). This means simply choosing the greatest diagonal
element in modulus as pivot. Simpson [23] proved that d(A) > 0 under less restrictive
assumptions.

Thus, if a stable pivoting strategy [6] is combined with diagonal pivoting we can
expect that the smallest nontrivial elements in modulus of D will be at the end of its
diagonal and it is therefore reasonable to compute the zeros of dr(A). This has the
further advantage that the derivative of dr(A) is easily computed. By (89) we get

(91) dlr (A) -II(A A)-IVPL(A)-Her[I II(A A)-lvPerll2,

i.e., r(A) is the 2-norm of one of the columns of the matrix (A A)-V, which has
to be formed for the computation of Z(A). Thus we are led to the following algorithm
which determines a number that satisfies I- Akl --< e by the Newton iteration
method which possesses a locally quadratic order of convergence.

ALGORITHM 7.2.
:= +

while b-c > e and c-a > e do
begin W :- (c- A)-V; Z(c) :- vHw;

Compute L(c)D(c)L(c)H PTZ(c)P using diagonal pivoting;
Determine the inertia of D(c);
if P(c) 4- 7r(A) 7r(Z(c)) < k then b := c else a :- c
d’,. :-IlWPe,.ll;
e := c a,la;;
if c < a or c > b then c := (b 4-a)12

end;
:: C;
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SUPERFAST SOLUTION OF REAL POSITIVE
DEFINITE TOEPLITZ SYSTEMS*

GREGORY S. AMMAR AND WILLIAM B. GRAGG:l:

Abstract. We describe an implementation ofthe generalized Schur algorithm for the superfast solution of
real positive definite Toeplitz systems of order n + l, where n 2". Our implementation uses the split-radix
Fast Fourier Transform algorithms for real data of Duhamel. We are able to obtain the nth Szeg6 polynomial
using less than 8n log2 n real arithmetic operations without explicit use of the bit-reversal permutation. Since
Levinson’s algorithm requires slightly more than 2n operations to obtain this polynomial, we achieve crossover
with Levinson’s algorithm at n 256.

Key words. Toeplitz matrix, Schur’s algorithm, split-radix Fast Fourier Transform
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1. Introduction. Consider the linear system of equations Mx b, where

M--- Mr + /12

is a real symmetric positive definite Toeplitz matrix of order n + 1. In contrast with the
standard Gaussian and Choleski factorization techniques, which require O(n3) arithmetic
operations, there are several well-knownfast, O(r/2), methods for solving a Toeplitz system
of equations [21], [29], [4], [17]. More recently, several O(n log2 n) methods have been
presented [6], [8] 12], [22], [20]; we refer to these methods as superfast Toeplitz solvers
because they require substantially less computation than the fast Toeplitz solvers for
sufficiently large n.

It is well known (see, e.g., 19], 18], [3]) that fast Toeplitz solvers are based on ideas
from the classical theory ofpolynomials orthogonal on the unit circle (Szeg6 polynomials).
In particular, the Szeg6 polynomials can be identified with the columns of the reverse
Choleski factorization of M-. This leads to the observation that the classical Szeg6
recursions [28], [1], [14] are equivalent with the Levinson-Durbin algorithm for the
Yule-Walker equations 16]. Moreover, the decomposition ofM- given by the Gohberg-
Semencul formula is equivalent with the Christoffel-Darboux-Szeg6 formula. Schur’s
algorithm [23] provides another connection between Toeplitz solvers and classical analysis.
Schur’s algorithm generates a continued fraction representation ofa holomorphic function
mapping the unit disk in the complex plane into its closure, and is known to be closely
related with the fast algorithms for finding the Choleski factorization of the positive
definite Toeplitz matrix M 18], [22].
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A presentation of the superfast algorithm of de Hoog 12] and Musicus [22] that
uses the theory of orthogonal polynomials on the unit circle is given in [2], [3]. This
algorithm is naturally described in terms of a generalization of Schur’s classical algorithm.
The generalized Schur algorithm is a doubling procedure for calculating the linear frac-
tional transformation that results from n steps of Schur’s algorithm. This formulation
provides a concise and classically motivated presentation of the algorithm of de Hoog
and Musicus when applied to a positive definite matrix.

The implementation of the generalized Schur algorithm for the superfast solution
of a (Hermitian) positive definite Toeplitz system is described in [2]. By using standard
Fast Fourier Transform (FFT) techniques to perform the required polynomial recursions,
we can construct the linear fractional transformation that results from n steps of Schur’s
algorithm in O(n log22 n) complex multiplications. This process yields, without extra
work, all n Schur parameters, also known as reflection coefficients or partial correlation
coefficients. These parameters are often needed in applications.

The de Hoog-Musicus algorithm consists oftwo phases. First the nth degree Szeg6
polynomial is contructed from the linear fractional transformation obtained by the gen-
eralized Schur algorithm. Second, the Gohberg-Semencul formula is used to solve the
Toeplitz system in O(n log2 n) additional multiplications. Each phase involves the com-
putation of cyclic convolutions. These convolutions are performed using in-place FFTs
without explicit use of the bit-reversal permutation by using "dual codes" and leaving
all transformed data in bit-reversed order. If we insist that the transformed data be in
correct order, the number of necessary data accesses increases. Our implementation of
the algorithm uses 2 n log22 n + O(n log2 n) complex multiplications [2]. This operation
count is less than those obtained by de Hoog and Musicus. Moreover, this algorithm
requires the least amount ofcomputation among the other superfast Toeplitz solvers [6],
[8], [20].

In this paper we describe an implementation ofthe generalized Schur algorithm for
a real positive definite Toeplitz matrix. The implementation of this superfast Toeplitz
solver for real (symmetric) positive definite matrices is conceptually the same. The essential
difference is the use of FFT algorithms that exploit the inherent symmetries of the real
data and their transforms. There are various ways to perform an FFT on real data in
roughly half the computation as in the complex case [27]. We desire the most efficient
algorithms possible since transforms of various size need to be performed repeatedly
during the algorithm. We also want to be able to perform the real convolutions without
explicit use of the bit-reversal permutation. In 2, we consider some of the real FFT
algorithms and show how the real split-radix FFT of Duhamel [13], [24], [25] suits our
purpose. The generalized Schur algorithm is described in 3, and in 4 its implementation
for real input data is described. In 5 we consider the superfast solution ofa real positive
definite Toeplitz system of equations by using the generalized Schur algorithm. We will
see that the nth degree Szeg6 polynomial can be calculated in less than 8n log22 n total
real operations.

2. Evaluation of real cyclic convolutions. The efficient implementation of the gen-
eralized Schur algorithm relies on the use ofFFTs to evaluate cyclic convolutions. Several
methods exist for calculating the Fourier transform of real data in roughly half the com-
putation of the complex case. Each of these methods yields an efficient method for eval-
uating real convolutions, and each results in an implementation ofthe generalized Schur
algorithm for real data that requires roughly half the computation as in the complex
case. Since convolutions of various sizes are performed repeatedly in the algorithm, we
desire the most efficient real transforms possible. Moreover, we want to implement the
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algorithm without explicit use of the bit-reversal permutation. We avoided this permu-
tation in the complex case, but since the transform of a real vector is not real, some
additional considerations must be made to avoid the bit reversal for the case of real in-
put data.

Recently, real FFT algorithms that can serve as dual codes to allow us to avoid the
shuffling have been presented [9], [13], [24], [25]. In this section we show how the split-
radix FFT for real data suits our purpose. The algorithms are described by considering
the splitting in matrix notation, and precise operation counts are given for use in the
subsequent sections. We will need the following lemmas in our derivation. Assume that
n and no are powers of two, and let lg n := log2 n.

LEMMA 2.1. Ifb(n) 24(n/2) + 2an lg n + bn + cfor n > no, then

(n) an lg2 n + (a + b)n lg n + dn c,

where d is determined by the initial condition ok(no).
LEMMA 2.2. Ifd(n) 4,(n/2) + 24,(n/4) + an + b, then

2 b
).4(n) - an lg n - + cn + d(-

where c and d are determined by 4(no) and (no/2).
LMM 2.3. If4(n) (n/2) + an lg n + bn + c + d(-1)", then

d
)lg n49(n) 2an lg n + 2(b a)n + c lg n +(- + e

where e is determined by 4)(no).
These lemmas are directly verified by induction and are easily derived by considering

the corresponding inhomogeneous linear difference equations for := 4(2).
The discrete Fourier transform (DFT) of x e Cn is defined by Fnx, where nF :=

0. Ij,k=0, W. is the principal nth root of unity exp (2ri/n), and & denotes the complex
conjugate of a. The inverse discrete Fourier transform (IDFT) ofy e C" is then given by
W.y, where W. FX n. [o]g -l There are various ways to compute the DFT
or IDFT in O(n log n) arithmetic operations. Such an algorithm is called a Fast Fourier
Transform (FFT). In the following we focus, without loss of generality, on the compu-
tation of y W.x.

Let K. [eo, e._ l, e.-2, e] and J. [e._ l, e.-2, eo], respectively, be
the n n reflection and reversal matrices, where eo, "", e._ are the columns of the
n n identity matrix. Then we have

(2.1) K. Wn o-Jkl "r
and

(2.2) j. Wn [O)(nn-J l)k] [wjkw_k] l/rnbn,
Jn-Iwhere D, := diag [On]0 It is easily seen from (2.1) that whenever x e Nn, y F,x

satisfies K,y ; that is, ,_j j (j l, n/2 1) and rt0, rt,/2 e N. We will say
the transformed vector y possesses conjugate-even (CE) symmetry. Thus the transform
of a real vector is determined by the n real numbers that constitute its first n/2 +
components. There are various methods to compute the real to CE transform and its
inverse in roughly half the computation as in the general (complex) case. Some of these
methods are considered below.

Let ac, #c, respectively, denote a complex addition and multiplication, and simi-
larly for a, #. Also let r denote a real arithmetic operation. We determine the num-
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ber of real arithmetic operations using ac 2a, tc 2a + 4tt 6r. In the follow-
ing we ignore multiplication by and --. We also count the computation of the
product of a complex number with an eighth root of unity as 2a + 2t (since, e.g.,
o8(a + i) (a- )lf + i(a + )lf).

Our interest in FFTs is motivated by the desire to efficiently compute products of
polynomials, or equivalently, cyclic convolutions. The cyclic (or periodic) convolution- (wherex* y =: z []g ofx [j]g and y [r/jig is defined by . k= kj-k
r/-k r/,_ k). Note that from this definition, the computation ofz requires O(n2) operations.
It is easily verified, however, that W,z (Wnx)’(Wny) (and F,z (F,x).(F,y)), where
u. v denotes the Schur product (componentwise product) of the vectors u and v. Thus,
if b(n) denotes the computation required to compute a complex FFT of order n, z
x, y can be computed using 3 $(n) + ntc operations. Moreover, if r(n) denotes the
computation required by a real to CE transform or its inverse transform, then the cyclic
convolution of x, y e Dn can be computed in 3r(n) + (n/2 1)tc + 2t(n > 1).

The calculation ofthe Fourier and inverse Fourier transforms is typically performed
using the Cooley-Tukey algorithm, which can be described as follows. We describe the
inverse transform y Wnxofx C"; since nFn W,, the computation ofFnx is completely
analogous and involves the same amount of computation. We neglect division by n,
which is assumed to be a power of two.

Let m n/2, Dm diag [on]0 and define the permutation matrix P, by
Prx [xX], where xb [2A’- and x’ [2+ ]’- are, respectively, the even and odd
parts of x. Then it is easily seen that

(2.3a)

where

(2.3b)

:= y= w’Px
Y Wm -D’m Wm X’I J Uo-- Ul

u D’m WmXI
Thus a DFT or IDFT can be computed from the transforms of the even and odd parts
of the input vector with some local work. The repeated application of this splitting leads
to the Cooley-Tukey FFT algorithm [26]. This method for the computation of Fnx is
often called a radix-two Cooley-Tukey decimation-in-time algorithm [7]. (The output is
given by two transforms of subsets of the input, and in applications the input typically
corresponds with data in the time domain.) We will refer to this procedure for the com-
putation of Fnx or Wx as a decimation-in-input (DII) algorithm. The DII algorithm
(2.3) can be performed in place (i.e., without the use ofa temporary work vector) by first
permuting the input vector according to the permutation

II P diag (P/2, P/2)"" diag (P4, P4, "’", P4).

The transformation IIx is referred to as the bit-reversal permutation oforder n. Thus,
in-place computation of the DII FFT is achieved by rearranging the input vector before
the computations take place.

Analogously, the even and odd halves of the output are given by two transforms of
order m n/2. This algorithm, which is called the Sande-Tukey or the radix-two Cooley-
Tukey decimation-in-frequency algorithm, is given by the recursive application of
the formula

(2.4a)
y’ WmD’m WmO’m X WmD’m U
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where

ul Xo Xl

The resulting decimation-in-output (DIO) method, when implemented in place, receives
input in correct order and generates output in bit-reversed order.

Note that both methods require the same amount ofcomputation $(n). In particular,
we have 4(1) 0, b(2) 2ac and

$(n) 25(n/2) + nac + (n/2 2)c

for n 2" > 1. Since two of the entries of D, are eighth roots of unity when n > 4,
we have

(4) 16an,

(n)= 2ck(n/2)+(3n-4)a +(2n- 12)t (n > 4).

Thus, by Lemma 2.1, the computation of the DFT and IDFT of x e Cn by either the
DII or DIO radix-two FFT algorithms requires at most

$(n) (3n lg n 3n + 4)a + (2n lg n 7n + 12)tz (n 2">4).

In many applications we need the transformed data in correct order, so the explicit
use ofthe bit-reversal permutation is required. However, since we are using the transforms
as a computational tool for cyclic convolution evaluation, we do not need to know the
true order of the components of the transformed vectors; we need only multiply corre-
sponding components ofthe transformed vectors and apply the inverse transform. Thus,
we can use the above two FFT algorithms as dual codes, one for the transform and the
other for the inverse transform, in order to avoid the need to shuffle the data before or
after the calculations. To calculate z x y we use the Sande-Tukey (DIO) recursions
to obtain Wnx and Wy in bit-reversed order, form their Schur product to obtain WnZ
in bit-reversed form, and then use the Cooley-Tukey (DII) recursions to obtain z in
correct order. (Note that we are using an IDFT as our transform and a DFT as our
inverse transform.) While the use of dual FFT codes does not affect the amount of
computation in the evaluation of cyclic convolutions, it reduces the number of data
accesses.

Now consider the computation ofy Wxwhen x e. Note that the DII recursion
(2.3) splits the transform ofx into two real transforms of half the size. These transforms
also possess CE symmetry, so the redundant computations can be identified (and ignored)
during each stage of the splitting. In particular, only Y0 [j]- and m are computed
from components 0 through l n/4 of u0 and Ul. The successive application of this
splitting for the transform of a real vector is known as the Edson-Bergland algorithm
[5]. This algorithm is described in a recent paper by Swarztrauber [27], where analogous
algorithms for vectors with other types of symmetries are derived.

Letting z(n) denote the amount ofcomputation used to compute the DFT or IDFT
of a real vector using the Edson-Bergland algorithm, we see that ,(1) 0, -(2) 2c,
r(4) 6a, and for n > 4

r(n) 2r(n/2) + 2a + (n/4 1)(2ac + #c)

2r(n/2) + (3n/2 4)c + (n 6)#
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since one of the complex multiplications is by an eighth root of unity. The Edson-
Bergland algorithm therefore requires at most

-4 a+ nlgn---+6 g

operations when n 2 > 2 and -(2) 2a.
Note that the Edson-Bergland algorithm requires the (real) input data to be in bit-

reversed form. In the pursuit of our desire to eliminate the explicit use of the bit-reversal
permutation, we want the real data in correct order, and the transforms, having CE
symmetry, in bit-reversed order. Such an algorithm can be derived from the DIO recur-
sions applied to a real vector.

Let us consider the DIO splitting (2.4) applied to x e . In this case y WmUo is
the transform of a real vector, while y’ WmD’mu. A further sp!itting reveals the re-
dundancies in Y’l. Let l’= n/4 >= 1, u =: [ttl] and D’ diag [(.041]j=g.Jt- Then (D)4

(D)2 Dr, (D’)- =/:37, Dn [0 iDI] and

[ V ’o ] pmY,l [ WID"zo ](2.5)
v’ J WtDD’[o[

where Zo to + its. Furthermore, by (2.2) we have

Jtv Jt WtD VTo WtV’o ’o
so the computation of v’ is redundant. Thus, y can be calculated using one real FFT of
order n/2, one complex FFT of order n/4 and some local work. This splitting strategy
results in the real split-radix FFTalgorithm ofDuhamel 13], [24], [25]. Since the product
DTzo requires complex multiplications, with one eighth root of unity if l > 1, the
total work z(n) for a split-radix FFT on a real vector of order n satisfies

(2.6) r(n) -(n/2) + q(n/4) + (3n/2 2)a + (n 6)# (n > 4),

with z(4) 6aa, z(2) 2a. Note that the corresponding DII complex to real transform
(the inverse transform) is also given by the above splitting and requires the same amount
of computation.

The split-radix technique can also be applied to the computation ofa complex FFT.
Let x C, y Wx, and split y’ in (2.4) to obtain

v’ WIDD’z- ZI + 1
In this case v’ is not redundant, but we have v’ JtWtDTz.

Thus, the computational work b(n) for a complex split-radix FFT oforder n satisfies

(n) b(n/2) + 2b(n/4) + (4n- 4)a + (2n 12)/z (n > 4),

b(4) 16a, (2) 4a.
We therefore have by Lemma 2.2 the following.

PROPOSITION 2.1. The computation ofa complex FFT ofsize n 2 by the split-
radix method requires at most

16 I4(n) n----n--(-1 +2 a+ m,---n+(-1 +6 u

4nu 6n + 8 total real operations

for n >= 2.
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Thus, the split-radix procedure obtains the DFT with roughly 80% ofthe computation
ofthe radix-two method. A proportionate amount ofcomputational savings for the eval-
uation of a real FFT and its (complex to real) inverse is obtained when the real split-
radix FFT is performed using a split-radix complex FFT. In particular, by (2.6), Prop-
osition 2.1, and Lemma 2.3, we obtain the following.

PROPOSITION 2.2. The computation z(n) required to compute the FFT or IDFT
ofa real vector oforder n 2 and the FFT or IDFT ofa vector with CE symmetry is
at most

r(n)= ng- ---n- (- 1) + 3 a+ ng- --n+(- 1) + 3

2ng 4n + 6 total real operations

for n >= 2.
These operation counts agree with those reported in [24], [25].
Thus, a real cyclic convolution of order n can be computed without explicit use of

the bit-reversal permutation by using the real to complex DIO split-radix FFT and its
DII inverse as dual codes. These algorithms can be performed in place using real arithmetic
and n real storage locations. Moreover, the split-radix FFT has the smallest operation
count among the known FFT algorithms for real transforms of length equal to a power
of two [25].

We remark that we investigated the use of other methods for real transforms before
becoming aware of the split-radix method. We first considered the use of the common
method ofevaluating the transform ofa real vector by the transform ofa complex vector
of half the size and postprocessing (see, e.g., [26], [27]). However, this method requires
the explicit use of the bit-reversal permutation, and moreover, is not as efficient as the
Edson-Bergland algorithm. As we remarked above, the Edson-Bergland algorithm is not
appropriate for our use either. We considered the use of Hartley transforms 10], and
we in fact initially implemented the algorithm using dual codes for the Hartley transform.
However, while it requires less computation than the common pre- and post-processing
procedure, the radix-two computation ofa Hartley transform requires more computation
than the Edson-Bergland algorithm. Moreover, the Hartley transform of a convolution
is not equal to the Schur product of Hartley transforms, so slightly more computation
is needed to form the transform of the convolution from the transforms of the input
data. Direct observation shows that the Fourier transform of x 4 requires 6a while
the Hartley transform requires 8a. We therefore do not expect the use of the Hartley
transform to be as efficient as Fourier transforms in the evaluation of real convolutions.
We have not considered, however, the relative performance ofFourier and Hartley trans-
forms in the evaluation of real convolutions where the input have additional symmetry
(e.g., real even or real odd input vectors).

In our study of the development of DIO real to complex FFT analogous with the
Edson-Bergland FFT, we found the procedure described by (2.5), and afterward were
made aware that this procedure is in fact the real split-radix FFT of Duhamel, which
when applied to the real and complex FFT together, uses 20% less computation than
the standard radix-two methods. In the meantime we have also become aware of the
paper by Briggs [9], where DIO methods are derived that are analogous with the symmetric
DII FFTs presented in [27], including the Edson-Bergland algorithm.

3. The generalized Schur algorithm. Let b be a Schurfunction, which is to say that
b is a holomorphic function that maps the open unit disk D in the complex plane into
its closure. Schur’s algorithm [23] is a procedure that generates a sequence of Schur
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functions by the successive application of linear fractional transformations (LFTs) to .
It is defined as follows.

SCHUR’S ALGORITHM.
input: an initial Schur function o,

’l := o(0),
for n 1, 2, 3, while I1 <

tn_ l(k)--
bn(,) :=

3, [nfn_ 1()’

"Yn + 1"-" n(0)

If [3’hi 1, then 4n- (),) / and Schur’s algorithm terminates. On the other hand,
if [,[ < then b is a Schur function. Thus, Schur’s algorithm generates a possibly finite
sequence of Schur functions that satisfy qn_ t(), where

t,(z) (’g, + ,r)/(1 +
We can therefore view the algorithm as the generation of a continued fraction represen-
tation of 0 (since continued fractions are related with compositions of LFTs). In par-
ticular, o T(), where T t t2 t. The function Tn(O) is referred to as the
nth approximant of b0, and b is called the nth tail of o.

In the standard implementation of Schur’s algorithm, each is written as a quotient
of formal power series,

Oln() kOln,kxk
.(x) .,x’

with/3,(0) > 0 as a partial normalization. The computations are then arranged so that
the coefficient pairs (Co,k,/30,k) are entered and processed in a sequential manner. This
results in the following.

PROGRESSIVE SCHUR ALGORITHM.
for k 1, 2, 3, while I1 <

enter Co,k- 1, 0,k-
forj= 1,2,3,...,k-

,- -;/

’k ak- l,O/k-1,0,
/k,0 :k-,,0(1 --I’rkl2).

Of course, in practice a finite number of coetflcients are input. Let at") denote the
polynomial of degree less than n formed by the first n terms of the power series a. If

(n) ,(n)
a0 ,/o are input, then the progressive Schur algorithm calculates ctn-k), 3tk"- ) and 3’
for k 1, ..., n, using at most n2a + n(n + 2)u.

Schur’s algorithm can also be formulated in terms of the LFTs T,. In particular, it
is easily seen that
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where n, n are the polynomials that satisfy the recurrence relations

]n n-- n-- 0

where (h) := Xnn(l/X) and (X) hn(1/h). We refer to and n as the nth Schur
polynomials associated with the Schur function o. Note that (3.1) implies (for n 1)

deg < n, deg n < n,

.(0) ,, n.(O) 1,

as well as the determinantformula

where (1 12) (1 12).
The generalized Schur algorithm is based on a doubling procedure for generating

T2 from T. The idea can be described in general tes as follows. Let T(o) be
the nth tail of o, and let T, denote the LFT that results from n steps of Schur’s
algorithm applied to the Schur function . The LFT T2 is then ven by the composition

For each n, let and be formal power series such that a/. The nth tail
of o is then given by

go) o-oL"
It is shown in [2], [3] that both the numerator and denominator in the last expression
are focal power series that are divisible by X. In paicular,

o-o +X+ O(X+ ),

o-o X + O(X+ ).
We can therefore take

(3.2) (o o6)/x, (o o)/x
These formulas constitute the first component of the generalized Schur algorithm: the
computation of and (i.e., ) from , , o, and o.

The next step in the generalized Schur algorithm is the doubling step. Since
a/ is a Schur function we can obtain the nth Schur polynomials 6, and, (i.e., T,)
from a and using the same procedure that 6o, 6 and o, were obtained from
ao and o.

The third step of the algorithm is the computation of 6o,2 and o,2 from the com-
position of T and T,. In paicular, for any k > 0 we have T,(+); that is, the
kth tail of is the (n + k)th tail of o. We therefore have o T+k() T(T,k()),
or equivalently,

(3.3) 6o, + k 0,6,k + 60,,k, 0, + k 0,6,k + 0,,k.
Equations (3.2) and (3.3) fo the basis of the generalized Schur algorithm. The

algorithm is easiest to describe in its recursive form.

GENERALIZED SCHUR ALGORITHM.

input: n 2 and polynomials o(o’, (o’, where Oo, o are power series such
that 4o o/Bo is a Schur function;
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0, "Y ao), r/0, 1;
for m 1, 2, 4, n/2

1. use (3.2)to obtain amm),/mm) from 6O,m, O,m, ato2m),/t02m);
2. use the generalized Schur algorithm to compute m m, l’]m,m fromarmm) and Bmm) as o,m and r/0,m were obtained from am) and
3. use (3.3) to compute 0,2m, r/0,2m from o,m, OO,m, m,m, nm,m;

output: the Schur polynomials n o,n, nn nO,n and the Schur parame-
ters [7217.

Note that the classical Schur algorithm generates akn- k, fltkn-k) using the n Schur
parameters "rk as intermediate values. In the generalized Schur algorithm, however, the
number of coefficients of ag, k to be calculated is equal to the largest power oftwo that
divides k. For example, n/2 coefficients are calculated when k n/2, n/4 coefficients are
calculated when k n/4 and k 3n/4, and only the constant terms are calculated when
k is odd. Nevertheless, every Schur parameter is generated in the generalized Schur al-
gorithm. These parameters are often of physical and mathematical significance; if they
are not needed for the output, however, they do not need to be stored in the above
algorithm.

4. Implementation of the generalized Schur algorithm for real data. In order to
implement the generalized Schur algorithm, we write steps and 3 as convolutions and
apply FFT techniques. Let En[’] denote the set of real polynomials of degree less than
n. For any polynomial ()) - j)J e [k] we write x for the associated vector
x [j]- e E. Define vectors in m and E (m n/2 >= 1) by

Xo,X ,X m, m,m, n, ao, al a - ot(m), Ol(mm), Ot(n)

and similarly for y ,--, r, b ’-’ . Also define J, so that : ,-, n/,.
Step 3 involves the products ofpolynomials in ,[] andm/ [], which are equiv-

alent with convolutions of size n. Specifically,

where En [e, e2, en_ , e0] is the n n cyclic downshift matrix.
While Step involves polynomials in 3m[)k], only the middle m coefficients of

these polynomials are needed. We can therefore obtain a, bl from the last m components
of convolutions of order n. In particular,

=a. -b.
al

b
b,E,,

0
a,E

0

We can therefore perform one step ofthe generalized Schur algorithm, the calculation
of [u, v] := W[x, y] from a, b and [u0, v0] := Wm[xo, Yo] as follows. The number of real
arithmetic operations used follows each substep in brackets.
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0. Suppose [Uo, Vo] has been computed [o(m)].
1. Compute [a, b]"

(a) [Xo, Yo] Fm[uo, Vo] [2(m)],

(b) [p, q] W. o [24)(m/2) + (2m 4)c + (4m 12)g],

[free],

(d) [c, d] W,[a, b] [2r(2m)],

[ ] [*]=Fn(d’s-c’r),* F,(c’q- d’p),
b(e) a

[2r(2m) + (12m 8)an + (16m 8)#n].

2. Compute [u, v] from [a, b] as [Uo, Vo] was computed from [ao, bo] [o(m)].
3. Computation of [u, v]"

(a) [x. y] F,.[u, v]

(b) [p, q,] W,,[xO’
(c) u s’p + p" q

[2-(m)],

Y] [24,(m/2) + (2m 4)a + (4m 12)/z],
0

v r.p + q.q [(12m-8)a+(16m-8)#].

We compute p, q from Uo, o as follows. We have

pq J WmD;xo

so that p Uo and p WmDFmUo. Moreover, if := n/4 1, let [] := Xo. Then it
follows from the split-radix splitting that

PPl

where Zo WtD’(to + itt). Note that the computation of Zo from Xo requires (l- 1)#c,
including the one eighth root of unity when > 1. Thus, p is calculated from Uo in (a)
and l(b) using r(m) + (1) + (21- 2)aa + (41- 6)#a operations, and likewise for q.

We now show that r and s can be obtained by negating the odd parts of fi and t/.
We have

It is easily verified that E,J, K, and W,E,J, W,, so that

xo



72 G. S. AMMAR AND W. B. GRAGG

Hence,

and so

f’
:= pr-=

WD
Wm

’o Wmxo P’o, fi WmD’mxo -p’

The same relationship holds for s and q. Thus [r, s] can be obtained from [p, q] with no
additional computation.

The counts for the computations in steps (e) and 3(c) follow from the fact that the
transforms are determined by m complex and two real numbers. Also note that,

rII,,Pl,since II,p tn’ the above manipulations are easily performed when the transforms
are stored in bit-reversed order.

The amount of computation o(n) required to obtain u, v by the generalized Schur
algorithm with real input data therefore satisfies, for n > no > 2,

o(n) 2o(n/2) + 4r(n) + 4r(n/2) + 4q(n/4) + (14n 24)a + (20n 40)#

2o(n/2) + 16n lg n 8n + 16 total real operations,

with roughly twice as many additions as multiplications. By Lemma 2.1, we obtain

(4.1) oo(n) 8n lg2 n + Cn 16 (n >- no),

where C is determined by o(n0).
Note that

0,1 ’)’1 aO,O/O,O nO, 1,

so that o(1) 1#. If we use the doubling procedure at this stage, we obtain w(2)
16a + 18# 34r, w(4) 180 and C 17. We can improve on this by considering
more direct methods to carry out the recursions in the early stages of the algorithm.

Note that we can obtain 0,2, 70,2 from ato2),/(02) using 7r from

0,2-X0:-- 70,2 Y0"-
"’2

where

",o o, 7 ao,
"Y1 a0,0/0,0, 72 1,0 O0,1 "1 0,0

More generally, k steps of the progressive Schur algorithm can be used to generate the
first k Schur parameters in 2k(k + 1)z. Then k and 7k can be obtained in (2k2 5k +
3) using (3.1), and u, v e k are obtained in 2r(k) additional operations. Using this
procedure, we obtain o(4) 67r and C -45/4 in (4.1).

Note that o(n) is the amount of computation for u, v e Cn. An additional 2r(n) is
needed to obtain ,, 7,. We therefore have the following.

PROPOSITION 4.1. Given thefirst n terms offormal power series a, {3 such that a/f3
is a Schurfunction, the amount ofcomputation required by the generalized Schur algorithm
to obtain the nth Schur polynomials ,, 7, is at most

77
8n lg2 n + 4n lg n- --n- 4

real arithmetic operationsfor n 2 > 2.
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5. Application to real Toeplitz systems of equations. The real positive definite
Toeplitz matrix M Mn+l [ti-k],k=O Mr defines an inner product on .+ l[,]
by (Xi, xk := #i-k, and the monic polynomials k(X) that are orthogonal under this
inner product are the monic Szeg6 polynomials determined by M. Let 62k (Xk, Xk,
and define R to be the unit fight triangular matrix whose kth column contains the coef-
ficients of k(O <= k <-_ n). Then we have

RrMR D: diag

M- RD-R-T
so the Szeg6 polynomials determine the reverse Choleski factorization of M-. These
polynomials satisfy the recurrence relations below, which comprise the first phase of
many fast Toeplitz solvers, particularly those of Levinson and Trench (see, e.g., [21 ],
[29], [16]). Let Xk [k] E k+ and mk [#j]

LEVINSON’S ALGORITHM (Szeg5 Recursions).
input: [#]
o := t0, "y := -ti/#o,
r := "y, i5 (1 "y2)60,
fork= 1,...,n- ldo

r+ + +,
r

Thus, Xk, k, ’’k(0 ( k _-< n) can be obtained using n2ot q- n(n + 2)g.
In Levinson’s algorithm the Xk, k are used to solve Mx b using the inverse

Choleski factorization. In Trench’s algorithm the nth degree polynomial xn and its norm
di, are used to constructM by means ofthe classical Christoffel-Darboux-Szeg6 formula;
the matrix interpretation is the Gohberg-Semenculformula:

8nM+ T TT TTo
where

Po 0
To p Po

and Xn(X) Z8 pXj (see, e.g., [15]).

0
Pn-1
Pn- 2 On-

Po P

n-I n-I

(5.1) ")= Z t (o")= Z
j"O j=0

In contrast with the Szeg6 recursions, the progressive Schur algorithm is used to
obtain the Choleski decomposition ofM, M LDLr where L is unit left triangular. In
particular, this factorization is obtained in O(n2) operations by performing n steps of
Schur’s classical algorithm applied to a Schur function o cto/0 with
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Moreover, the Schur parameters generated by this process are the same as the Schur
parameters generated by the Szeg6 recursions.

The generalized Schur algorithm with the above initialization does not generate the
Choleski factorization, but only pieces of it. Nevertheless, all the Schur parameters are
generated, and moreover, it follows from the recursions that the Schur polynomials de-
termine the Szeg6 polynomials [3]; specifically,

x= .+ ,,/x.

Thus, we can use the generalized Schur algorithm to obtain n, r/n, compute xn and use
the Gohberg-Semencul formula to obtainM-b. In this way the Toeplitz system is solved
using 8n lg2 n + O(n lg n) total real arithmetic operations.

The operation count for the generalized Schur algorithm can be reduced for this
superfast Toeplitz solver. Some observations to this effect follow.

Note that since we are not interested in the Schur polynomials per se, we
can get n from the transforms [u, v]- Wn[x, y], saving one FFT of order n. Let
x, y j, r/. Then

and since (0) 1,

It follows that

r. J.x+ E.Jy.- eo.

r,, Fn(D, u + v) eo.
Note that D,,u has CE symmetry, so this product involves two multiplications
by eighth roots of unity when n > 4. We can therefore obtain xn from u, v using
r(n) + (2n 3)a / (2n 12)# operations. However, multiplication by Dn requires the
use of the bit-reversal permutation. In particular, letting wn [o]- C’, we have
HnDu II(wn" u) Ilnw" Ilnu, so we need the nth roots ofunity in bit-reversed form.
We can either use an additional storage vector for the roots ofunity in bit-reversed order,
or the correctly ordered w can be shuffled when needed. Since this shuffling replaces
one FFT, it does not increase the number of data accesses, but it does provide some
computational savings.

The relationship between a ao) and b -*/to") provides more opportunity to reduce
the amount of computation if we are content to shuffle data in order to avoid an FFT.
We have b (o #)eo E,,a, and since W,,E, 1),, W,,

d (t,to- #n)e- Dc,

where e := W,,e is the vector of all ones, and [c, d] := Wn[a, b]. Thus, when n -> 8,
we can replace r(n) with (n/2- 2)#c including two multiplications by eighth
roots of unity and (n/2 + 2)a, or (7/2)n 14r. This results in a savings of 2n lg n
(15/2)n + 20 total real operations, but we must have II,wn with IIc to obtain IInDnc.
Clearly, this procedure can be used each time the elements of a0,/30 are accessed; however,
it cannot be used in the later stages of the algorithm because am, 13m(m > 0) are not
related as ao,/30 are. Since atok), tok) are used for each 4 < k 2 =< n, the total savings
of using this procedure is (by Lemma 2.3)

4n lg n 19n + 20 lg n + 4r (n > 4).

The above observations yield the following.
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THEOREM 5.1. The computation of )(-n and n from the real positive definite
Toeplitz matrix M [#i-j] M7 using the generalized Schur algorithm as described
above requires at most

31
8n lg2 n- 2n lg n +---n- 20 lg n- 29

real arithmetic operationsfor n 2 > 4.
Thus, the total operation count is slightly less than 8n lg2 n, while that of Levinson’s

algorithm is slightly more than 2n2. These bounds are equal at n 256, so the amount
of computation for this algorithm is less than that of Levinson’s algorithm for n >= 256.
Of course, this difference rapidly becomes substantial as n doubles. We remark that the
algorithm uses roughly twice as many additions as multiplications.

6. Concluding remarks. The fact that Levinson’s algorithm is more efficient for
n < 256 indicates some improvement in this superfast Toeplitz solver must be possible
in its early stages. Moreover, the split Levinson recursions [11 ], in which redundancies
in Levinson’s algorithm are removed, requires about 3n2/2 real operations. This indicates
the likelihood of improving the implementation of the generalized Schur algorithm for
the superfast solution of Toeplitz systems. In fact, we made little use of the relationship
between a0 and/30 given by (5.1).

While the algorithm may vectorize well, the above description is inherently sequential
because the computation ofm,m cannot proceed until Ol(mm) and/(mm) are calculated, which
in turn cannot be computed until 0,m and rt0,m are computed. These bottlenecks in the
doubling strategy show how this algorithm is not a splitting into independent subproblems
as in the case of an FFT. Thus, apart for the obvious independent quantities to be cal-
culated within a step (e.g., p, q can be calculated from u0, v0 simultaneously), any parallel
implementation of the algorithm is likely to be inherently different from the one pre-
sented here.

With regard to the use of the generalized Schur algorithm in the case that n is not
a power oftwo, the recursions (3.2), (3.3) can be used to derive the appropriate convolution
formulas for a given factorization of n. For example, if n 3m a decomposition of ,,, into three smaller Schur polynomials that correspond with Schur functions 0, m,
)2m could be derived. In this manner the development ofmultiple radix implementations
ofthe generalized Schur algorithm may proceed analogously with that ofFFT algorithms.
In a sense, the generalized Schur algorithm is one level of complexity higher than an
FFT. It is not unlikely that a family ofimplementations ofthe generalized Schur algorithm
will be useful in practice, each one tailored to specific lengths of and symmetries in the
input data.

We finally remark that we have strived for the lowest operation count for aesthetic
and theoretical rather than practical reasons. Some of the fine tuning described in 5
will not appear in code for the algorithm because it will make the code too long and
tedious. We will, nevertheless, use the dual split-radix codes to reduce the amount of
computation and avoid the bit-reversal permutation.

Acknowledgment. We are indebted to Avideh Zakhor for helpful discussions on the
split-radix FFT algorithms.
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A PENCIL APPROACH FOR EMBEDDING A POLYNOMIAL MATRIX
INTO A UNIMODULAR MATRIX*

T. BEELENf AND P. VAN DOOREN

Abstract. In this paper a new method for constructing the unimodular embedding ofa polynomial matrix
P(X) is derived. As proposed by Eising, the problem can be transformed to one of embedding a pencil, derived
from the polynomial matrix P(X). The actual embedding of the pencil is performed here via the staircase form
of this pencil, which shortcuts Eising’s construction. This then leads to a new, fast, and numerically reliable
algorithm for embedding a polynomial matrix. The new method uses a fast variant of the staircase algorithm
and only requires O(p3) operations in contrast to the O(p4) methods proposed up to now (where p is the largest
dimension of the pencil). At the same time we also treat the connected problem of finding the (right) null space
and (right) inverse of a polynomial matrix P(k).

Key words, polynomial matrix, unimodular matrix, staircase form
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1. Introduction. Let P(X) be an m n (with m < n) polynomial matrix of de-
gree d:

(1) P(X) Po + Pl)k + P2k2 +"" + Pd,d

where each P; is a real or complex rn n matrix. In this paper we develop a new algorithm
to construct an embedding of this polynomial matrix into a unimodular one, i.e., to find
a second polynomial matrix Q(X)of dimension (n m) n:

(2) Q(X) Qo + QlX +’" + QdqXd

such that the compound matrix

(3) U(X)"
Q(X)

is unimodular.
Since a unimodular matrix is by definition invertible for all X C (where C is the

finite complex plane), the submatrix P(X) must necessarily have full row rank rn for all
C in order for a solution of the embedding problem to exist. It turns out that this is

also a sufficient condition for a solution to exist and that, moreover, there always exists
a solution Q() of degree dq _-< d [4]. (Here we assumed that d >- since otherwise
the problem degenerates into one involving constant matrices only and becomes trivial.)
Although this result was known it is nice to see how easily it is also derived from our
algorithmic construction.

The constructive method developed in this paper is then shown to be easily extended
to one that also provides the fight inverse ofP(), i.e., an n rn polynomial matrix M(X)
satisfying

(4) P(X)" M(X)= Im
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and the right null space of P(X), i.e., an n (n m) polynomial matrix N(X) of full
column rank and satisfying

() P(h) N() O,n-m.
Our method reformulates the embedding problem of P() as an embedding of a

pencil, an idea which was, e.g., used by Eising [2]. After recalling this in 2, we show in
the next section how the embedding problem for pencils can be trivially solved via the
staircase algorithm [10] of pencils. In 4, we then use these ideas to provide algorithms
for solving the related equations for the fight inverse and fight null space of P(X). Finally
we conclude in 5 with some considerations of complexity and numerical stability of
our method and with some numerical examples.

2. Reduction to a pencil problem. The idea developed here is borrowed from Eising
[2]. Consider the dm {(d- 1)m + n} pencil XB A where the matrices B and A are
defined as

0 -P 1
(6) B "" A

0 -P2
Im -P

We first show that the pencil hB A has full row rank for all h C if and only if the
polynomial matrix P(?,) has full row rank for all C. For this we introduce the
dm dm unimodular matrices C(X) and D(X) C-(X) defined as

I
I I

(7) C(X) X2I D(k)
-I

"..

-M I
d- lI 2I kl I

where all identity matrices are of order m. Indeed, by straightforward calculations we
find

(8) C()(A- B)= C(X)

I XPa I Ra(X)

"" I XP2 I R2(X)
-M hPl q- Po P(X)

where we define Ra+ 1()) --" 0, Ri(,) "-- )tRi+ l()t) "[" )tPi, d, 2 and R(X) -" P(X).
Using this, and the fact that C(X) is unimodular (and hence invertible for all X e C) we
indeed easily derive that the pencil XB A has full row rank for all X C if and only if
P(X) has full row rank for all ), C.

Suppose now that we are able to provide an embedding for the pencil XB A, which
we denote as

(9) [XB-AK(X) ]
and let us partition K() as follows:

(10) K(X) -" [K(X), Ka- I(X),
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where Ki(k) has dimensions (n m) m, for < d and Ka(k) dimensions (n m) n.
Combining (8) and (9), we thus have that

Im Rd(k)

0 0 P()k) In2 LK()k)
K Ka- Ka

is also unimodular. Introducing the unimodular matrix H(,) of order (d- 1)m + n as

Im
,o

(12) H(),) I
lm

-KI gd- 0 In- m
and premultiplying G(X) by H(),) gives

(13) S(,) H(X)G(X) Im

where Q(k) is given by

Ra!X)
R iX)

Q(x)

d-I

(14) Q(X) Ka(X) Ki(,)Ra-i+ l(k)
i=1

It is now obvious from (13) that

P(X) ](15)
Q(X)

is unimodular if and only if the embedding (9) is unimodular. This thus shows that the
problem of embedding a polynomial matrix (provided this is possible) can always be
reformulated as that of embedding a pencil. The reason of reformulating the problem as
one for a pencil is that it can be embedded by a constant matrix K, as was, e.g., shown
by Eising [2]. In the next section we give a simple alternative proof ofthis result and also
show how to construct such a constant solution K.

3. Embedding a pencil in a unimodular one. Kronecker (see [3]) has shown that
any pencil XB A can be transformed via constant invertible column and row trans-
formations to a canonical block diagonal form XBc Ac
(16) S.(),B-A). T hB-Ac=diag {L, L,,L,T LT XN-I, XI-J}
where

(1) L, is the e (e + 1) bidiagonal pencil
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(18)

(2) L,v is the (rt + 1) X r/bidiagonal pencil

-1

(3) N is a nilpotent Jordan matrix, and hence N I consists of a diagonal block
pencil with 6i bi blocks of the type

-1 k

(19)
-1 ...

(4) J is in Jordan canonical form.
The matrix kI J contains the finite elementary divisors and XN- I the infinite

elementary divisors of XB A The blocks Lc and LT contain the singularity of the
pencil. The indices e; and nj. are called the Kronecker column and row indices, respectively,
and 6 are called the degrees of the infinite elementary divisors.

Using this canonical form we now easily derive the following theorem about the
unimodular embedding of a pencil.

THEOREM 1. A pencil B A has a unimodular embedding

(20) [)B-AK(X) ]
ifand only ifit has nofinite elementary divisors and no Kronecker row indices. Moreover,
there always exists a constant matrix K such that the new infinite elementary divisors of
the embedding are equal to the union ofthe infinite elementary divisors { 6} and ofthe
Kronecker column indices {(ej + 1)} ofkB A.

Proof The necessity of the condition is trivial as noted in the Introduction. Indeed
the unimodular embedding has full (row) rank for all ) C, and thus this is also implied
for the rows of )B A. Using the block decomposition (16) we easily find then that
)B A can have no finite elementary divisors or Kronecker row indices, since the
corresponding blocks do not obey the row rank property for all ) C.

The sufficiency of the condition is now proved via the construction of a solution K,
which at the same time satisfies the second part of the theorem. Indeed, choose Kc to be
a.matrix whose rows are unit vectors, each with a -1 at the location corresponding to
the last column of one of the Lcj of kBc A. Then obviously the embedding

(21)
K

has a Kronecker canonical form with blocks (19) of sizes i and (ej + 1) as requested.
This form is indeed obtained by a mere permutation of the rows of (21). Then, defining
K K.T- and using

we find that (20) and (21) have the same Kronecker canonical form. The fact that
a pencil with only infinite elementary divisors is unimodular [4] then completes
the proof. V1
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COROLLARY 1. A polynomial matrix P(X) ofdegree d has a unimodular embedding

(23) [P(X)Q(X)]
ifand only ifit hasfull row rankfor all C. Moreover, there always exists an embedding
with a polynomial matrix Q() ofdegree (d- 1).

Proof As above, the necessity of the condition is trivial. Sufficiency is proved via
the construction of K above and the subsequent derivation of Q(X) in (9)-(14). If K is
chosen constant, then the construction (14) and the recurrence relation for Ri(X) in (8)
yields the following explicit formula for Q(X) in terms of the coefficient matrices Pi
of P(X):

d-1 i-1 d-I d-1

(24) Q() "- Ka- ., Ki Z ki -JPd-j Ka- Z X" Z KiPa+ a:- i.
i=1 j=O k=l i=k

This clearly shows that Q() has degree (d- 1) and thus completes the proof.
While apparently the problem is thus solved via the above construction, it is not a

recommended procedure from a numerical point of view. The transformations S and T
in the decomposition (16) may indeed be very badly conditioned and thus give rise to a
significant loss of accuracy. An alternative decomposition that does not suffer from this
drawback is the so-called staircase form ofB A [10]. For a pencil B A with only
column Kronecker indices {ej} and infinite elementary divisors {rj}, we obtain the fol-
lowing staircase form (which we denote by XB A) via unitary transformations U
and V 10]:

(25)

U(XB-A)V= XBo-A,
-A, BI,2 A ,2

--A2,2
X

B2,3 -A2,3
S

X
-Ak,k k Bk,k + Ak,k +

--Ak+ 1,k+

This form is characterized by the fact that the blocks Ai, (i 1, ..., k + 1) have
full row rank and the blocks Bi,i+, (i 1, ..., k) have full column rank. Notice
that the blocks indicated by X in (25) are in fact pencils as well. Let the matrices Ai,
(i 1, k + 1) and XBi,i+ 1-Ai,i+ (i 1, k) have dimensions mi ni(mi <= ni)
and mi ni +1 (ni /1 -< mi), respectively. Then the following theorem, proved in 10],
relates these dimensions to the Kronecker canonical form of XBoo A,oo (or XB A).

THEOREM 2. The pencil XB A with staircaseform as in (25), has

(26) hi- mi Kronecker column indices ej equal to i- 1,

mi- ni + infinite elementary divisors equal to i.

At first sight we thus have the requested information to find a constant matrix K
for the embedding, using the decomposition (25) as well. That this is in fact very simple
is now shown below. Corresponding to each nonsquare A;,i we can easily find and
(ni- mi) )< ni matrix C such that

(27) [AiC,ii ]
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is square invertible and does not depend on X. Thus, by adding a block row of the type

(28) [0... 0 -C X" X]

to each corresponding block row

(29) [0...0 -Ai, XBi,i+ -Ai,i+ X. X]

in (25) for(i= 1,...,k) andadding[0... 0 -C+]to[0-.. 0 -A+,+],the
pencil (25) can be embedded into a pencil

(30) [XB,Koo-A,o ]
with

(31) K
-C X X

-C X
Ck+

This matrix K, has dimensions
k+l k+l., (n-mi) Z n=(n-m) {(d- 1)m+n}.
i=1 i=1

It should be noted that the blocks indicated by X in (31) can be chosen arbitrarily, even
as a function of X, so that the matrix (13) is highly nonunique. For the sequel we assume
K, to be chosen constant. It is easily seen that the pencil (30), up to a row permutation
IIr, is again in staircase form:

XB A.o ]
K

(32)

[ XBI,-A1,2
X

x
XBk,k + Ak,k +

__f Ck+l
[Ak+ l,k+ 1]

which, according to Theorem 2, is exactly the same result as in Theorem 1. Just as in
(22), we then define K KV-1 K,V* (.* denotes the conjugate transpose) and use

since the (new) blocks [Ac have full row rank by construction, and the (new) blocksi,i

[,0+ t] still have full column rank. The fact that this "embedded" pencil is unimodular
easily follows from the full rank property for all X C (guaranteed by the diagonal blocks).
The preserved staircase form shows moreover that the pencil (32) has

(33) ni- ni + infinite elementary divisors j. equal to
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to show that the matrix K obtained via this construction also satisfies the conditions of
Theorem 1. This construction thus implicitly provides an embedding satisfying Theorem
l, without passing via the numerically sensitive Kronecker canonical form.

Remark 3.1. The staircase algorithm described for general pencils in [10] in fact
also tests whether or not a given pencil only possesses infinite elementary divisors and
Kronecker column indices. Applied to the pencil (6) it thus tests for the existence of an
embedding, and at the same time provides a convenient form for constructing such an
embedding in case it exists.

Remark 3.2. While the general staircase algorithm, e.g., described in 10] or [9] has
an operation count that is quartic in the maximal dimension dm ofB A (i.e., O(m4d4)
flops), an improved method has recently been proposed in [1] which has an operation
count that is only cubic (i.e., O(m3d3) flops). Moreover, it is shown there that the "rank
carrying stairs" Ai, and Bi, / can be chosen triangular when appropriately updating U
and V.

Remark 3.3. It is well known that in general there is no unique solution Q() to
the embedding problem. The method described above also does not yield a unique solution
Q()). This is clearly reflected by the freedom in choosing the block rows in (28). A
possible selection criterion could be to minimize the effort for determining matrix K.
When the mi rti matrices Ai, in (25) are assumed to be upper triangular the
(ni- m;) ni matrices Ci (i _-< k + 1) can be chosen as

(35) C= [L0]

with the remaining Xmatrices in each row ofK equal to 0. In that case, the determination
ofK is of course trivial.

To conclude this section we now summarize the computational procedure.

ALGORITHM EMBED.
(1) Construct the pencil ,B A defined by (6).
(2) Compute the staircase form ofB A giving (25) with upper triangular matrices

ai,i.

(3) Construct matrices Ci satisfying (27).
(4) Compute matrix K, given in (31).
(5) Determine matrix Q(,) via (34) and (24).

4. Inversion of a unimodular matrix. In this section we consider the problem of
inversion of a unimodular matrix from a numerical point of view. Throughout this
section we denote by U(,) an n n polynomial matrix of degree d >= that is assumed
to be unimodular, i.e., such that

(36) det U(,)= a nonzero constant.

The determination of U-(,) is an important step in several problems dealing with poly-
nomial matrices. For example, this inversion problem arises when solving certain poly-
nomial matrix equations which we now first describe.

Computing a right inverse and a right null space of a full row rank polynomial
matrix. Let P(k) denote an m n polynomial matrix (m < n) which has full row rank
for all k e C. Any polynomial matrix M(k) such that P(k)M(k) Im is called a fight
inverse of P(k). Any polynomial matrix N(k) of full column rank (for some ) and such
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that P(,)N(k) 0._, is said to span the fight null space of P(X). In order to find such
matrices M(k) and N(,), we start with any unimodular embedding of P(,)

(37)

This is done using the procedure described in the previous section. Hereafter we determine
the inverse of U(). (To this end, we present a new numerical method in this section.)
It is well known (see [4, Lemma 6.3-1]) that this inverse is a polynomial matrix V(X)
which we partition as V() [M(k)]N(,)] where M(,) and N(,) have dimensions n m
and n (n m), respectively. Obviously, we have U(k)V(X) In, or equivalently,

(38) e X)l 0

Hence,

(39) P(k)M(k) Im, P(X)N(,) Om,n- m.

Clearly, M(),) is a fight inverse of P(k) and N()0 spans its fight null space since N(k) has
full column rank for all , C (being a submatrix of the unimodular matrix V(k)).

From an algebraic point ofview the computation of U-(k) is rather simple. Indeed,
let V(,) U-(k); then we have to solve

(40) U(X) V(X) In.

Matrix U() can, e.g., be reduced by elementary row operations to the so-called triangular
Hermite form (see [4, 6.3] for details). This form can now be used to solve for V(),) by
backward substitution. Of course, other methods for determining V() can be applied
including those for inverting arbitrary polynomial or rational matrices (see, e.g., [8]).
However, most ofthese general inversion methods are not recommended from a numerical
point ofview. The main reason is that in fact they rely on the Euclidean division algorithm
(when reducing the Hermite form) or on formulas that can cause severe loss ofsignificant
digits.

Below we present a new (numerically more reliable) algorithm for computing the
inverse of a unimodular matrix. Let us denote the n n unimodular matrix U() of
degree d by

(41) U(k) U0 - UI - U2k2- - Udkd

where each Ui is a real or complex n n matrix. Here again we assume that d >= 1, since
otherwise the problem degenerates into one involving constant matrices only and becomes
trivial.

As in the previous section we reformulate the problem as a pencil problem by
defining the dn dn pencil ,/ where the matrices/ and are defined as

(42) / d
’. 0

In -UI Uo
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When defining C(X) and D(X) as in (7) but now with identity matrices of order n,
we find

(43) c(x)(A- ".

u(x)

where we define/d+ (X) 0, /i() /i+ I(X) -- kUi, d, 2 and/l(k) U(k).
It is easily seen that (43) is unimodular. Hence, the pencil X/ is also unimodular.

It follows from (43) that

U-’(X) -[0, 0, I,](X/- A)-’C-I(X)[0, 0,1,1 r

(44) -[0, , 0, In](X/ A)-D(X)[0, 0, In] r

-[0, O, Inl(h/ A)-I [0, O, In] r.
This thus shows that inverting a unimodular polynomial matrix is easily reformulated
as inverting a unimodular pencil.

In order now to solve the inversion problem of the unimodular pencil X/ J, we
first note that the Kronecker canonical form of X/i j merely consists ofI- X29 where

is nilpotent:

(45)

From this the inverse is trivially obtained as

(46) (X/__Z)--I -1.(i+ k]Q+ k2]Q2 + + kl]Ql)’g-1

where 1 + is the size of the largest infinite elementary divisor in (16) (i.e., the largest
di,. ii block of the type (19) in I- Xr). If we define the polynomial matrix V(X)
U(k)-1 as

(47) v(x) Vo+ v,x+... + vx,
then the combination of (44) and (46) gives us

(48) Vi -[0, O, In]" ’-")i" -,. [0, O, In] T (i=0, ,1)

which thus solves the problem. But since the Kronecker decomposition is a sensitive tool
from a numerical point of view, we again turn to the staircase form of/ J. This can
be obtained under unitary transformations Q and Z:

(49)

Q.(X/i-/i). z" x/oo-/ioo
--Z1,1

nl n2

X

--."1 + 1,1 +

nt+

nl

nt+l
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where the matrices .4o are upper triangular matrices of full row rank, and the matrices
/ii/ have full column rank. Since ,/ has only infinite elementary divisors, the
^,

A;, are square invertible and so is .4o0. Let us now introduce

then o0 has exactly the same block structure as/o0 since Ao is upper triangular. Thus,
)o0 is nilpotent and we then have that

(51) (x/-A)-’ z*.(xoo-Ao)-.Q* z*A’.(I+oox +2x2 +... +/(rxt). Q*.

The computation of7 is rather simple since it is triangular and so is the construction
ofo0. By Theorem 2 we find that the index l + obtained from the Kronecker canonical
decomposition (i.e., the index of nilpotency of) equals the number of "stairs" , in
(49), and hence also the index of nilpotency of No0.

The combination of (44), (47), and (51) now gives us

(52)

where

(53)

and

(54)

V/ ^iZertNo0Qright (i=0, ,l)

Qrit "- Q* [o, o, I,,] r.
Here Zleft and aright have dimensions n dn and dn n, respectively.

Remark 4.1. If the unimodular matrix U(,) results from an embedding problem,
then the construction of the previous section immediately yields a staircase form of the
type (49). The possibility of choosing the diagonal blocks triangular in this embedding
(see Remark 3.3) is thus appropriate here.

Remark 4.2. Since the index of nilpotency ofo0 determines the number l + of
coefficients V to be computed, trying to minimize when dealing with the embedding
problem is recommended. This is in fact done in the construction of Theorem 1" the
lengths ofthe Jordan chains ofthe infinite elementary divisorsmi.e., the number of stairs
in the resulting staircase form (32)--is kept minimal, namely equal to the number of
stairs in the staircase form (25) we are starting from. It is important to note here that
not all Vi are necessarily nonzero, although the and ^iNo0 matrices in (46) and (51) are
nonzero for 0, ..., l. This thus means that l is in fact only an upper bound for the
actual degree of V(X). This is, e.g., seen in the examples below.

We conclude this section with a summary of this procedure.

ALGORITHM INVERT.
(1) Construct the pencil / A defined by (42).
(2) Compute the staircase form of / A giving (49) with upper triangular Ai,

and compute o0 via (50).
(3) Compute Zft and Qdght via (53) and (54).
(4) Compute the coefficients V,. of V(k) using (52).

5. Computational aspects. In the design ofany numerical algorithm we are mainly
concerned with two aspects: numerical reliability and computational speed.
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As far as numerical precision is concerned, we can certainly say that the methods
are based on the use of the staircase forms (25) or (49), which can be obtained by nu-
merically stable algorithms 10], 11], [9], 12]. For the embedding problem this guarantees
a rather good numerical behavior since the determination of Koo, and subsequently of
Q(,) via (35) and (24), does not seem to introduce any numerical difficulty. The method
is, we believe, certainly to be preferred over the method using the Kronecker canonical
form described in (21)-(22) or Eising’s method [2], since these both require inverses of
matrices that can be badly conditioned.

For the inversion problem the situation is somewhat different. There the use of the
staircase form again avoids the use of the numerically sensitive Kronecker canonical
form, but there is still an inversion problem involved. That this cannot be avoided is
easily seen from the following recursions for the coefficients V,. of the inverse of a uni-
modular matrix:

Vo-- U"1, V ---U (UI Vo) V2--U (U2Vo-- U1VI),

(55)
v U 1. u v

\i=0

If we know that the matrix U(,) is unimodular and that the degree of its inverse will be
k, then this is probably the most direct (and also most reliable) method to compute the
coefficients of V(,). But Algorithm Invert also provides a test for the unimodularity of
U(A) and computes a (usually close) upper bound l for the degree k of its inverse. The
algorithm is probably not much more sensitive than the mere application of (55), and it
is certainly recommended for problems that are coming from an embedding since there
U(,) is not directly available, whereas 3/- is.

Remark 5.1. It should be noted here that Eising also proposes a number of variants
of his method which normally improve the numerical sensitivity of the problem, while
allowing the embedding U(,) to have larger infinite elementary divisors than the minimum
required. This is particularly important for the subsequent inversion problem where a
trade-offbetween degree and sensitivity of the solution V(,) is pointed out by Eising [2].

As far as the computational complexity is concerned, we have already remarked
that a cubic algorithm is available [1 for computing the staircase form of an arbitrary
pencil, in contrast to the quartic methods that are available up to now [13], [10], [9], [6],
[5]. For the embedding problem this decomposition constitutes the bulk of the work
(namely O(m3d3) flops) since the construction ofK -" K,oo" V* and Q(,) using (24) only
require O(m2dZn) flops and O(md2n(n m)) flops, respectively.

For the inversion problem we suppose first that it is connected to an embedding
and, hence, that (49) is available. The computation of oo and Zlt takes O(n3d3) and
O(m2d2n) flops, respectively (Qdht is obtained at no cost). Starting with these data, the
V are then computed recursively using

(56) X0 Qdght, V0 Zlft’X0, for 1,... l: Xi ]q’Xi- 1, Vi Zlrt’Xi

which takes O(lmZdZrt) flops for the total recursion. Here it is clear that it is very important
to keep as small as possible, since otherwise the complexity ofthis step may well become
the larger part of the work (l may be as large as md!). If now the inversion problem is
independent of an embedding, then the staircase form (49) has to be computed also
which requires an additional O(n3d3) flops. Moreover, one then has m n.

We conclude this section with some numerical examples. The embedding problem
largely relies on the staircase form, which has already been treated by various authors
[13], [10], [1 ]. Therefore we restrict ourselves here to the inversion part.
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Numerical examples. We give here some numerical examples of the Invert Algo-
rithm. They were run on a VAX-750 computer with relative machine precision EPS
2-56 . 0.14 10-16. The notation is consistent with formulas (41)-(54). For brevity, we
only list the nontrivial matrices. The computations were performed with the interactive
matrix manipulation package MATLAB [7].

Example 1.

U(X) ,
For /oo doo Q(A/ A)Z and oo ooo the following results were found up to
16 correct digits:

0 0

a 0
0

0
0

0 0

0 0 0 0 0
a 0 0 0 a 0
a 0 0 0 -a 0
0 0 0 0 0
0 0 0 0 0
0 0 -1 0 0 0

2a 0
0 -2a

-1

0 0
a 0

-a 0
0 -1

0
0

-1
+l

-1

0 -a -a 0 0 0
0 0 0 0 -1 0
0 0 0 0 0

-1 0 0 0 0 0
0 -a a 0 0 0
0 0 0 0 0

-1

where a V/2 and l 2. Straightforward computation of U-(X) using (52) gives- 0 ]V(X) -Example 2.
0 2

U(X)= 0 0
X+7 X-+7,+3

In this case we obtained (up to 16 correct digits)

0 -1 7
-1

0
0 0

0

0
0
0
0

-1
0

-3
0

0
0
0

-1

-7
0
0
0

0
0
0
0
0

-1
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0
0
0Q--

0
0

0 0 0 0
0 -1 0 0
0 0 -1 0
0 0 0 0
0 0 0 -1

-l 0 0 0

Moreover, l 5 and

0
0
0
0
0

7 0
-1 0

-1

0
0 0
0 0

0

0

0 0
0 0
0 -1

-1 0
0 0
0 0

0 -1 0 0
0 0 0
0 0 0 0
0 0 0 0
0 0 -1 0

-1 0 0 0

Vo- 0 0 Vl- 0 0 0 v2- 0 0 0
0 0 0 0 0 0 -1 0

V3-- 0 0 0 V4- 0 0 V5-10-17, 0 0 0
0 0 0 0 0 0 0 0

Hence, when neglecting the term XSV5 (recall EPS 0.14.10-16) we indeed find the
exact formula for the inverse of U(X), i.e.,

(--X2-- 7X-- 3)
v(x) o

(k4 -t- 7X -t- 3)k2- X- 7) ]
0 J--k2 0
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AN ANALOGUE OF THE SCHUR TRIANGULAR FACTORIZATION FOR
COMPLEX ORTHOGONAL SIMILARITY AND CONSIMILARITY*

DIPA CHOUDHURY- AND ROGER A. HORNS

Abstract. Any matrix A e Mn (the n-by-n complex matrices) can be triangularized by unitary similarity,
i.e., there is a factorization A UAU*, where U Mn is unitary and A e M, is upper triangular; this is the well-
known Schur triangular factorization. If AA has nonnegative spectrum, then A can also be triangularized by
unitary consimilarity, i.e., there is a factorization A UAUr UA-. We discuss the problem oftriangularizing
a given matrix by complex orthogonal similarity and consimilarity, i.e., factorizing A QAQr or A QAQ*,
where Q e M, is complex orthogonal.

Key words, triangularization, similarity, consimilarity, complex orthogonal matrices

AMS(MOS) subject classifications. 15A23, 15A21

Denote by Mm,n the set of m-by-n complex matrices and set Mn--Mn,n. We
shall use P, Q to denote (complex) orthogonal matrices (P, Q Mn, ppr QQr I).
Denote the spectrum (set of eigenvalues) of a given A [ao] Mn by a(A), and de-
fine diag (A) {al, a22, ann}, the set of main diagonal entries of A. The matrix
diag (Xl, x2, "’, xn)e Mn denotes a diagonal matrix whose main diagonal entries
are Xl, x2, xn. A vector x e C n is called isotropic if x rx O, and nonisotropic if
xrx 0. A set of vectors (Xl, x2, xn} e C is rectangular ifxfxj 0 for :/: j; it is
rectanormal if it is rectangular and xfxi for all i. See ], [5]-[7] for basic geometric
and algebraic facts about rectangular and rectanormal sets, which are analogues for the
symmetric bilinear form b(x, y) xTy of ordinary orthogonal and orthonormal sets with
respect to the Hermitian form h(x, y) x*y.

A given matrix A e Mn is triangularized by similarity by a complex orthogonal
matrix Q Mn ifA QAQ, where Q [ql q2 qn] and

is upper triangular. Then AQ QA and hence Aql lql, i.e., ql is an eigenvector ofA.
Since ql is a column of Q, it is nonisotropic. Hence in order to have A QAQr, the
matrix A must have at least one nonisotropic eigenvector. But there are matrices, all of
whose eigenvectors are isotropic.

Example. Let

A ) -i/ i/(2 + V)
+-1/(2+V2) -i/(2 + i/V
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The eigenvalues of this matrix are l, + i, i, and corresponding eigenvectors are

they are determined up to a nonzero scalar factor and they are all isotropic. This matrix
is diagonalizable, but it cannot be triangularized by a complex orthogonal matrix. See
Corollary 3 for conditions that are sufficient to ensure that a diagonalizable matrix is
orthogonally triangularizable.

THEOREM 1. Let Z =-[z Z2 Zn] C= M, be a nonsingular matrix that triangu-
larizes a given matrix A M,, i.e., Z-AZ A is an upper triangular matrix. Let
Zi [z z2 zi] M,ifor 1, n. Ifdet (ZfZi) 4: Ofor 1, 2, n, then
there exists a complex orthogonal matrix Q M, such that QrAQ A is upper tri-
angular.

Proof Because of the nonsingularity assumptions on each ZfZi, there exists a rec-
tanormal set {q, q2, qn} c C that is triangularly equivalent to the set of columns
of Z, i.e., there exists a nonsingular upper triangular matrix B such that

(2) Z=QB

(see 1, Lemma 2.6]). By assumption, Z-AZ AI is upper triangular. Using (2) we have
AI Z-AZ (QB)-A(QB) B-(QrAQ)B, i.e., QrAQ BAIB- A is upper tri-
angular. U]

There are many possible triangularizations ofa given matrix A as A ZAZ-; some
similarity matrices Z may satisfy the condition det (zrzi) 4:0 for 1, n and
some may not. Thus, some unitary triangularizations of a given matrix A may lead
to an orthogonal triangularization by the process described in the theorem and some
may not.

Example. Let

i-1 -1

The unitary matrix

triangularizes A and

U*AU=
0

Both columns of U are isotropic, so, in particular, it fails to satisfy det (U r UI =j/= 0.
Now consider the real orthogonal (and hence complex orthogonal and unitary)

matrix
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which also triangularizes A:

Since Q is a real nonsingular matrix it satisfies det (QfQ3 0 for 1, 2. Thus, the
given matrix A can be upper triangularized by a complex orthogonal matrix Q.

COROLLARY 3. Let Xl, x, ..., x, C" be eigenvectors ofa given matrix A M
and let X [x x xd e M, for 1, n. Ifdet (XXi) 0 for l, n,
then there exists a complex orthogonal matrix Q M, such that QrAQ A is upper
triangular.

Proof Let X [x x x,] e M,, which is nonsingular since det (XrX,,) 0.
Thus, the matrix X diagonalizes A; in particular, it triangularizes A. By Theorem there
exists a complex orthogonal matrix Q Mn such that QrAQ is upper triangular. []

LEMMA 4. Let A Mn be such that
(a) AA is real,
(b) A + A has only real eigenvalues, and
(c) A A has only imaginary eigenvalues.

Then there exists a complex orthogonal matrix Q M such that QrAQ is upper tri__qangular.
Proof. Let A C + iD, where C and D are real. Since AA is real, AA AA AA,

i.e., (C+ iD)(C-iD)=(C iD)(C+ iD), from which it follows that CD DC.
By assumption, A+A-C+iD+C-iD=2C has only real eigenvalues and
A A C + iD C + iD 2iD has only imaginary eigenvalues, i.e., D has only real
eigenvalues.

Since Cand D commute and have only real eigenvalues, they can be simultaneously
triangularized by a real unitary matrix Q, which is therefore an orthogonal matrix [3,
Thm. (2.3.6)]. Thus, A C + iD QrAQ + iQTAEQ QT(A + iA2)Q QAQ, where
AI, A2, and A -- A -- iA2 are all upper triangular. E]

Although AA need not be real in general, it is always similar to a real matrix (in
fact, to the square of a real matrix). The following example illustrates the hypotheses of
the lemma.

Example. Let

Then

i-1 2 ]A
-1 2+i

AA
3

is real. The eigenvalues of A + A are 0, 2, and the eigenvalues of A A 2//are all
imaginary. Thus, this matrix is orthogonally triangularizable by Lemma 4. Since A has
real independent eigenvectors [2 ]r and it, it also satisfies the hypotheses ofCorol-
lary 3.

The hypotheses ofthe preceding lemma are sufficient but not necessary for orthogonal
triangularization. Consider the following example.

Example. Let

2+i -2(1+i)]A=
2+i 0
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Then

A= [-(2i+ 1) -6 +2/]5 -6+ 2i

which is not real. The eigenvalues of A + are 2 + 2fi, which are not real, and the
eigenvalues ofA are V, which are not pure imaginary. Nevertheless, A is or-
thogonally triangularizable by Corollary 3 because it has distinct eigenvalues and both
eigenvectors are nonisotropic.

We have so far found some conditions that are sufficient for a given matrix A e Mn
to be triangularizable by orthogonal similarity. We have not yet found useful conditions
that are both necessary and sufficient for the triangularizability of a given matrix by
orthogonal similarity. The difficulty in the study of orthogonal similarity arises from
dealing with isotropic eigenvectors. But if we consider orthogonal consimilarity, i.e.,

A-- QAQ- QAQ*,

where Q is a complex orthogonal matrix, there are some useful ways to deal with isotropic
coneigenvectors. We now discuss triangularization of a matrix by complex orthogonal
consimilarity.

DEFINITION 5. A matrix A e Mn is said to be contriangularizable if there exists a
nonsingular R e Mn such that R-.AK is upper triangular. A nonzero vector x e C n such
that AY Lv is said to be a coneigenvector ofA; the scalar , is a coneigenvalue ofA.

Every matrix has at least one eigenvalue and has only finitely many distinct eigen-
values, but the situation is fundamentally different for coneigenvalues and coneigenvectors.
IfA e Mn and AY kx, then

e-iA.= A(eix) e-iOXx (e-2iox)(eiOx)
for all 0 e . Thus, if is a coneigenvalue of A, then so is e-2i for all 0 e . On the
other hand, ifAY ,x then

AA-x A(A.2) A(Lx) X(A.f,) ,Xx 1X12x,
so a complex scalar , is a coneigenvalue ofA only if the nonnegative real number Il2

is an eigenvalue ofAA. In fact, A has a coneigenvector if and only if some eigenvalue of
AA is nonnegative. For example,

A= AA=-2I

has no nonnegative eigenvalues, and hence the matrix A has no coneigenvalues.
Thus, a matrix may have infinitely many distinct coneigenvalues or it may have no

coneigenvalues at all. For more information on consimilarity, coneigenvalues and con-
triangularization see [2].

DEFINITION 6. Thefield ofvalues ofA
For basic properties of the field of values see Chapter of [4].

LEMMA 7. Let A Mn be given. IfO F(A) then 0 F(C*AC)for every nonsingular

Proof The assumption that 0 g F(A) means that y*Ay 4:0 for all y such
that y’y= 1. If 0eF(C*AC), then there exists x eC such that x*x and
x*(C*AC)x 0. Since C is nonsingular, Cx :/: 0 and we may set z Cx/((Cx)*(Cx))/2.
Then z*z and we have z*Az 0, which contradicts our hypothesis that 0 g F(A).
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Since the field of values F(A) is a convex set that contains all the eigenvalues ofA,
assuming that 0 F(A) is stronger than assuming that A is nonsingular. In particular,
0 F(A) implies that 0 is not in the convex hull of the spectrum ofA.

LEMMA 8. LetA Mn be a given matrix such that 0 F(A). IfAA has a nonnegative
eigenvalue, then A has a nonisotropic coneigenvector.

Proof. Since AA has a nonnegative eigenvalue, A has a coneigenvector x, which we
may take to be a unit vector. Thus, A ,x, and consequently xTA xrx. If x is
isotropic then xrA ()*A() 0, which contradicts the assumption that 0 F(A).
Hence x is nonisotropic.

DEFINITION 9. A matrix A M has the orthogonally inheritable nonisotropic con-
eigenvector property if whenever Q Mn is orthogonal and

**I
QAQ*= 0 .,eMk, <=k<=n

is a partial orthogonal contriangularization ofA, then some coneigenvector of is non-
isotropic.

THEOREM 10. IfA Mn has the orthogonally inheritable nonisotropic coneigenvector
property, there exists a complex orthogonal matrix Q such that QAQ* is upper triangular.

Proof. Apply the same step-by-step reduction used to prove Schur’s triangularization
theorem (see [3, Thm. 2.3.1]), but consider coneigenvectors instead of eigenvectors and
construct an orthogonal matrix instead of a unitary matrix. E]

COROLLARY 11. LetA Mn be such that 0 F(A). There exists a complex orthogonal
matrix Q M such that QAQ* is upper triangular ifand only if all the eigenvalues of
AA are nonnegative.

Proof. If there is nonsingular R eM such that R-IA/ A is upper triangular, then
the main diagonal entries ofA (R-IA)(R-AR) R-(A)R are nonnegative and
are the eigenvalues of A. Conversely, we shall show that if 0 F(A) and a(AA-) >= 0,
thenA has the orthogonally inheritable coneigenvector property. Let QeMbe orthogonal
and suppose that

Then

* *I
QAQ*= o

o

Mk, <=k<=n.

QA.Qr= QAQ*QAQr= (QAQ*)(QAQ*)=

Since the eigenvalues ofAA are nonnegative, all the eigenvalues ofAA are also nonnegative.
Lemma 7 guarantees that 0 F(QAQ*), and hence 0 F(3). Thus, . has a nonisotropic
coneigenvector by Lemma 8, i.e., A has the orthogonally inheritable nonisotropic con-
eigenvector property. The conclusion follows from Theorem 10.
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It is known [2] that if A e M, then g(AA)>_-0 if and only if there is a unitary
U M, such that UAU r is upper triangular. Thus, the preceding corollary says that if
0 F(A), then A M is unitarily contriangularizable if and only if it is orthogonally
contriangularizable.

DEFINITION 12. A matrix A Mn is said to be condiagonalizable if there exists a
nonsingular R M such that R-A is diagonal.

If A e M is condiagonalizable and R-A A diag (X, ,), then A/
RA. If R [r r2 r] with each r e C, this identity says that A ,rg for 1,

n. The identity AR RA (without any assumption about the nonsingularity ofR)
says that every nonzero column of the matrix R is a coneigenvector of A. Since the
columns of R are independent if and only if R is nonsingular, a matrix A M is con-
diagonalizable if and only if it has n independent coneigenvectors [2].

The following corollary shows that any positive definite matrix can be condiago-
nalized by a complex orthogonal matrix.

COROLLARY 13. Let A M be given. Then A is positive definite ifand only ifthere
exists a complex orthogonal Q M such that QAQ* A is diagonal with positive main
diagonal elements, i.e., A PAP*, where P Qr is complex orthogonal.

Proof. IfA M is positive definite, thenA is similar to A-/2AA/2 AI/2.A/.
Since A is positive definite, Al/2A /2 (and hence also A) has positive eigenvalues. Since
F(A) is the convex hull of tr(A) and r(A) > 0, 0 g F(A). By Corollary 11 there exists a
complex orthogonal matrix Q such that QAQ* A is upper triangular. Since QAQ* is
Hermitian, A must be diagonal, i.e., QAQ* A is diagonal and positive definite, so its
diagonal entries must be positive. The converse assertion follows immediately. E]
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PARALLEL PROCESSING IN THE ADAPTIVE CONTROL
OF LINEAR SYSTEMS*

ROBERTO CRISTVf

Abstract. The implementation of a direct adaptive control algorithm using parallel processing techniques
is discussed. The controller presented is hybrid in nature (continuous time feedback and discrete time gain
adjustment) and the recursive least squares identification is implemented using a well-known algorithm based
on the Givens rotation.

Key words, parallel processing, adaptive control, systolic arrays
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1. Introduction. The problem of adaptively controlling plants with uncertainties
has received particular attention during the last 15 years. This increase in popularity is
caused by the desire to obtain the best possible performances in spite of uncertainties of
the system and/or changing operating conditions, and the extraordinary increase in com-
puter technology witnessed during the last two decades.

At the present time, the long-standing questions of global and local stability have
been answered ], [2], while we are close to a better understanding in regard to problems
related to robustness in the presence ofoutput disturbances [3] and unmodeled dynamics
[4]. Also, the limitations of early results to minimum phase systems have recently been
overcome in [5], [6], substantiating an early conjecture [7] that global stability can be
guaranteed provided all modes of the plants are excited.

All these refinements of adaptive control algorithms have been obtained at the ex-
pense ofadded complexity with respect to early schemes. For example, it is well recognized
that algorithms based on Recursive Least Squares converge much faster than simpler
Projection Algorithms [8]. The result is an improved convergence rate of the estimated
parameters, and consequently better tracking performances for systems with time varying
parameters, and better robustness [9] at the expense of the need of more comput-
ing power.

Also, a class of adaptive controllers for nonminimum phase systems presented in
[6] requires the estimate of a redundant number of parameters.

From this list of recent results, the need for adequate computing capabilities is
evident. Systems with relatively small time constants need fast sampling rates, and complex
adaptive techniques might require computing speeds inadequate to available microcom-
puters.

A possible answer to this problem can be found in parallel computing structures,
such as systolic arrays or wavefront arrays. In this report the adaptive algorithm presented
in [6] based on recursive least squares with periodic covariance resetting is redesigned,
in order to make it suitable to implementation on a VLSI chip. The motivation is to be
able to obtain a throughput of the data acceptable for high speed operations of systems
with a large number of parameters to be estimated.

The basic idea is common to least squares algorithms found in signal processing
literature 10], ], where the desired parameters are estimated from an upper triangular

* Received by the editors June 12, 1987; accepted for publication October 1, 1987. This paper was presented
at the SIAM Conference on Linear Algebra in Signals, Systems, and Control, which was held in Boston, Mas-
sachusetts on August 12-14, 1986., Electrical and Computer Engineering Department, Naval Postgraduate School, Monterey, California
93943. This work has been supported by the NPS Foundation for Research, contract RYEHK, 1987.

96



ADAPTIVE CONTROL OF LINEAR SYSTEMS 97

factorization (called QR [18]) of the data matrix. The difference in adaptive control is
that the estimator has to operate recursively on subsequent blocks of data, so that the
estimated parameters converge asymptotically to the respective correct values. Asymptotic
convergence is guaranteed by proper initialization at each block and persistency of ex-
citation of the external input.

This report is divided as follows: the Model Reference Adaptive Control problem
is recalled in {} 2, with its hybrid implementation in {} 3. Parameter estimation with its
parallel implementation are the subjects of {}{} 4 and 5, while global stability and perfor-
mances considerations with regard to the block processing and hybrid approaches are
given in {}{} 6 and 7.

2. Adaptive control of linear systems. The dynamics of a linear Single Input Single
Output (SISO) system can be modeled by the differential equation

(2.1) p(D)y(t) r(D)u(t)

where y, u:R+ -+ R represent output and input signals, respectively, and p and r are
polynomials in the differential operator D d/dt as

(2.2) p(D) D" + a’- _[_... AI_ a.,

r(D) Kp(Dn-m +... + rn).

The following assumptions on the plant (2.1) will be made throughout.

(A 1) The order of the plant n and its relative degree m are known to the designer.

(A2) The values of the plant coefficients ri, pj, KR are unknown while the sign of the
leading coefficient Kp and a lower bound on its magnitude are known to the
designer.

(A3) The polynomial r(D) is Hurwitz (i.e., plant minimum phase).

(A4) r(D) and p(D) are mutually coprime polynomials.

With the above assumptions the aim of the adaptive controller is to determine a
control input u() so that the output of the plant y(t) tracks the output of a linear model
ym(t) defined as

(2.3) p*(O)ym(t) v(t).

The reference model (2.3) with transfer function 1/p*(s) represents the desired asymptotic
performance and p* is assumed to be an arbitrary Hurwitz polynomial of degree m (the
relative degree of the plant).

Remark. In view of recent results [5], [6], the assumptions (A1)-(A3) above can be
considerably relaxed in the sense that the plant can be assumed to be just of order n
(known) and strictly proper. However, this gain in generality is obtained by more complex
adaptive controllers that are beyond the scope of this report.

The structure of the adaptive controller can be easily determined on the basis of
the fixed control problem, by which we seek arbitrary pole placement with the control
input u(t) defined by the differential equation

(2.4) q(D)u(t) h(D)y(t) + k(D)u(t) + q(D)v(t),

or alternatively as

(2.5) u(t) h(D)9(t) + k(D)(t) + v(t).
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The polynomials q, h, k above have degrees n, n 1, n 1, respectively. In particular
q(D) is an arbitrary nth degree Hurwitz polynomial (the observer polynomial) and in the
fixed control case (i.e., plant dynamics assumed to be fully known) h(D) and k(D) are
determined by the Diophantine Equation

(2.6) h(D)r(D) + k(D)p(O) q(O)[p(O) K-lr(O)p*(O)].

The existence ofa unique solution h, k of(2.6) is guaranteed by the assumed coprimeness
of r(D) and p(D) (assumption (A4) above) and by choosing h and k both of degree
n 1. In the expression (2.5) ti(t), 37(t) represent filtered input and output of the plant
defined by the differential equations

(2.7) q(O)(t) y(t), q(D)(t) u(t).

3. Adaptive controller and hybrid structure. When the plant dynamics are not
known, the compensator parameters (i.e., the coefficients of the polynomials h(D) and
k(D)) have to be estimated recursively from input and output measurements ofthe plant.
The particular structure we consider is hybrid in nature, in the sense that the compensator
parameters are updated on a discrete time basis, from samples taken on the signals of
the loop. For this we define the sampling time sequence

{t,;k=0,1,... ;i=0,1,...,N-1}
as

(3.1) tJ, kNT+ iT+

The reasons beyond this definition concern global stability problems and are fully discussed
in [6] and 12]. In particular the adaptive gains are updated at times {t} on the basis of
the samples taken at times {t,_ ; 0, N called the kth time block.

The sequence rk is a random independently and identically distributed sequence
uniformly distributed on any arbitrarily small interval. It is included in (3.1) in order to
guarantee (with probability one) observability of continuous time modes from sampled
values of the loop signals 12].

The compensator parameters are estimated directly from the loop signals, based on
manipulation of the Diophantine Equation and definition of the partial state z(t) 13]
by which we can write (2.1) as

(3.2) p(D)z(t) u(t), y(t) r(D)z(t).

The input and output signals u, y can be viewed as linear combinations of derivatives of
the partial state z(t). It is easy to see that z(t) with its first n derivatives constitute the
entries of the state _x(t) of the controllable canonical form realization of the plant (2.1)
[13]. By operating left- and fight-hand sides of (2.6) on z(t), and keeping (3.2) in mind,
we can relate the polynomials h(D) and k(D) to the signals u(t) and y(t) as

(3.3) h(D)y(t) + k(D)u(t) q(D)u(t)- q(D)K-lp*(D)y(t).

In order to have signals obtainable with proper (and therefore physically realizable)
transformations, define 37, if, uf as

q(D)p*(D)y;(t)= y(t),

(3.4) q(D)p*(D)(t) u(t),

p*(D)uf(t) u(t)
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and write (3.3) as

(3.5) h(D)y;(t) + k(D)8(t) + Ky(t) uf(t)
or in compact form

0_* rd(t) uf(t),

(3.6) 0 [hi, ,h_ ,k, ,k_ ,K],
b(t) [(/), ,D y;(t), if(t), ,D- ti(t), y(t)]

with h, k being the coefficients of the respective polynomials. At the sampling instants
t, (3.6) can be treated as a relation between sequences uf(t) and (t), and the parameter
vector * can be recursively estimated on a discrete time basis.

4. Parameter estimation. Several techniques in the literature [8], 14] allow estimates
of * to be computed on line. The paicular one we consider in this repo is based on
the Recursive Least Squares (RLS) with Covafiance Resetting introduced by several
authors [6], [15]. In paicular, by this algorithm the sequence of plant estimates at
times t (beginning of the kth time block) is computed in the fo

(4.1) k+=F(k/(t),uy(t),fori=O, ,N-1)

for some function F ven below, which depends on the previous parameter estimate
and the data in the block.

A recursive version of this estimation is ven by the well-known recursions

p-2(t-l)e(t-)=- +O(t-)e-%(t-)’

P- (t)(t)rPe=e-,_
(4.2) + (tixri-_, ,

P= I,

e(t)= uy(t) "i-6(t)

where 0 is an arbitra positive constant. In (4.2) the quantities , P are computed at
each instant t defined in (3.1).

The relevant feature ofthe RLS algorithm with Covafiance Resetting is the fact that
the covafiance matrix P is periodically reset to its initial condition. This prevents P
from decaying to zero, as in the standard least squares algorithm, which would mean a
loss of sensitivity as time increases.

For the parallel implementation using systolic aays we compute directly from
the minimization of a proper quadratic cost function, disregarding the estimates ,

0, N- within the time block. In paicular the cost function
N-I

4.3) v) E uAtg- %q)l + I1-11
j=0

on which RLS estimation is based [8] is used to define implicitly the estimate + at
instants t+ as

(4.4) V(+ ) min0 V().
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From the definition of Vk in (4.3) we can see that the parameter a0 weights the confidence
we have on the initial (for each block) estimate _k.

5. Recursive estimation by systolic arrays. In this section we discuss the recursive
computation of the sequence of parameter estimates _k from (4.3) using systolic arrays
techniques.

Simple algebraic manipulations on (4.3) and definition of the Euclidean norm yield
_k +1 as the solution of the linear algebraic equation

_(t.-1) f(tkN- )

(5.11
_(t) T

O_
(fk)

where the equality is in the least squares sense (minimum square error). The signals in
(5. l) are normalized by the constant a0 as

(5.2) _(t) _(t)/ao, fly(t) uf(t)/ro.

The solution to (5.1) always exists and is unique since the leflmost matrix has full rank
due to the identity block I.

A common way to obtain the least squares solution of (5.1) is by a QR factorization
of the leftmost matrix, which can be carried out using parallel processing and systolic
arrays techniques. The basic idea, as presented originally in [11 ], is to transform a "tall"
matrix into an upper triangular one by successive linear combinations of pairs of rows
and force zeros into desired positions. The transformation can be considered as a succes-
sion of elementary vector rotations (the Givens rotation [16]). Details of the algorithm
can be found in numerous references [10], [l 1].

For any N N matrix A the Givens rotation is characterized by a square matrix

Q(p, q) diag (II, Y(P, q),/)

associated to a pair of indices (p, q) e [2, N] [2, N] with Ii, I2 the identity matrices of
sizes q 2 and N- q, respectively, and 3’(P, q) a 2 2 matrix defined as

c(p, q) s(p, q) ](5.3) ’7(P, q)
-s(p, q) c(p, q)

with

aq_ l,p ap,q(5.4) c(p, q) a2_ l,p + a2q,v
s(p, q) a_ l,p + aaq,p

a;d being the entries of the given matrix A. It is easy to see that left multiplication ofA
by Q forces a one and a zero to appear as follows:

p

(5.5) Q(p, q)A

where x indicates other elements of the matrix.

X X

x q

0 x
X X
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As an example ofapplication, and to make the operations described more transparent,
we can see that an almost upper triangular matrix can be made upper triangular by a
succession of Givens rotations as follows:

r’ r’2 r’3 bl 2 b3

(5.6)
0 r.2 r3
0 0 r3

Q(3, 4)Q(2, 3)Q(1 2) rl r12 r13
0 r22 r23

0 0 0 0 0 r33

This can be applied to the solution of (5.1) within the kth time block to obtain the
following algorithm:

(5.7)

initialize at t: Rk(-- 1) l; k(-- 1) _k
compute at each t, O, ..., N-

[ ]Rk(i/i-- 1)
IRk(i-- 1)

[ uy(t,) ]k(i/i-- 1)
/3k(i-- 1)

[Ri)]=Qk(i)Rk(i/i-1),
[[3k(i)]=Qk(i)k(i/i-1)’x

output Rk(N 1) at each t-1.

In the above algorithm the matrices Rk(i), 0, ..., N- are square upper triangu-
lar of dimensions 2n 2n (since the number of parameters in the adaptive algorithm
is 2n), Rk(i/i 1) are (2n + 1) 2n and similarly/3k(i) and k(i/i 1) are 2n and
(2n + 1) 1, respectively. The matrix Qk(i) indicates the rotation matrix at each t, as
the product of the Q matrices in the example (5.6).

After the transformation of the data matrix into the upper triangular Rk(N 1) in
the above algorithm, the parameter estimate _Ok /l can be computed from the system of
equations

(5.8) Rk(N- 1)_k + ilk(N-- l)

solvable by successive substitutions due to the triangular nature ofRk(N- 1).
The two operations (5.7) and (5.8) can be carried out by two distinct systolic array

processors, as shown in Fig. 1. Processor P1 performs the triangularization operations
(5.7) within the time block {t,, 0, N- }, while P2 carries the linear solution
as in (5.8) and it operates at the end of the time block.

The structure of the processor P1 is shown in Fig. 2, and the cell operations are
defined in Table 1. In the actual implementation particular care has to be devoted to the
correct timing of the data, due to the space-time nature of the structure. As shown in
Fig. 2 the regression vector is input to the array in a skewed fashion, by properly delaying
its entries. The reset command must provide for data output at the end ofthe block, and
array initialization for the next block computation.
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u(t) data input and initialize
y(t)

P2

FIG. 1. Two processor structure.

o(t) b(t) 2(t) 62n(t) W(t)

FIG. 2. Systolic arrayfor triangularization.

6. Global stability and tracking capabilities. The control input to the plant is de-
termined as

(6.1) u(t) h(D)(t) + kk(D)(t) + v(t)

for t e [t, t+ )R, and hk(O), kk(D) polynomials ofdegrees n with piecewise constant
coefficients; these polynomials are estimates ofh(D) and k(D) in the fixed control strategy
and they are defined by the respective entries in k. Definition (6.1) and Fig. 3 show the
hybrid nature of the adaptive controller presented, as the feedback loop operates in
continuous time while the parameters of the adaptive compensator (hk(D) and Ck(D))
are updated at discrete times t.

Also, since the systolic array estimation in the previous section provides the same
estimated sequence {_0k} as the recursive version (4.2), the same well-known stability
arguments found in [6], [8] hold for this adaptive controller. Therefore we can conclude
with the following theorem, which can be proved in a way analogous to [1] and [8].

THEOREM. Theplant (2.1) with the estimation algorithm (5.7), (5.8) and the control
input (6.1) is such that, for any uniformly bounded external input v(t) thefollowing holds
with probability one:

(i) All signals and adaptive gains in the loop are uniformly bounded;
(ii) limt.., y(t) ym(t) 0 for any initial conditions, with Ym(t) the output ofthe

reference model (2.3).

7. Performance considerations and conclusions. The adaptive estimation using sys-
tolic arrays described in the previous sections is particularly suitable to block processing
techniques as presented in [6] and 15], for systems where a large number of parameters
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TABLE
Definitions ofoperations.

reset

u(k, k, t)

v(k,k,t)

CELL (k, k)

_z(k, k, t)

IF reset .NOT. TRUE
THEN
c(k, t) C(1, u(k, k, 1))
s(k, t) S(I, u(k, k, 1))

z(k’ k’ [c(k’ t)

v(k, k, t) 0

ELSE

c(k,t)=
s(k, t) 0

[c(k,t)]z(k’k’t)=[s(k,t
v(k, k, t) u(k, k, 1)

ENDIF

u(k, j, t)

_u2(k, j, t) l(k, j, t)-
y(k, j, t)

z_(k,j,t)
a(k, j, t) F(u(k, j, 1), a(k, j, 1), u_2(k, j, 1))
y(k, j, t) G(u(k, j, 1), a(k, j, 1), u__(k, j, 1))
z_(k,j, t) u_2(k,j, 1)

Definitions C(a, u) u/(u + a2); S(a, u) a/(u + a2)

F(u,,a, U2) _u’[’]
G(Ul ,a, U2) ufra,

has to be estimated. In particular the structure ofthe adaptive controller for multivariable
systems ], 17] is identical to the one presented above, with the difference that the
parameter vector/9* encloses all the parameters of the multivariable compensator. It is

v(t)
+ u(t) _j" r

parameter estimation

FIG. 3. Direct adaptive control.
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Initialize
array P

t t,

Transfer data
PI to P2

1 time

solve
for _k+

FIG. 4

easy to imagine how the complexity ofthe computations to be executed on line increases
with the order of the system and its number of inputs and outputs.

In a standard RLS implementation as in (4.2) the sampling interval Tin the sequence
(3.1) must take the computation time into account, in order to guarantee a steady
throughput of information without accumulation of data. It is clear that for the RLS
algorithm (3.1) the sampling time interval T cannot be smaller than the time it takes to
compute the new estimate, which is ofthe order O(n2) due to the required on line matrix
manipulations. On the other hand because ofthe very nature ofthe systolic array structure,
new data (t) can enter the array fight after each cell has performed its local computation,
which is independent ofthe complexity ofthe system (its order n). Therefore the sampling
time T is of the order T O(1).

The time-consuming part of the parallel implementation occurs at the end of the
time block, when the data from the array (i.e., the triangular matrix R(N- 1) and
k(N- 1)) are transferred to the processor P2 and the linear system (4.8) is solved. This
time delay, which occurs only once for each time block, increases linearly with the plant
complexity n, as Td O(n). Figure 4 summarizes these considerations.
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SENSITIVITY ANALYSIS OF DIGITAL FILTER STRUCTURES*

VICTOR E. DEBRUNNER AND A. A. (LOUIS) BEEX"

Abstract. A reasonable coefficient sensitivity measure for state space, recursive, finite wordlength, digital
filters is the sum of the L2 norm of all first-order partial derivatives of the system function with respect to the
system parameters. This measure is actually a linear lower bound approximation to the output quantization
noise power. An important feature of this measure is that it can be broken down into evaluations of ARMA
auto- and cross-covadance sequences, both of which can be computed efficiently and in closed form. This
efficient closed form computation is a big improvement over the computational methods used by previous
researchers. Their limited methods produced only approximations to the sensitivity measure and wasted computer
time (i.e., these methods are open form solutions). The direct form II sensitivity, which is shown to be approx-
imately inversely proportional to the sum ofproducts ofsystem pole and zero distances, can, as a result, usually
be reduced by the judicious placement of added pole/zero cancellation pairs. These cancellation pairs provide
extra degrees of freedom which are used to minimize the sensitivity measure while not affecting the system
function. This new filter still has the convenient direct form II structure.

Key words, sensitivity, L2 norm, ARMA covariances, pole/zero cancellation pairs, quantization noise
power

AMS(MOS) subject classification. 94C99

1. Introduction. Much effort has recently been concentrated on the development
of state space, recursive digital filters with low, or minimum, output quantization power.
Jackson [12], [13], Kawamata and Higuchi [17], Tavsanoglu and Thiele [28], and Rao
[26] have all examined the relationship between the coefficient sensitivity and the output
quantization noise power; the sensitivity measure is a linear lower bound to the nonlinear
output quantization noise power. Mullis and Roberts [22] and Hwang [11] developed,
by different methods, the theoretical aspects of minimum noise filters as well as the
practical computation of this optimal form. Recognizing that this optimal form has in
general a full state space description, Mullis and Roberts developed a block-optimal form
which is near optimal but has only 4n coefficients instead of the n(n + 2) coefficients of
the optimal form. Later, Jackson, Lindgren, and Kim [14] developed a set of design
equations for optimal second-order sections. Easily computed, this section-optimal form
is identical to the block-optimal form above for parallel subfilters, while less optimal for
cascaded subfilters. Continuing this process of eliminating coefficient count at the expense
of added output quantization noise, Bomar and Hung [2] and Bomar [3], [4] have de-
veloped near-optimal second-order structures with constraints placed on the coefficient
values so that some become structural ones and zeros while others become exact powers
oftwo, thus making multiplications become simply shifts ofthe binary point. This above
form is still less optimal than even the section-optimal form.

From a differing viewpoint, several researchers have devised design methods that
use structures with known low output quantization noise power as the basic building
blocks for the desired filter function. Among these building blocks are the wave digital
filters of Fettweis [9] and their special case, the wave lattice digital filters [10]. Constan-
tinides and Valenzuela [5], [6] noted the applicability of using all-pass functions to im-
plement these filter types. Then, realizing the low output quantization noise power in
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sachusetts on August 12-14, 1986.
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the pass-band, Vaidyanathan, Mitra, and Neuvo [29] developed a synthesis approach
suitable for the design of low-pass filters which have low quantization noise power in the
filter pass-band frequencies; however, the stop-band frequencies may have large noise
powers, thus creating large output quantization noise power problems.

We look here at a completely new approach to the design oflow output quantization
noise power filters which do not have too many added filter coefficients; we increase the
system order of canonical direct form II structures (as described in [24], [19], [15], [25],
[27]) so as to reduce the output quantization noise power and not to change the system
transfer function. We use the direct form II filter form because it is easy to compute,
because it requires only 2n coefficients to implement, and because the sensitivity measure
can be easily examined and simply reduced. In the process, we introduce the sensitivity
measure and cursorily examine its validity by deriving it from both deterministic and
stochastic system viewpoints. We also show a computational method which is both simple
and very efficient, a marked improvement over earlier procedures.

2. The sensitivity measure. The sensitivity minimization will be based on the fol-
lowing state space description for a digital filter with impulse response hn and rational
transfer function H(z):

Xk + AXk + BUk,

(2) Yk CXk "-t- dUk

where x is the state vector, u is the input, and y is the output. Note that A is an (n n)
matrix, B is an (n 1) vector, C is a (1 n) vector, and d is a scalar. Further, the system
transfer function is

(3) H(z) C(zI-A)-lB + d.

Also, the state space representation {A, B, C, d} is not unique. For any nonsingu-
lar (n n) matrix T, the system has the algebraically equivalent state space description
T-IAT, T-B, CT, a}.

Two different interpretations, one deterministic and the other probabilistic, exist
for determining the sensitivity measure. In the deterministic view, the classic linearization
procedure is used to approximate the nonlinear quantization effects. In the probabilistic
view, the nonlinear quantization effects are modeled by injected noise sources. Both of
these interpretations have merit and since they both generate the same final sensitivity
measure, they lend credence to each other.

First, we examine the deterministic case. The filter H(z) is a function ofthe parameter
set 3" [3’1, 3"l, "’", 3"t], where both and 3" depend on the particular implementation
used. The set 3" is the quantization of the set 3", which is the set of ideal coefficients. If
we expand the filter using a Taylor series around the ideal filter, the actual filter H(z)
that is implemented can be represented, as in Fig. 1, by the parallel combination of the
ideal transfer function H(z) described by 3’o and the error or stray transfer function
Hstray(Z). Considering only the first-order terms by truncating the higher-order terms of
Hstray(Z) (i.e., linearizing around the ideal transfer function) gives

OHt(z)
H(z)- H(z) + 63"

(4) 03"

OHt(z; 3"-H(z)+ 3’O3,
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Ideal Filter
H(z)

Yk

Stray Filter
Hstray(Z)

FIG. 1. The linearized system.

where

OHt(z) [ OH(z) OH(z).. OH(z)](5)
O Ol 0’l’2 0’1

The L2 norm, as described first by Tavsanoglu and Thiele [28] and later by Rao
[26], yields a sensitivity measure; the square of the L2 norm of the eor (stray filter) is
ven by

f 2dz fOH(z;)]2(6)
2j aT z i= oTi

From the probabilistic viewpoint, the exact nature of the quantization effects is
unceain, which leads to the statistical model of Fig. 2. Note that the quantized branch
is modeled as the ideal branch with a quantization noise te added. This added quan-
tization noise is such that for the same input signal both branch models have the same
output signal. The quantization noise tes are modeled using the following standard
assumptions [24]"

(1) The sequence {6i,,} is a white noise process.
(2) The eor sequences are uncoelated with the other eor sequences.
(3) The eor sequences are uncoelated with the input u,.
(4) The probability density function of the eor process is uniform over the range

of quantization eor.
These assumptions lead to a linear probabilistic model for coefficient quantization.

Heuristically, the model is valid when the input signal is sufficiently complex and the
quantization steps are sufficiently small so that the amplitude ofthe input signal is likely
to traverse many quantization levels from sample to rumple. This model is supposed
empirically [24], where speech signals quantized to as low as eight bits exhibited these
propeies. The use of the above probabilistic model leads to the following state space
descriptions for the effect of quantizing sine parameter branches:

(7a) H(z) (C+ 6cge)(zI- A)-B,

(7b) H(z) C(zI-A)-(B + 6be3,

(7c) H(z) C(zI-(A + 6aoee))-B
where e is the unit length vector with a one in the ith position and zeros elsewhere. Note
that assumptions 2 and 3 above allow the separation of the eors as described in (7).

Note that in this and all other integrations in this work, f denotes contour integration along the
unit circle of the z-plane in the counterclockwise direction.
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’, Q[3"i] w,

FIG. 2. The probabilistic model.

Clearly, the coefficient quantization errors in the C vector (7a) are propagated through
the system function as

(8) 6cie[(zI-A)-B 6el OH(z---)
Oci

(see (16)) while the coefficient quantization errors in the B vector (7b) are propagated
through the system as

OH(z)
(9) C(zI-A)

Ob
(see (15)). To separate the coefficient quantization errors in the A matrix, we use the
Sherman-Morrison formula [30]

[(zI-A)- eie6aij]-’ (zI-A)-’ + (zI-A)-’e’e(zI-A)-6aij
e(zI-A)-ei6ao

Thus the output error transfer function is given by

C(zI-A)-eie(zI-A)-B6ao
e(zl-A)-eiao

By the assumptions on the quantization, the denominator is very close to one; thus the
error term is approximately given by

OH(z)
(10) C(zI-A)-leieJ(zI-A)-Bfaij taij

Oaij

(see (17)). Thus, we finally can describe the system as in Fig. 3.

signal in signal out output

independent
noises

noise out

FIG. 3. The probabilistic system.
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Taking the mean square value of the error (output noise) terms gives

OHt(z; "/) OH(z; ’Y ) 2

--z
where ao is the noise variance of a single quantizer ofthe system. Since the quantization
assumed is rounding, E[’y’i] 0 and the variance is given by

(12) ao 2-2b
12

where b is the coefficient wordlength in bits. This probabilistic criterion has been used
by several researchers 18] to quantify the transfer function degradation caused by finite
wordlength effects.

Noting the similarity between (6) and (11), Rao [26] defined the L2 norm sensitivity
measure $2 as

f OH(z) OH(z-I) dz

i=

(13) flOH!z)12dz_--i= o,.r, z

OH(z)
03’i

where the 3’i are the nonstructural coefficients (i.e., the coefficients that are # 0 or # + 1)
of the {A, B, C} state space description.

For further justification of using the $2 measure as an indication of output quan-
tization noise power, Jackson 12] has derived roundoffnoise bounds from these coefficient
sensitivities. Of special interest is the lower bound

(14) aoS2 =<
where ae is the filter output quantization noise variance. That $2 is a lower bound for
o is also evident from Fig. 1, remembering that Sz is the output power of a truncated
form of the stray transfer function. Calculating the output variance of Ostray(Z (with all
the terms present) gives an infinite sum of auto-covariance terms because all the cross
terms go to zero under the assumption that the quantization noise sources are statistically
independent from each other and the input signal source. Remember that $2 is only one
of these auto-covariances, although it will be the largest one because of the order. The
lower bound of (14) was shown empirically by Jackson to be a rather tight bound; thus
S_ is closely related to the output noise power (data presented in the example section
confirm the boundedness). Since one number, i.e., the coefficient sensitivity measure Sz,
describes the filter quantization noise power, the problem of identifying low roundoff
noise filters is made conceptually easy.

3. Computing the sensitivity measure. In this section we concern ourselves with
calculating the sensitivity measure S. First we determine the necessary partial derivatives.
The partial derivatives, with respect to bi and c;, of H(z) in (3) lead directly to the first-
order sensitivity functions:

(15) OH(z_) C(zi_ A)_lei,
Ob

(16)
OH(z)

e(zi_A)_B"
Oc
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Somewhat more difficult to determine are the sensitivity functions for the coefficients of
the A matrix. Using the mathematical identity

gives

Oa
-A-

OH(z)
-C(zI-A)-’ O(zI- A) (zI-A)-B

Oao Oao
or

which is simply

OH(z)
Oao

C(zI-A)-leiefi(zI- A)-B

17
OH(z) OH(z) OH(z)
Oa0 Ob Oc

Notice that these sensitivity functions are rational functions with the same poles as the
original transfer function, H(z); thus, the unit circle is in the region of convergence of
the integrand. Evaluation of these partial derivatives is simply a matter of computing
transfer functions from the state space description. We will not discuss this well-known
problem, but merely refer the reader to Melsa [20] for an effective comment on this
subject.

The complex integration necessary in computing the sensitivity measure is recognized
to be a covariance of the ARMA system H and H2 of Fig. 4 at lag k 0 with the system
input being zero mean white noise; i.e.,

ifrxy(k) Hl(Z)n2(z-l)zk- dz.

This integration is performed using an algorithm for the calculation ofARMA auto- and
cross-covariances presented by Dugre, Beex, and Scharf [8] and by Beex ], respectively.
Note that an auto-covariance is generated when H(z) HE(Z) in Fig. 4 and that we are
then not required to imbed the polynomials in step of the general cross-covariance
algorithm given below since D(z)= DE(Z). The cross-covariance algorithm requires
four steps.

(1) Imbed the polynomials

DI(Z) Dl(2)D2(2), D2(2) Dl(2)D2(2),

N(z) NI(z)D2(z), ]2(Z) D (z)N2(z)._
DI(Z)D(z) Uk

Nl(z)D2(z) 9

Nz(z)D(z)
D2(z)DI(Z) l)c

Nl(Z) N2(z)
HI(Z) n2(z)

Dl(Z) D2(z)

FIG. 4. The covariance generator system.
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(2) With J(z), use scalar Levinson recursion to generate the auto-covariance of
the AR part, checking the magnitude of the reflection coefficients to determine system
stability and thus covariance generation sensibility.

(3) From -2(z) and/(z) determine j0 from the convolution

)k ()-k.(,)

where the fi2 are the coefficients of)2(z) and the (z) and the fk are similarly defined.
(4) Convolve the AR auto-eovariance with to get the ARMA cross-ovariance

secluenee rk, k O, 1, 2, n.
The value of the required contour integral is then equal to to. This algorithm is

simple to implement on the computer and yields good numerical results except where
noted in 5.

Since all the partial derivatives are rational functions with the same poles as the
original function, the unit circle is in the region ofconvergence ofthe integrand (assuming,
ofcourse, that the system is stable). Hence, the sensitivity measure may be viewed as the
sum ofthe variances of stable, rational ARMA systems. We have just shown that we can
compute these variances efficiently and in closed form, a marked improvement over the
three computational methods which previous researchers used. As will be clear, we have
achieved both accuracy and computational efficiency and gained a computational gen-
erality previously unattained. The following is a discussion of these methods.

(1) Tavsanoglu and Thiele [28] defined

SA(Z)
Oaij ao O, +

i=lj=

OH(z)
bO,+l,(18) SB(z’)

Obii=1

OH(z)
Sc(z) c0,_+l

j= OCj

and using these relations, defined the sensitivity measure as
2(19) S- IISll" Ilacll + IISIIN / Ilacll=.

Clearly, this measure is an upper bound approximation to our $2 given by (13), seen by
using (17) and the Cauchy-Schwartz inequality to give an upper bound to IIsll, i.e.,

IISll-IISScll <- IISil. IlScll.
Now, Tavsanoglu and Thiele compute their upper bound approximation to $2 by noting
that [22], [28]

(20) IIsll= wii=tr W, biO,+l
i=1

and
n

(2) IlScll= kjj=tr K, cj0,+l
j=l

where Wand K are the observability and controllability grammians, respectively. These
grammians are the solutions to the Lyapunov equations

(22) K AKA 4- BBt, W AtWA 4- CtC.



SENSITIVITY ANALYSIS OF DIGITAL FILTER STRUCTURES 113

It is well known that the solutions are the infinite sums

(23) K= AiBBt(At), W= . (At)JCtCAj.
i=o j=o

Truncating these infinite sums at some finite i, j gives an approximation ofK and Wto
a given accuracy and thus gives an approximation to the upper bound S. These com-
putations are time-consuming; also their accuracy is circumspect [22]. Furthermore, we
can only compute an upper bound, because of the simplification in (19).

(2) Rao [26] takes a slightly different approach to the computational problem. He
notes that

n

(24) II&ll II&ll IIsc11+2 Z ’WiA eie)A ’K, ao 0, +
i=lj=lp=l

where Wi and Kj are the ith andjth columns of Wand K, respectively. Thus, $2 may be
computed exactly by

(25) s: IIsllzz. IIscllz + IIsll + IIscll + 2 Z Z W[APeieAK.
i=lj=lp=l

As in Tavsanoglu and Thiele’s computational method, we must approximate infinite
sums by finite ones.

(3) Alternatively, Knowles and Olcayto 18] suggest the less elegant method shown
in Fig. 5 to calculate the variances necessary in computing the sensitivity measure. Again,
however, we must evaluate approximations to infinite sums, and this evaluation is both
wasteful of computer time and only as accurate as the approximation allows.

Our method of calculation is both more efficient and more accurate than the above
three methods since it is a closed-form method.

To digress a moment, it is clear from the above discussion that the controllability
and observability grammians may also be solved in closed form. The controllability
grammian K may be computed as

(’10H(z)OH(z-)dz- i=1,2,.-.,n, j=12,, ...,i.(26a) k j, Oci Oc; z

Since K is symmetric, we need only calculate 1/2n(n + 1) terms, not the n elements as
would otherwise be needed. Thus, the controllability grammian can be efficiently evaluated
via a closed-form, exact procedure.

(1) If j, then perform an auto-covariance computation with the ARMA co-
variance generator.

(2) If 4: j, then perform a cross-covariance computation with the ARMA covariance
generator.

FIG. 5. Variance generator used by Knowles and Olcayto.



114 V. E. DEBRUNNER AND A. A. BEEX

Of later importance, observe that the controllability grammian for a direct form II
state space filter is the covariance matrix

ro rl r2 rn-i

K rl ro rl rn- 2

r-i rn-2 rl ro
where

I" OH(z) OH(z-)
z- dz, k=O, 1, ,n-(26b) rk J 0 0

and is any valid subscript. The rk are the auto-covariance sequence members of the
partial derivative system in (26b) and may thus easily be computed in exact closed form
by our ARMA covariance generator. Similar to the controllability grammian, the ob-
servability grammian W can be computed as

f OH(z)OH(z-)dz i=12,, .-.,n, j=12,, ...,i.(27) Wij -J Obi Ob z

Since W is symmetric, we need only calculate 1/2n(n + 1) terms, not the n2 elements as
would otherwise be needed. As in the controllability grammian, the observability gram-
mian can be efficiently evaluated via a closed-form, exact procedure.

(1) If j, then perform an auto-covariance computation with the ARMA co-
variance generator.

(2) If 4: j, then perform a cross-covariance computation with the ARMA covariance
generator.

Thus, we can efficiently calculate both grammians K and W in closed form.

4. Output quantization error. For completeness, it is necessary to compute an es-
timate for the output quantization noise power; this calculation corroborates the $2 mea-
sure as shown in (14). Hence the calculation of the roundoff noise power is important
for verification purposes. Note that we are calculating the true output noise variance of
the error transfer function, Hstray(Z), which was described in 2.

4.1. The error state space description. Under finite wordlength conditions, the ele-
ments ofA, B, and C, as well as the scalar d, are constrained and the corresponding state
space representation becomes

(28) 2,k +1 A.fk + JUk,

(29) 29k 2,k + dUk
where denotes a quantized entity. The quantization of the input Uk is ignored since we
are studying system generated quantization noise only. Thus the error ek Yk k is the
difference between the ideal (infinite wordlength) output Yk and the quantized (finite
wordlength) output

The error state space filter can be constructed as follows:

or,

(30)
x] + (d- d)ue [c,-] .
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with a corresponding system equation:

Consequently, the error transfer function He(z) is given by

0 -l

Now the output eor variance is

f )dz(33) H(z)H(z-
z

Clearly, the quantizations that occur when foxing , , d, and d in (32) depend
on the form of the state space realization (i.e., on the fo of the A, B, and C matrices).
Fuhermore, the quantizations determine the exact form ofH(z). Thus, the state space
realization affects in (33) and we expect to be able to classify filter realizations that
minimize the output noise power.

4.2. Block diagram view of output noise. Alternatively, we may view the output
eor as the difference in output of H(z) and (z) when dven by the same input (see
Fig. 6). The output noise va6ance, E e} a, can be readily found as follows:

E{e} E{(y-)}

or
2 2 2(34) ae ay + a;- 2ay.

This computation is easily performed as follows:

Thus, can alternatively be computed using the cross-co,elation tes together
with the two auto-co,elation terms @ and .

5. efiel emtfi tes. During the course of imNementing and using the
above sensitivity measures, two numerical problems in the cross-covafiance generator
were noted.

(1) Poles close to the unit circle may migrate to unstable positions outside the unit
circle as a result of creating the higher-order (imbedded) olynomials in step of the
ARMA auto- and cross-covafiance generator algorithm.

Uk_ r.
ek

FIG. 6. The error system block diagram.
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(2) Precision error in the last convolution of the algorithm (step 4) may actually
produce a resulting negative auto-covariance, especially when large numbers are altemately
added and subtracted!

The first problem may be eliminated by progressively increasing precision since the
backward Levinson recursion of step 2 of the algorithm may generate large errors from
small errors caused by the polynomial multiplication of step 1. This error was studied
in detail by Cybenko [7]. The second problem is more difficult to anticipate and so, as
discussed earlier, two methods to determine ae2 were developed. The second method
described by (35) appears to be numerically superior to that of (33), and so is generally
preferred in calculating ae. This superiority was determined empirically from the example
systems, but intuitively the reader should expect this superiority since the second method
does not require a doubling of the system order. We note that these problems show up
specifically when designing and analyzing filters approximating ideal characteristics in
which poles are located almost on the unit circle.

6. Sensitivity of low-pass direct form II digital filters. A commonly used filter design
technique is to determine the desired filter characteristics, then translate these charac-
teristics to their corresponding low-pass filter equivalents, and finally design this nor-
malized low-pass filter. The low-pass filter is then frequency transformed back to the
desired type: either low-pass, band-pass, band-stop, or high-pass filter. Because of this
practice, it is logical to first look at low-pass filters and then determine the characteristics
related to their sensitivity measure which can be used to advantage.

6.1. Basic low-pass filter description. Of great interest to us is the fact that the
poles are clustered near z inside the unit circle and have magnitudes close to one.
The sensitivity measure S of a direct form II filter will be shown to be approximately
inversely proportional to the system pole distances. This is as follows [24]. Given the
ideal system transfer function

blz-I at- b:zz-2 + at_ bmZ-m m<nH(z) d+
az- az-- a,,z-"

(36)
N(z)
D(z)

Express the denominator, D(z), as

(37) D(z)= 1- az-= fi (1-pz-)
j=l j=l

where the pj are the simple poles of H(z). From calculus,

OH(z)
(38)

which can be rewritten as

Opi OH(z) /OH(z)
Oaj Oaj

pi/ Pi pi

N(z) OO(z) / N(z) OO(z)
(39)

D(z)
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Taking the required derivatives using (37), the pole sensitivity can be rewritten as

(40) Op__j -j

Oaj [I’]/ (Pi PD
Similarly, the numerator N(z) can be written

m m

(41) N(z) , b;z- bo I-I (1 z;z-’).
j=0 j=l

As for the denominator, the zj are the simple zeros of H(z). Parallel to (38), the zero
sensitivity can be determined from

OH(z)] Oz,_OH(z)[(42)
Oz iz=,Obj Obj z=z,

which can be rewritten as

Ozi
Ob

OH(z) OH(z)

(43)
ON(z)

D(z) Oa ON(z)[D(z) Ozi

ONe:) ION z)
Obj Iz:z,I OZ, ’[z::,

which from (41) reduces to

OZ Z -j

(44) 0--ff I-I/ i(zi- zt)"

It is important for us to interpret this latter result in terms ofthe sensitivity measure
$2. From the definition of the $2 sensitivity measure, an alternate way of writing $2 for
the direct form II state space is

(45) $2=--) Oasl + Ob, I--;"j=l i=l

(The coefficients of the direct II form state space are coefficients of the system function
H(z).) Equations (39) and (43), along with (45), show that the $2 sensitivity measure is
proportional to the pole and zero sensitivities. Note that

(46)
OH(z)
Oak

which can be rewritten using (37) as

(47) OH(z__)
Oak

and similarly,

(48)

D2(z z

N(Z) Zn k

D(z) I-[7:1 (Z pj)

OH(z)
Obk D(z)

z-k

N(z) zn k

D(z) H7= (z z)"
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Both (47) and (48) are similar to the pole and zero sensitivities of (40) and (44), with
H(z) as a weighting function. Further, the $2 sensitivity measure is evaluated as the
complex contour integral on the unit circle of the z-plane while the pole and zero sen-
sitivities of (40) and (44) are only point evaluations at the pole and zero locations of the
system (i.e., the sensitivity measure is an integration over all z on the unit circle). In
practice this difference is of limited consequence, as the partial derivatives ofthe transfer
function appear to approximate delta functions, thus making the integration itself close
to a point evaluation. Since the pole and zero sensitivities are inversely proportional to
the system pole and zero distance, the $2 measure is also approximately inversely pro-
portional to the system pole and zero distances. Since the sensitivity measure is weighted
by the system transfer function, only that output quantization noise power in regions
of practical importance (i.e., the noise power in frequencies passed by the filter) are con-
sidered.

Using (40), Kaiser [15], [16] showed that small errors in the coefficients can create
large pole displacements from the ideal design. Coefficient quantization errors belong to
the category of small errors, and so one would expect large $2 sensitivities (and thus large
quantization noise power) in narrow bandwidth low-pass filters, where the poles are
tightly clustered.

6.2. Reducing direct form II low-pass filter sensitivities. Until recently, the principal
method of reducing large roundoff noise power has been the classical analogue filter
design approach of breaking large-order filters into cascaded or parallel second-order
sections. Here, the complex conjugate poles are isolated from each other, and so the error
in each pole is independent from its distance to all the other poles in the higher order
system, thus reducing the overall system output quantization noise. However, forms have
been developed that minimize the roundoff noise. The cost of this form is increased
complexity; the transformation to the optimal form causes the {A, B, C} state space
description to be filled with nontrivial coefficients [22]. However, Mullis and Roberts
[22] presented their block-optimal form and Jackson, Lindgren, and Kim [14] their
section-optimal forms which have near-optimal output quantization noise power and
reduced complexity.

Since the direct form II is trivial to compute (i.e., the state space coefficients are
identical to the transfer function coefficients), the idea of reducing its sensitivity without
altering its form is the attractive idea we pursue here. Equations (40) and (44) suggest a
procedure for reducing the direct form II sensitivity by adding poles and zeros; because
the transfer function must remain unchanged, the added pole must have a corresponding
zero while any added zero should also have its identically related pole. In the case of
low-pass filters, all the poles are at low frequencies and so are grouped near z in the
z-plane. Clearly, if a pole/zero cancellation pair is added at a high frequency (near z
-1 in the z-plane), the sensitivity must be reduced because the added pole distances are
greater than one. We also see that additional reductions in filter sensitivity can be achieved
by adding a complex conjugate pair of pole/zero cancellations. For a comparison of the
system complexity, note that an nth-order optimal form has n(n + 2) nontrivial coefficients
and the block-optimal form has 4n while the (n + 2)th-order (with two added degrees of
freedom) direct form II has only 2(n + 2) nontrivial coefficients. Clearly, the reduced
coefficient count begins to be beneficial for systems with order as low as two, and, as the
order of the original system grows, the savings becomes an important issue. Problems
associated with this method as pertaining to system order, system bandwidth, and system
stability are best described in detail with their corresponding examples. At present it is
sufficient to say that the method works best on small systems which do not have narrow
bandwidths.
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7. Examples. To illustrate the range of sensitivities for different implementations
of the same system function, the third-order low-pass filter used by Hwang 11 was
examined. The system has transfer function

0.7930672 lz-1 + .023016947z-2 + .0231752363z-3
(49) H(z)

1.974861148z-l + 1.556161235z-2-.4537681314z-3"

The forms and their sensitivities are as follows.
(1) The direct form II sensitivity measure is 93.714442.
(2) The cascade form sensitivity measure is 43.511076.
(3) The parallel form sensitivity measure is 15.698915.
(4) The optimal form (coefficients computed in 11 ]) sensitivity measure is 8.816327.
(5) The block-optimal form (coefficients computed according to the design equations

given in [14]) sensitivity measure is 7.338480. Note that this is lower than the optimal
form of Hwang in item 4 above, which may be due to not actually having the optimal
form coefficients. In any case, the representation is nearly optimal.

(6) The section-optimal form (coefficients computed according to the design equa-
tions given in [14]) sensitivity measure is 24.787467.

The output quantization noise power estimates for the above implementations at
various wordlengths are shown in Fig. 7 and the close relationship (refer to (14)) between
$2 and ae2 is shown in Fig. 8 for the direct form II and the optimal form. Clearly, for this
particular filter, all forms are relatively insensitive to coefficient quantization; even the
direct form II is only an order of magnitude more sensitive than the optimal forms.

-so.o

-75.0

-10o.0

-125 0

o -150.0z
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FIG. 7. Output quantization noise power.
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FIG. 8. The sensitivity as a lower bound ofthe quantization noise power.

To experiment, a single real pole/zero pair is added to the direct form II filter of
(47). The sensitivity measure as a function ofthe location ofa real pole/zero cancellation
pair is given in Fig. 9, and it reveals a minimum sensitivity comparable to the sensitivity
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FIG. 9. Sensitivity offourth-order implementations.
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of the cascade realization, $2 36.601496, with the single real pole/zero cancellation
pair added at z -.952450. The added pole/zero pair has increased the system order
by one, thus adding two nontrivial coefficients above the number required for the original
order direct form II model. The sensitivity of the filter has been reduced, but has the
transfer function been changed in the process? Ideally, a pole/zero cancellation will leave
the system transfer function unchanged, but without infinite precision wordlengths, the
impulse response will change, however imperceptibly. This change, given in Fig. 10,
shows that the system function has hardly been changed at all. As commented previously,
further improvement in sensitivity can be realized when a complex conjugate pair of
pole/zero cancellations is added.

From the sensitivity surface of Fig. 11, a location in the z-plane is found which has
a sensitivity lower than the minimum sensitivity achieved by adding only a single, real
pole/zero cancellation pair. A sensitivity, $2 18.562108, is obtained when a pair of
pole/zero cancellations are added at radius r .908248 and angles 0 +__ 150.981 degrees
in the z-plane. This sensitivity is comparable to the sensitivity ofthe parallel description,
while not quite twice as sensitive as the optimal form. Again, the cost is not too great
since only four nontrivial coefficients are added. Also, as before, the transfer function
has only changed to the same extent as above.

To summarize the improvements, Fig. 12 compares the output quantization noise
power ofthe optimal and various direct form II implementations ofthe third-order filter.
Note that the higher-order, reduced sensitivity direct form II have lower output quan-
tization noise power at every bit wordlength than does the third-order original direct
form II filter. Also, both of these direct form II filters actually have lower output quan-
tization noise power than the optimal form at certain wordlengths.

To show that the added pole/zero cancellation approach will reduce the sensitivity
for larger-order systems as well, a new example filter is introduced. Larger sensitivity
reductions are expected because of the pole placements (and thus the pole distances),
but the direct form II sensitivity will also be intrinsically much higher because of the
higher number of poles and corresponding pole distances which are much less than one.
The filter is a tenth-order all-pole low-pass function with system transfer function

(50) n(z)
N(z)
D(z)

where

N(z) .211348904z-,
D(z) 5.24714092z- + 14.6742367z-2 27.2976798z-3

+ 37.1004172z-4 38.082725z-5 + 29.9060915z-6

17.7209547z-7 + 7.66182077z-s 2.20028154z-9 + .339082688z-.
The direct form II has $2 2,109,022,068.714. Placing a complex conjugate pair ofpole/
zero cancellations at radius r 0.99 and angle 0 + 180 degrees in the z-plane reduces
the sensitivity measure to $2 199,434,498.555. Clearly we have reduced the sensitivity,
but the filter still remains inordinately sensitive.

For narrow-bandwidth low-pass filters, the coefficient sensitivity can also be reduced
using this method; however, because coefficient sensitivities of direct form II, as well as
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cascade and parallel, implementations increase as bandwidths decrease under frequency
transformations and the optimal form sensitivity is invariant to frequency transformations
(Mullis and Roberts [23] and Kawamata and Higuchi 17]), the reduced sensitivity does
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not approach sensitivity ofthe optimal form. For verification, consider the example used
by Kawamata and Higuchi. This example has transfer function

N(z)
(51) H(z) d+

D(z)

where

d .00000869,

N(z) .000627(. 108543 z-1 + .0067z-2 +. 104730z-3 + .00193z-4),
D(z) 3.826389z-l + 5.516625z-2 3.551099z-3 + .86102z-4.

The transfer function is extremely narrow-band. The optimal form has sensitivity measure
$2, equal to 58.327987, as compared to the direct form II, which has a sensitivity of
18,933,029.42. Clearly, the direct form II would not normally be used when accuracy is
important, as it is many times (3.25 105) more sensitive than the optimal form. Placing
a double pole/zero pair at -.98 on the real axis in the z-plane causes a reduction in
coefficient sensitivity ofthe direct form II to 1,857,725.66, an improvement ofone order
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FIG. 12. Comparison ofthe optimal and reduced sensitivityforms.

of magnitude (10.2). However, the reduced sensitivity is still not close to that of the
optimal form; the sensitivity is four orders of magnitude greater.

8. Conclusions. Here we have shown the relationship between the sensitivity mea-
sure and the output quantization noise power. Efficient methods for calculating both the
sensitivity and the output quantization noise power are given, and comparisons to previous
computational procedures are made. Computational problems are discussed, and methods
to alleviate them are presented. Next, the direct relationship between the pole and zero
sensitivities and the sensitivity measure is exploited to reduce the system output quan-
tization noise power of low-pass, direct form II digital filters by the introduction ofju-
diciously placed pole/zero cancellation pair(s). Low-pass, relatively low-order filters de-
signed this way are competitive with optimal designs. These cancellation pair(s) do not
affect the system transfer function. Even though our approach also works for narrow
band, high-order filters, the corresponding designs are in that case not competitive with
the optimal design.
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Abstract. Computable, guaranteed error bounds are presented for controllable subspaces and uncontrollable
modes, unobservable subspaces and unobservable modes, supremal (A, C) invariant subspaces in ker D, supremal
(A, C) controllability subspaces in ker D, the uncontrollable modes within the supremal (A, C) invariant subspace
in ker D, and invariant zeros. In particular the bounds apply in the nongeneric case when the solutions are ill-
posed. This is done by showing that all these features are eigenspaces and eigenvalues of certain singular matrix
pencils, which means they may all be computed by a single algorithm to which a perturbation theory for general
singular matrix pencils can be applied. Numerical examples are included.
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1. Introduction. We consider the general linear system

B2 Ax+ Cu,
y Dx+ Fu

where A and B are n by n, C is n by k, F is p by m, and D is p by n. We assume B is
nonsingular for reasons given in 4.

Associated with (1) are the following features we would like to compute: uncon-
trollable subspace, unobservable subspace, maximal (A, C) invariant subspace in ker D,
maximal (A, C) controllability subspace in ker D, uncontrollable modes, unobservable
modes, invariant zeros, and uncontrollable modes within the maximal (A, C) invariant
subspace in ker D. (These features will be defined more precisely in 4.)

All of these features may be ill-posed, i.e., arbitrarily small changes in A, B, C, D,
and F may change them completely. If, for example, the system has r uncontrollable
modes, almost any perturbation of A or C will make them disappear. However, if we
restrict the perturbed system to have the same structure as the unperturbed one (e.g., to
have r uncontrollable modes), then they will vary continuously with A, B, C, D, and F.
The set of systems (A, B, C, D, F) with a fixed structure forms a lower-dimensional
surface in the space of all systems.

Despite this potential ill-posedness these features are important in practice because
the physical structure of a system may force it to have a fixed structure, in which case
we would like to compute it accurately. It is also of interest to know if a system is close
to one with a given structure, as the system may display an instability associated with
that structure. For example, if a system is close to one with an uncontrollable mode, it
may take very large feedback to move that mode.
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There are a number of good algorithms available to compute the features listed
above [8], [9], [15], [16]. They share two important properties. First, they are backwards
stable, i.e., they compute the features exactly for a slight perturbation ofthe system given
as input. The user may limit the size of the perturbation the algorithm will permit.
Second, they attempt to find a slightly perturbed system with as much structure as possible
within the user’s size limit on the perturbation. By "as much structure as possible" we
mean the most uncontrollable modes, the largest unobservable subspace, etc. Thus, for
example, ifthe system (A, C) is sufficiently close to one (A’, C’) with three uncontrollable
modes, but rather farther from a system with more, the algorithm will compute the
controllable subspace of dimension n 3 and three uncontrollable modes of (A’, C’).
Another way to say it is that the algorithm projects the system (A, C) onto a nearby
system (A’, C’) on the surface of systems with three uncontrollable modes, which it
analyzes exactly.

Thus, these algorithms are appropriate in situations where either a system is supposed
to have a fixed structure, or the user is interested in knowing if the system is close to one
with a fixed structure.

In this paper we analyze the accuracy of these algorithms. In light of the preceding
discussion, the perturbation theory we develop answers the following question: If two
systems have the same structure, how does the distance between their computed features
depend on the distance between the systems? For example, if two systems (A, C) and
(A’, C’) both have three uncontrollable modes, how does the angle between their con-
trollable subspaces depend on the distance from A to A’ and C to C’?

Our approach is as follows. First we show that all the algorithms for the features
mentioned above are special cases of a single algorithm for computing the Kronecker
structure of a matrix pencil H- ,G. All the features that are subspaces are reducing
subspaces (or projections of reducing subspaces) and all the modes and zeros are gen-
eralized eigenvalues of particular pencils H )G whose entries depend on A, B, C, D,
and F. Reducing subspaces are the natural generalizations ofinvariant subspaces for the
standard eigenproblem H 2I to the generalized eigenproblem H )G 17]. For a more
complete account of this material, see [18].

Second, we apply a perturbation theory for reducing subspaces and generalized
eigenvalues of arbitrary pencils [4] to the particular pencils of the last paragraph. This
perturbation theory supplies the following information: if two systems (A, B, C, D, F)
and (A’, B’, C’, D’, F’) have the same structure, and if the distance d between them is
less than an upper bound A which is computable straightforwardly from the entries of
(A, B, C, D, F), then the distance between their features is less than r. d, where r is also
straightforward to compute. (We will discuss A, r, and the distance measures we use in
a later section.) In other words, this theory provides guaranteed computable upper bounds
on the error in computed features.

We have implemented an improved version of algorithm RGQZD [5] (a unitary
version of the RGSVD algorithm [9]) for computing the reducing subspaces and gen-
eralized eigenvalues of a matrix pencil H- XG, as well as computing the quantities A
and r in the perturbation theorem. Preliminary numerical experiments are in agreement
with the perturbation theory and also show that the bounds are realistic. We report on
these results in 6.

The paradigm used in this paper, projecting an ill-conditioned problem onto a surface
of problems with a fixed structure to improve the conditioning, is a regularization tech-
nique common in numerical analysis. The canonical example is using the pseudoinverse
to solve nearly rank deficient least squares problems: setting the small singular values to
zero improves the conditioning by projecting the matrix onto the surface of rank defi-
cient ones.
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The rest ofthe paper is organized as follows. Section 2 defines notation and explains
the distance measures we use later. Section 3 records some standard facts about the
Kronecker Canonical Form and reducing subspaces. Section 4 shows how all the control
problems in the Introduction may be expressed as reducing subspaces or generalized
eigenvalues of matrix pencils. Section 5 explains the perturbation theory for reducing
subspaces and generalized eigenvalues. Section 6 contains numerical examples.

2. Notation. Ilxll will denote the Euclidean norm of the vector x. [[AI[ will denote
the matrix norm induced by the Euclidean vector norm. [IA lie will denote the Frobenius
norm, and II(h, n)lle Ilall + Ilnll. tTmin (A) and O’max (A) (-IIAII) will denote the
smallest and largest singular values of the matrix A, respectively. K(A) will denote the
condition number trmax (A)/trmin (A) of the matrix A; this applies to nonsquare A as well.
A (R) B will denote the Kronecker product ofthe two matrices A and B: A (R) B [Aij" B].
Rows (A), columns (A), and rank (A) will denote the number ofrows, number ofcolumns,
and rank of A, respectively. Let cola denote the column vector formed by taking the
columns ofA and stacking them atop one another from left to fight. Thus ifA is m by
n, colA is mn by with its first m entries being column ofA, its second rn entries being
column 2 ofA, and so on. R(X) is the space spanned by the columns ofX and ker X is
the null space ofX. The (largest) angle between two subspaces X and X2 is given by

0max (Xl, X2) max min 0(.X71,)172)
xXl x2X2

where O(x, x2) is the acute angle between the nonzero vectors x and x2.

3. The Kronecker Canonical Form. In this section we briefly review the Kronecker
Canonical Form (KCF), reducing subspaces, and an upper triangular canonical form
with the same information as the KCF but which may be computed stably. The KCF is
a generalization of the Jordan Canonical Form for the standard eigenproblem H XI
to the generalized eigenproblem H- XG. Like the Jordan form, the KCF cannot be
computed stably so instead we compute an upper triangular canonical form we call
GUPTRI (for generalized upper triangular) form which generalizes the Schur canonical
form for the standard eigenproblem. Reducing subspaces generalizes the notion of in-
variant subspaces.

The KCF is defined as follows. Let H and G be m-by-n matrices. Then there exist
nonsingular matrices P and Q such that

(2) P-(H- XG)Q S- AT

is block diagonal: S diag (St, Sbb) and T diag (T, Tbb). We can group
the columns of P into blocks corresponding to the blocks of S XT:P [Pll ]Pb]
where Pi is m by mi, mi being the number of rows of S, ATii. Similarly we can write
Q [Q[ [Qb] where Qi is n by ni, ni being the number ofcolumns ofSii- XTii. Each
block Sii kTii must be of one of the following four forms:

ho-X -X

J(ho) "’. or N -X
Xo- X

J(Xo) is simply a j-by-j Jordan block. X0 is called a finite eigenvalue of the pencil. The
j-by-j block N corresponds to an infinite eigenvalue of multiplicity equal to the dimension
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of the block. The blocks of finite and infinite eigenvalues together constitute the regular
part of the pencil:

The j by j + block L is called a singular block of minimal fight (or column) index j.
It has a one-dimensional fight null space for any ,. The j + by j block Lf is called a
singular block of minimal left (or row) index j. It has a one-dimensional left null space
for any ,. The left and fight singular blocks together constitute the singular part of the
pencil.

If a pencil only has a regular part in its KCF, it is called regular. H- G is regular
if and only if it is square and its determinant det (H- ,G) is not identically zero. Oth-
erwise, there is at least one singular block L or Lf in the KCF ofH ,G and it is called
singular.

In the regular case, H- ,G has n generalized eigenvalues which may be finite or
infinite. The diagonal blocks of S- )T partition the spectrum ofH- ,G as follows:

b b

tr a(H- ,a) [,.J t7(Sii- ,Tii)--- [,.J O’i.
i=1 i=1

The subspaces Pi and Qi spanned by Pi and Qi are called left and right deflating subspaces
of H- ,G corresponding to the part of the spectrum tri[11 ], [17]. As shown in [12],
a pair of subspaces P and Q is deflating for H- XG if P HQ + GQ and dim (Q)
dim (P). Deflating subspaces are determined uniquely by the partitioning tr LJb= tr.
Different choices of the P and Qi will span the same spaces Pi and Q.

The situation is not as simple in the singular use. The following example shows that
the spaces P; and Q spanned by block diagonalizing P and Q may no longer all be well
defined:

II - i 1(3) P(S-XT)Q-1=
x -X 0

0 x
0 0 1-X 0 0 0 0 1-,

As x grows large, the space spanned by Q2 (the last column of Q) can become arbitrarily
close to the space spanned by Q (the first two columns of Q). Similarly the space spanned
by P2 (the last column ofP) can become arbitrarily close to the space spanned by P (the
first column of P). Thus we must modify the notion of deflating subspace used in the
regular case, since these subspaces are no longer all well defined.

The correct concept to use is reducing subspace, as introduced in [17]. P and
Q are left and fight reducing subspaces for H- XG if P HQ + GQ and dim (P)
dim (Q) # (L blocks in the KCF ofH- ,G). In terms of the KCF, Q is spanned by
all the Qi where Sii X Tii L plus the Q for any subset tr

_
a of the regular part. P is

spanned by the corresponding P. Thus there is a pair of reducing subspaces for every
subset (including empty and full) of the spectrum of the regular part ofH- XG. When
the subset of the spectrum is empty, we will call the corresponding pair of reducing
subspaces minimal, and when the subset consists of all the eigenvalues, we will call the
reducing subspaces maximal. In example (3), P and Q span the minimal reducing
subspaces.

Just as the Jordan form cannot be computed stably and is the wrong way to compute
invariant subspaces, the KCF is the wrong way to compute reducing subspaces. Instead,
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to compute invariant subspaces we limit ourselves to unitary transformations and the
Schur canonical form. There is an analogous generalized upper triangular form (which
we call GUPTRI) for matrix pencils 17]: there exist unitary P and Q such that

(4) P-1(H- G)Q 0 Hreg- ,Greg .
0 0 Ht- Gt

Here H,. ,Gr has only Lj blocks in its KCF, Hreg Greg is regular, and Ht ,Gt has
only Lf blocks in its KCF. The KCF ofH- XG has the same blocks as in Hr Gr,
Hreg ,Greg, and Ht ,GI. (The order of the blocks on the diagonal is essential for this
statement to be true.) Furthermore, Hreg XGreg may be chosen upper triangular with
its eigenvalues appearing in any order. It is easy to determine the reducing subspaces
from GUPTRI. Suppose Hr XG,. is mi by r/i and that the eigenvalues al that correspond
to the desired reducing subspace appear in the upper left i-by-i corner of nreg Greg
(i may be 0). Then the left and fight reducing subspaces corresponding to a are spanned
by the first m; + columns of P and first ni + columns of Q, respectively. In this case
we write the decomposition (4) as

(5) P-(H- XG)Q=[H’ HzHI2-kGl2]_kG22

where H ,G is m + by n + i.
A number ofworkers have developed stable algorithms for computing GUPTRI (or

similar forms) [8], [9], [15], [17], [20]. In addition, more efficient algorithms have been
developed when H- XG takes on special structures pertinent to control theory [6], [16].

4. Reducing subspaces in control theory. In this section we show that all the sub-
spaces listed in the Introduction are reducing subspaces of particular matrix pencils (or
projections onto certain components of reducing subspaces), and that all the modes and
zeros are generalized eigenvalues of those pencils. The point of view is originally due to
Van Dooren [17], [18]. For a more thorough discussion of these control problems
see [21 ].

First we consider the controllable subspace and uncontrollable modes ofthe system

(6) B: Ax+ Cu.

We assume the pencil A XB is regular and B nonsingular in particular. Following 16]
we define the following:

DEFINITION 1. The controllable subspace of (6) is the fight deflating subspace Q of
the smallest pair of deflating subspaces P and Q of A ,B satisfying R(C)

___
P. The

uncontrollable modes of (6) are the eigenvalues ofA XB corresponding to the comple-
mentary deflating subspace.

When B is the identity matrix, this definition reduces to the usual one (in particular
P Q). The definition makes sense when B is singular and A XB regular, but one
important property of complete controllability is lost in this case: pole assignability. The
feedback u Kx leads to the pencil A + CK XB, where B is still singular. If this new
pencil is regular, it must have as many N blocks of infinite eigenvalues in its KCF as the
original pencil. Worse, feedback may lead to a singular pencil with nonphysical or no
solutions of the corresponding differential equation [7]. For example, if
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then the new pencil

A+CK-XB=[0 -hi
is singular. However, as long as B is nonsingular pole assignability and controllability
are equivalent as before.

An extension of the definitions of controllability and observability to the case of
singular B is given in [2]. These definitions also permit interpretations in terms of the
KCF. For example, the "nonsingular" part of the system is controllable if and only if
there are no finite eigenvalues. We intend to extend our results to the case of singular B
using these definitions in a future paper.

We may now state the following.
THEOREM 1. Let P and Q be the minimal left and right reducing subspaces of

(7) [CIA- XB],

where B is invertible. Then
(i) Q R([,]) + 0R([Q]) and R(Q) is the controllable subspace. In other words, the

bottom n components ofany basis ofQ span the controllable subspace. The controllable
subspace also equals B-P.

(ii) The eigenvalues ofthe regular part of[C[A XB] are the uncontrollable modes.
Proof We show first that if P and Q are any pair of reducing subspaces, then P and

the last n components ofQ are a pair of left and fight deflating subspaces ofA XB with
R(C)

_
P. Since A B is regular, it as well as [C[A XB] has full row rank for almost

all X and so (7) cannot have any Lf blocks in its KCF. Therefore the number ofLj blocks
in the KCF must be columns (C) k dim (Q) dim (P). Let P R(P), where P is
n by c and Q R([QQ]) where Q is k by k + c and Q2 is n by k + c. The definition of
reducing subspace implies

(8) P [CIAIQ + [0IBIQ R(CQ, +AQ2) + R(BQ2).

The rank of Q2 must equal dim (P), since if it were less [QQ2] would not have full column
rank, and if it were more dim (R(BQ2)) would be larger than dim (P). Therefore we
may assume

Q2 0 Q22

where Q22 is n by c and of rank c. Thus (8) becomes

P R(C)+ R(AQ22)+ R(BQ22)

implying that R(C) c_ p and that P and R(Q22) form a pair of deflating subspaces of
A XB.

Conversely, it is easy to see that if R(L) and R(R) are a pair of deflating subspaces
ofA XB with R(C) c_ R(L), then R(L) and R([ 01) are a pair of reducing subspaces of
(7). Thus there is a one-to-one correspondence between reducing subspaces of (7) and
deflating subspaces ofA XB where the left deflating subspace contains R(C). In particular,
the minimal reducing subspace corresponds to the smallest deflating subspace in Definition
1. It is easy to see B-R(L) R(R).
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It remains to prove that the eigenvalues ofthe regular part of(7) are the uncontrollable
modes. Let R(L) and R([ g0]) be the minimal left and fight reducing subspaces. Choose
L and R so that

P=[LIL] and Q=
R Rl

are nonsingular (in fact they may be chosen unitary). Then

P-[CIA-,B]Q= [C A-XB A2-,B2]
0 0 A22 XB22 J"

This is in GUPTRI form. From the previous discussion, the KCF of [C]A B]
consists only of Lj blocks (i.e., it is completely controllable), and A22 B22 is regular,
and its spectrum consists of the uncontrollable modes. [3

Because of the structure of the minimal fight reducing subspace of (7), the largest
angle between two such subspaces will be the largest angle between the two spaces spanned
by their bottom n components. We use this fact to convert our bound on the angle
between perturbed reducing subspaces to a bound for perturbed controllable subspaces.

Next we consider the unobservable subspace and modes. The system we con-
sider is

(9) BA=Ax,
y= Dx.

Following 16] again we define the following.
DEFINITION 2. The unobservable subspace of (9) is the fight deflating subspace Q

of the largest pair of deflating subspaces P and Q ofA XB satisfying Q
_

ker D. The
unobservable modes are the eigenvalues ofA B corresponding to P and Q.

We may now state the following.
THEOREM 2. Let P and Q be the maximal left and right reducing subspaces of

(10) [A- XB]D

where B is invertible. Then
(i) Q is the unobservable subspace. If P R([ee]) where Pl has n rows, then

P 0 and B-R(PI) is also the unobservable subspace.
(ii) The unobservable modes are the eigenvalues ofthe regular part of O).
Proof The proofwill use duality. ChangingA to B-IA and B to the identity changes

neither the unobservable space or unobservable modes of (9), nor the fight reducing
subspaces or eigenvalues of (10). Therefore assume without loss of generality that
B L In this case by duality

unobservable subspace ofC,A
(controllable subspace ofAr, Cr)
(minimal left reducing subspace of[CrlAr- M])+/-

(minimal left reducing subspace of[Ar- MICr])+/-

maximal fight reducing subspace f[A-C’I].
(The last equality follows from the fact that transposing a pencil exchanges Lj and Lf
blocks without changing the other blocks in the KCF.) The relationship between unob-
servable modes and eigenvalues also follows from duality. [3
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Now we turn to (A, C) invariant and controllability subspaces in ker D and their
generalizations. Consider the system

(11) B) Ax+ Cu,
y= Dx.

DEFINITION 3. Q is an (A, B, C) invariant subspace in ker D if there is another
subspace P of the same dimensions as Q satisfying

AQ
_
P+ R(C),

BQ_P,

Q
_
ker D.

It is easy to see from the definition that if Q and P satisfy it, there is a feedback
matrix K such that P and Q form a pair of deflating subspaces for the pencil A + CK
?,B. It is also easy to see that if B =/, this definition reduces to the usual one for (A, C)
invariant subspaces in ker D. We now need to establish the following.

PROPOSITION 1. Suppose B is invertible. Then there is a supremal (A, B, C) invariant
subspace in ker D containing all others.

Proof We reduce to the case where B L Q is an (A, B, C) invariant subspace in
ker D with other subspace P if and only if it is a (B-A, I, B-C) invariant subspace in
ker D with other subspace B-P Q. Since this new problem has a supremal subspace
so does the original one.

We will call the supremal (A, B, C) invariant subspace in ker DV* if A, B, C and
D are clear from context.

DEFINITION 4. Q is an (A, B, C) controllability subspace in ker D if it is an
(A, B, C) invariant subspace in ker D and for any set of dim (Q) scalars { ,i} a feedback
matrix K can be chosen so that Q is a fight deflating subspace of A + CK )B whose
corresponding eigenvalues are ,i}.

Note that since this definition refers explicitly to pole assignability, the nonsingularity
of B is important. Analogous to Proposition 1, we need to establish the following.

PROPOSITION 2. Suppose B is invertible. Then there is a supremal (A, B, C) con-
trollability subspace in ker D containing all others.

Proof As before, we reduce to the case B L Q is an (A, B, C) controllability
subspace in ker D with other subspace P ifand only if it is a (B-IA, I, B-IC) controllability
subspace in ker D with other subspace B-P Q. Since this new problem has a supremal
subspace so does the original one.

We will call the supremal (A, B, C) controllability subspace in ker DR* ifA, B, C
and D are clear from context. To analyze V* and R* we need the following.

LEMMA 1. Suppose B is invertible. Let V* be the supremal (A, B, C) invariant
subspace in ker D. Then there exist n by n unitary matrices Q [QIIQ2[Q3] and P
[P[P21P3], where Qi and Pi both have ni columns, such that the decomposition

Cl All- kBll AI2- ,BI2 Al3- kBl3

[P0* 0][C A-,B][ 0Q]= C2 A21 A22-B2z A23-B23(12)
I 0 D 0 A32- )kB32 A33- kB33

0 D2 D3
0
0

(where Ao is ni by n) has thefollowing properties:
(i) V* R(Q).
(ii) C2 hasfull row rank.

(iii) [A32 -D2’B32 A33 -D3)kn33 ] hasfull column rankfor allfinite .
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(iv) The system with

[A32 A33 B32 B33

is completely observable.
Proof Choose Pi and Qi so that R(Q) V*, R(Pi) is the left deflating subspace for

V* in Definition 3, R(P2) + R(P) R(C) and dim (P) is minimal. Thus in

P*C P C C2
P’ C 0

it is clear that P’ C 0 and C2 has full row rank. From Definition 3, it is also clear that
A3 PAQ 0, B32 PBQ 0 and B31 PBQ 0. Finally Dl DQ 0. This
explains the structure of (12) and proves claims (i) and (ii).

We prove claim (iii) by contradiction. Since C2 has full row rank we can choose a
feedback matrix K [KIK21K3] so that the middle n2 rows ofA + CKare [0Ix, Ix2] where
X and X2 can be chosen arbitrarily. Thus if the matrix in claim (ii) did not have full
column rank for some X’, we could find matrices X and Xz such that

[ Xl h’B22 Xz- )k’B23 ]A32 )k’B32 A33 X’B33
D2 D3

had dependent columns as well. Thus, from Theorem 2 the system with

A3 A33 B B33

would have an unobservable subspace. Thus there would be unitary T and T such that

A’2
TIB,,T2=

B2
TA"T2

0 A’2 0 B’2
D"T2 [0ID2].

This implies that there is an (A + CK, B, C) invariant subspace in ker D of dimension
larger than V*, which contradicts supremality of V*. Claim (iv) follows immedi-
ately from claim (iii). It is easy to see that the proof still goes through if V* {0 and
ni O. !--3

Now we can prove the following.
THEOREM 3. Suppose B is invertible. Consider the pencil

(13)
0

(i) Let Pi and Qi be the largest left and right reducing subspaces of(13) excluding
any infinite eigenvalues. Suppose

[Q2]) and P .P2])
where Q andP both have n rows. Then P 0 and the supremal (A, B, C) invariant
subspace in ker D is

V* R(Qi2)= B-IR(Pil)

with dim (V*) dim (Pi).
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(ii) Let Pc and Qc be the minimal left and right reducing subspaces of(13). Suppose

and

where Qc2 andPc both have n rows. Then P_ 0 and the supremal (A, B, C) controllability
subspace in ker D is

R*=R(Qcz)=B-R(Pcl)

with dim (R*) dim (P).
(iii) The finite eigenvalues of (13) are the uncontrollable modes in V*. In other

words, ifanyfeedback matrix K is chosen so thatA + CK- )B has* as a right deflating
subspace, it will have as corresponding eigenvalues thefinite eigenvalues of(13).

Proof There are two cases, * {0} and V* 4: {0}. In the first case the decom-
position (12) reduces to

where

I 0 D
0 A32 )kB32 A33 )kB33
0 D2 D3

A32 )kB32 A33 )kB33 ]
D2 D3

has full column rank for all finite X. Therefore it can have only infinite eigenvalues and

Lf blocks in its KCF. Therefore (12) itself will have only L0 blocks, infinite eigenvalues,
and Lf blocks in its KCF. Thus Pi {0) and Qi2 0 as well.

Clearly R* {0} in this case as well, and there are no finite eigenvalues.
Now consider V* :/: {0}. We take decomposition (12) and perform the following

three transformations on it:
(1) Since C2 has full row rank, there is a k-by-n feedback matrix K such that

CzK -A2. Postmultiply both sides of (12) by

Ik K 0 ]0 I., 0
0 0 In+.

to eliminate the A2 entry ofA.
(2) Since C has full row rank there is a unitary k-by-k matrix S [SIS2] such that

C2S [01C22], where both $2 and C22 have n2 columns. Write CS [C1C2] where
0C2 also has n2 columns. Postmultiply both sides of (12) by [0s In]"

(3) Exchange columns k- n2 + to k with columns k + to k + n, on both sides
of (12). This is equivalent to postmultiplication with a permutation. At the end of these
three transformations (12) has become

I 0 D Q 0 Q2 Q3

CI1 A + CK- )kBll C12 A12- kBl2 A13- kBl3
0 0 C22 A22 )kB22 A23 ,,B23
0 0 0 A32 )kB32 A33 )kB33
0 0 0 D2 D3



136 J.w. DEMMEL AND a. KGSTROM

We claim the pencil on the fight above is in GUPTRI form, so that its reducing
subspaces are easy to discern. This is because the [Cl [A + ClK XBI l] block, because
of the nonsingularity of B, can only have Lk blocks and finite eigenvalues in its KCF,
and the other diagonal block can only have Lf blocks and infinite eigenvalues in its KCF.
Therefore the largest left and fight reducing subspaces of (13) not including any infinite
eigenvalues are given by

Pi=R((I]) and Qi=R([ SI0 QI])K
proving claim (i) of the theorem.

Claims (ii) and (iii) follow by applying Theorem to the submatrix

[CIIIAII + CIK- XBli].

In order to use our perturbation theory for reducing subspaces to get error bounds
for V* and R*, we must use the left reducing subspace instead of the fight, because the
fight subspace is not the direct sum of a constant space and V* (or R*). If B =/, then
we can use the left subspace directly, otherwise we must modify the bounds by the
following lemma. We state the lemma in a general way so as to cover both V* and R*
simultaneously. Thus for V* choose S R(Pii) (see Theorem 3(i)), Hs B-l, T as the
perturbed R(Pil), r/as the bound on 0max (S, T) to be provided by the algorithm, Hr as
the approximation to B-I used to compute V* B-IT, and di as the bound on the error
in B-I arising from round-off and the maximum perturbation made by the algorithm;
R* is similar.

LEMMA 2. Iftan 0ma (S, T) -< r/< r/2 and [[Hs- Hr[[ < 6, then

tanOmax(HsS’HTT)<=[r(Hs)7+ trmini(l+)]/[1-r(Hs)-(Hs) trmintS(1+r/)](Hs)
ifthe denominator is positive.

Proof. Let P [Pile2] be a unitary matrix whose first dim (S) columns span S.
Letting the columns ofPbe a new basis for our space, we see that without loss ofgenerality
we can assume that

I
S =R([0] ) and T=R([Iz] )

where IIzll --< , Let Q [Q]Q2] be a unitary matrix whose first dim (S) columns Q
span R(HsP). Then denoting

Q*HsP=[Hl’ Hs22HsI2] and Q*HrP=[ HrIHT21 HT22HTI2 ]
we see that

[ HTll + HTI2Z ]HsS= QR([I ]) and HrT QR([Hr21+ Hr22Z])
so that

Omax(HsS, HTT)--Omax(R([Ill]) R([HTII"t"HTI2ZllHT21 + HT22ZJ] !

=0ma I
0

,R
(HT21+HT22Z)’(HTII+HTI2Z)-1
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arctan II(Hr2 + Hr22Z)’(Hr + Hr2Z)-II

=< arctan (K(Hs)rt + 6(1 + r/) / K(Hs)
ffmin Hs)/

( +) )O’min (Hs)

Note that the last bound in the proof may seriously overestimate the next to last
bound. The next to last bound should be used if sharper bounds are desired.

Finally, we turn to invariant zeros of the complete system

(14) B. Ax+ Cu,
y Dx + Fu.

As defined in [16], the invariant zeros are the finite Smith zeros of the pencil

(15)
F

which are nothing more than the finite eigenvalues of (15) [7]. Therefore, the perturbation
theory for generalized eigenvalues of pencils in the next section provides bounds for
invariant zeros.

5. Perturbation theory for reducing subspaces and generalized eigenvalues. In this
section we present computable error bounds for reducing subspaces and eigenvalues of
matrix pencils. We assume we have reduced the m-by-n pencil to the GUPTRI form (5)

P-(H-)G)Q=[Hll-)kGO H2 )G2]922-kG22

where P and Q are unitary, nii Gii is mi by ni, nil XGI has only Lj blocks and a
regular part with spectrum a in its KCF, H22 ,G22 has only Lf blocks and a regular
part with spectrum a2 in its KCF, and a and a2 are disjoint. Recall that in this coordinate
system, the left and fight reducing subspaces are spanned by [Im,]O] r and [In]0] r. Algo-
rithms for reducing general pencils to this form are described in [8], [9], [15], [17], [20].
Our algorithm is approximately twice as fast as Van Dooren’s [15] on general pencils
and will be described in another paper. In the case of the special pencils (7), (10),
(13), and (15) in the last section, more efficient algorithms for the case G I appear in
[61, [161.

To present our bounds we need some definitions. Details and proofs may be found
in [4]. We first need to blockdiagonalize (5), which means solving the equation

[Im,-L].[HII-XGIIHI2-XGI2].[InIR]=[HII-)kGII 0 ]0 Ira2 0 922- )kGz2 0 In2 0 022- )kG22

for L and R, or

HI R LH22 -HI2,

GIR- LG22 -G2
which is a generalized form of Sylvester’s equation. We can rewrite this in terms of
Kronecker products as follows:

In2@Gll --Gff2@Iml /colL
-Zu

[colL -col GI2
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This is a set of 2m r/2 linear equations in n n2 + mm2 unknowns, the entries of L and
R. Since m --< n and m2 >-/72, we see we have at least as many unknowns as equations
with equality if and only ifH- XG is regular. When H- XG is singular, Zu has full row
rank and so there is a (nonunique) solution. We choose the minimum norm solutions
Lo and R0 because this gives us the best bound later. Let p =- (1 + ][L0112)/2 and q =-
(1 + 11R0112) 1/2. p and q play the same role for this theory as the norm of the projection
does for the standard eigenproblem: they measure the sensitivity of eigenspaces (and
eigenvalues) with respect to changes in H and G. Indeed, if G I, they are equal to the
norm of a projection onto an invariant subspace ofH. For the generalized eigenproblem
we need both a left and a fight projection norm since the left and fight spaces may differ.

We will also need the quantity

Difu (H11, H22; G l, G22) O’min (Zu)

which is nonzero since Zu has full rank. Similarly, we need

Dift (HI,H G l, G22) 0"min
G 1 (R) Ira2 Ini (R) G22

which is nonzero if and only if Difu is nonzero. We can show that all these definitions
are really coordinate free allowing us to write Dift (a, a2) (Difu (a, a2)) when H-
is known from context or just Dift (Difu) if a is known as well.

Both Dift and Difu measure how close the KCFs of theH XG and 922 G22
are to one another. They generalize the operator

sep (HI H22 ffmin (I,2 HI Hf2 I,t)
which measures the separmion of the spectra of two square mmfices Hl and H22 ]:
it (under)estimmes the size of the smallest peurbmion needed to make H and
have a common eigenvalue. Indeed, when G L Dif, Difu, and sep are all almost equal.

Now we may state the following.
THEOREM 4. Let H-XG be an m-by-n singular pencil of the form (5). Let

P and Q be the left and right reducing subspaces of H-XG belonging to . Let
them have dimensions m and n, respectively. Let min (m, m ml) and
min (n, n n). Define

min (Difu (a, a2), Dirt (al, a2))
(p2 + q2)/2 + 2. max (p, q)

Then if(H + 6H) A(G + 6G) has reducing subspaces P and Q, ofthe same dimensions
as P and Q, respectively, and

11(sn, 5G)II
(16) xm <1,

A

then one ofthefollowing two cases must hold:
Case 1.

and

( x )Omax (P, P,) =< arctan <
p_x.(p2_ 1)1/2

=arctan (x.(p+(p2 1)1/2))

x ) )/2)).0max (Q, Q) -< arctan <
q_x.(q2_ 1)1/2

=arctan(x.(q+(q2
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In other words, both angles are small, bounded above by a multiple of the norm of the
perturbation H(fH, 6G)[I e.

Case 2. Either

(0ma (P, P) >_- arctan
2-p+ (p2 1)1/2

or

(0ma (Q, Qn) -> arctan 2-q+ (q2 1)1/-
In other words, at least one of the angles between perturbed and unperturbed reducing
subspaces is bounded awayfrom O.

The significance of the criterion (16) is as follows. Since the denominator of A is
the "speed" with which the KCFs ofthe two diagonal blocks ofH- kG can change, and
the numerator is the "distance" between their KCFs, (16) states that 1[(fH, 6G)lle is small
enough so that the assumptions about the pencil being reducible to GUPTRI form (5)
hold under perturbations. In the special case when G =/, A can be shown to reduce to
a known good estimate ofthe largest perturbation before an eigenvalue from rl coalesces
with an eigenvalue from O"2 causing their respective invariant subspaces to overlap and
any perturbation theory to break down [3], 11 ]. In other words, we can only do pertur-
bation theory for a certain feature until the perturbation becomes so large we can no
longer guarantee that the feature is well defined.

The theorem has two cases because of a "labeling" problem. A singular pencil may
have several reducing subspaces ofthe same dimension, just as a matrix may have several
invariant subspaces of the same dimension, each corresponding to a different set of ei-
genvalues. In the case of the matrix, we can "label" each invariant subspace with the
eigenvalues to which it belongs, and identify a perturbed subspace by its perturbed ei-
genvalues. Thus a perturbation theorem for invariant subspaces would read "a small
perturbation in the matrix perturbs the eigenvalues in a to a nearby set a], and the
invariant subspace ofthe perturbed matrix corresponding to a] is close to the unperturbed
invariant subspace corresponding to a." The analogous theorem for singular pencils
must be stated differently, because the perturbed pencil may have no eigenvalues at all
to use as labels. Therefore we must say that if it has a reducing subspace of the fight
dimension, this must either be a small perturbation ofthe original unperturbed one (Case
1) or a different one (Case 2). In fact, applying Theorem 4 to square pencils of the form
H M, we can interpret it as providing perturbation bounds for the invariant subspace
belonging to a] in Case and for all other invariant subspaces of the same dimension
belonging to any a 4: tr in Case 2.

In practice, deciding which case applies is no problem, since the reduction algorithm
will try to pick the same one each time, so that Case applies. For example, when
computing the controllable subspace the computed reducing subspace is always the min-
imal one.

A proof of Theorem 4 may be found in [4, Thm. 5].
In practice, the theorem may be applied as follows. Consider Fig. 1. The original

input pencil is H- kG; it lies on or near a surface S of pencils of some fixed Kronecker
structure (e.g., those pencils representing control systems with two uncontrollable modes).
The user supplies to the algorithm both H- kG and an upper bound 6 on its distance
to the surface. 6 may be the user’s best estimate of the noise in his data, or a stability
margin in case he wants to know if his system is close to one with a particular structure.
6 should be at least a modest multiple of the machine precision. If H- kG is close
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H-kG

A

FIG. 1. Perturbation theoryfor singular pencils.

enough to S, the algorithm will find a nearby system H’ )G’ lying directly on S, and
compute its decomposition (5) (see Fig. 1). di =< di is the actual distance

II(n- H’, G- a’)ll

between the two pencils.
Now we may compute P, Q, A, p, and q of the theorem. The perturbation bounds

in Theorem 4 apply to all pencils on the surface and within distance A ofH’ XG’. We
may test the theorem as follows. We take H ),G and add random noise of size at most
di to each component to get a perturbed pencil - ,(. We input this pencil to the
algorithm. In general the algorithm will compute an ’ ,(’ on S (see Fig. 1). if’ ,(’
is within distance A ofH’- G’ we compute its reducing subspaces, measure their actual
angles from P and Q, and see if these are either less than their upper bounds or greater
than their upper bounds in the theorem. We report on experiments of this type in the
next section.

Now we turn to eigenvalue bounds. We deal first with the simple case in which
there is only one type of singular structure in the KCF: Lj blocks or Lf blocks.

THEOREM 5. Suppose that Case of Theorem 4 holds. Suppose further that the
block H22 G22 is regular. (This implies H- XG has no Lf blocks in its KCF.) Then
the spectrum ofthe perturbed pencil (H + itH) (G + 5G) includes the spectrum of

where

(H22 + diH2)- A(G22 + diG2)
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Similarly, ifwe instead assumeH "yGI is regular, then the spectrum ofthe perturbed
pencil (H + 6H) (G + 6G) includes the spectrum of

(H + iH’l I) X(GI 4-- G’I i)

where

11(6H’,, 6G’ )11--< ’p" 11(6H, 6G)ll.
A proof may be found in [4, Thm. 6].
Thus we have reduced the problem to one of perturbation theory for eigenvalues

of regular pencils, a well-studied area 1], [4], [11], 12], 13], 14], [20]. For simplicity,
the bounds we implemented in our code, a generalization of and improvement on the
Bauer-Fike Theorem, assume all the eigenvalues are simple, although this could easily
be changed.

It remains to show how to do perturbation theory for eigenvalues of pencils with
both kinds of singular blocks in their KCFs. We must simply reduce to GUPTRI form
twice, once to isolate the Lf blocks, and the second time to apply Theorem 5.

COROLLARY 1. Suppose H- XG has Lj blocks, Lf blocks, and a regular part in its
KCF. Let

nil- XGII Hi2- ,GI2]
0 922 G22 J

be the GUPTRI form ofH- hG where 922 kG22 contains all the Lf blocks and
H XG contains all the Lj blocks and the regular part. Let A, p, and q be the
quantities of Theorem 4 associated with this decomposition. Let

[H’I G’, H’_- G’2]0 H’22- G’22
be the GUPTRI form ofHl XGI where H’22 G’22 is regular and H’z AG’I has
only Lj blocks in its KCF. Let A2, P2, and q2 be the quantities of Theorem 4 associated
with this decomposition.

Then ifthe perturbedpencil (H + H) A(G + fiG) has the same size right singular,
regular, and left singular blocks as H- AG, and

II(n, G)lle -< min Al, /p

then (H + iH) X(G + fiG) has eigenvalues equal to the eigenvalues of

with

(H2 + 6H’)- X(G2 + 6G’)

(6H’, 6G’)IIe =< 2.q2 "Pl" (H,

It should be clear how to modify this corollary if we want bounds assuming only
some of the eigenvalues are preserved by perturbations.

6. Numerical examples. In this section we will report on numerical experiments
using our algorithm for reduction to GUPTRI form and the perturbation bounds. All
our tests were made using the following scheme.

(1) Choose a nongeneric pencil H- XG and a "rule" for choosing a particular set
of reducing subspaces. (For example, for controllable subspaces we choose H- XG
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[CIA ,B] and minimal reducing subspaces as in Theorem 1.) Using the GUPTRI
algorithm compute its reducing subspaces P and Q and the quantities A, p, and q of
Theorem 4. Also compute the eigenvalues and eigenvalue bounds ofCorollary ifdesired.

(2) Add random noise of size en to H- ,G to get a perturbed pencil- ,(. Input
,( to the GUPTRI algorithm along with a bound eu on the distance the algorithm

may perturb- ,(. Let ’- ,t’ denote the output pencil in GUPTRI form.
(3) Compute the reducing subspaces and 0 of ’- ,(’ according to the

rule chosen in step (1). If and 0 have the same dimensions as P and Q, and if
II(H-/’, G ’)11 < x as required in the hypotheses ofTheorem 4, test to see if either
Case or Case 2 holds. Ifthere are eigenvalues, test to see ifthey are as close as predicted
by Corollary 1.

(4) Repeat steps (2) and (3) for different noise sizes en, different random noise, and
different bounds eu.

We tested nine cases using this scheme, three for controllable subspaces and un-
controllable modes (using Theorems and 4 and Corollary 1), three for * (using Theo-
rems 3 and 4), and three for R* (using Theorems 3 and 4). In all cases B L For each
case we tried all 24 combinations Ofen chosen from 10-l, 10-9, 10-3 and eu chosen
from 10-7, 10-5, 10-3 (the details of how eu is used imply that the effective eu may be up
to a factor of 1000 smaller). For each choice of case, and eu, 10 random pencils were
tried, for a total of 2160 pencils.

We collected statistics on how often the hypotheses of Theorem 4 were satisfied or
why they were not satisfied, how often Cases or 2 arose if they were satisfied, and how
good our upper bounds were in Case 1. Right subspaces were used in all cases.

In summary, the results agreed with the predictions of the perturbation theory. In
almost all cases either Case 2 of Theorem 4 held or a reducing subspace of a different
dimension (usually a genetic one) was computed. Case 2 ofTheorem 4 held when eu (the
estimate of the size of the noise supplied to the algorithm) sufficiently exceeded/3n (the
actual size of the noise). How much eu had to exceed e depended on the conditioning
of the problem.

The three cases chosen to compute controllable subspaces were

-2 0 0 0 -2 -10 0 0 -2 -100 0 0
0 -1 0 0 0 -1 0 0 0 -1 0 0

0 0 0 0 0 0 0 -7.5 0 0 0 -75
0 0 0 0 2 0 0 0 0 2 0 0 0 0 2

where we use the notation of (7). We call these examples C1, C2, and C3. We also made
a random orthogonal change of coordinates on each one. Note that each A matrix has
successively more ill-conditioned eigenvalues, as seen by the size of the off-diagonal
elements. Each one has a two-dimensional controllable subspace and uncontrollable
modes at and 2.

The results are summarized in Table 1. We expected that as long as eu (the estimate
supplied to the algorithm of the maximum noise in the data) exceeded e (the actual
noise) sufficiently, the algorithm would compute a controllable subspace of dimension
2, and otherwise a larger one. This was generally true, with the larger one being genetic
in almost all cases. However, C3 needed to have eu/en much larger than C2, and C2
needed eu/e.,, much larger than C to compute a two-dimensional space, as can be seen
by the decreasing proportion of trials corresponding to Case of Theorem 4. This is
apparently a result ofthe increasing sensitivity ofthe eigenproblem ofA. Also, the quality
ofour upper bounds decreased as this sensitivity increased, as evidenced by the increasing
ratios 0bnd/0tre of our upper bound on the angle (between unperturbed and perturbed
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TABLE
Results ofcomputing controllable subspaces.

C1 C2 C3

Case of Theorem 4 58% 39% 27%
II(n- ’, a t’)ll > A 0% 0% 1%
dimension different 42% 61% 72%

avg (ObndOte) 5. 27. 132.
max (0bn/0te) 17. 36. 1250.

spaces) to the true angle. In fact, C3 was sufficiently ill-conditioned that when eu was
10-3, the algorithm found a different nearby uncontrollable system with almost the same
controllable space but quite different uncontrollable modes: 0 and 3. Another measure
of this increasing ill-condition is the ratio II(n- 1’, G r’)lle/II(H- 1-71, G ()lle of
the distance between the original system and the output of the algorithm to the distance
between the original system and the input to the algorithm; if the system is well behaved
this ratio should not exceed by much, indicating that the algorithm can project the
perturbed system nearly perpendicularly back onto the surface ofsystems with the original
system’s structure. The maximum value of this ratio was 16 for C1,121 for C2, and 885
for C3. Nonetheless, our bounds were generally realistic, generally not exceeding the true
perturbations by a very large factor.

The results of computing the uncontrollable modes are shown in Table 2. Here ebnd
is the bound on the perturbation in the eigenvalue, and edi is the true perturbation,
where we measure perturbations as "angles": an eigenvalue ei is written as tan Oi and we
measure the difference between el and e2 by 101 021. This is related to the chordal metric
[12]. These results seem much poorer than the ones in Table until we examine the
bounds themselves: they are quite small in absolute value, and closer inspection shows
that if all the random noise were added to the regular part of the pencil, the bound ebnd
could be nearly achieved. For some reason, the random noise seems to affect the con-
trollable subspaces much more than the uncontrollable modes.

The three cases chosen for computing V* and R* were

0 0

oOlO0

0 0

-1 0 0
0 0
0 0 2
0 0 0

0
0
0

0 0
0 0

0
0
0 0

0 0
0 0

0 0 0
0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0
0
0

0

0
0

0 0-1 0
0 0 0 1-1
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TABLE 2
Results ofcomputing uncontrollable modes.

Cl C2 C3

avg (e/ef) 311. 1171. 2960.
max (e,ndeaid 6180. 20280. 176000.

TABLE 3
Properties ofunperturbed V* and R*.

AB1 AB2 AB3

dim (ker D) 3 3 2
dim (V*) 3 (generic) (nongenedc) (nongeneric)
dim (R*) 2 (nongeneric) 0 (generic) 0 (generic)

TABLE 4
Results ofcomputing V* and R*.

AB1 AB1 AB2 AB3
V* R* V* V*

Case of Theorem 4 100% 62% 73% 73%
dimension different 0% 38% 27% 27%

avg (Obnd/Otru) 54. 39. 26. 56.
max (Ob,,dOte) 210. 73. 53. 106.

where we use the notation of (13). We call these examples AB 1, AB2, and AB3. We also
made a random orthogonal change ofcoordinates. The properties ofV* and R* for these
examples are summarized in Table 3. The results of the test runs are given in Table 4.
Results for R* for AB2 and AB3 are not shown; the generic R* {0} was computed for
all en and eu. In computing V* for perturbed AB1, the generic V* ker D was also
computed for all en and eu, and Case of Theorem 4 always applied. In the other three
cases shown, roughly speaking as long as eu exceeded en Case of Theorem 4 occurred;
otherwise the perturbed V* or R* had a different dimension than the unperturbed one
(for R* and AB1, we needed eu - 10en). These V* and R* of different dimensions cor-
responded to genetic systems in all but one percent of the experiments for AB3, when
an originally infinite eigcnvalue became a very large finite one (this situation would have
been avoided using an algorithm specialized for computing V* [16]). The ratio 0bnd/0true
ofthe bound on the perturbation in V* or R* to the true perturbation in Theorem 4 was
almost always less than 100, and had a maximum value of 210. Also the ratio

never exceeded four for any example.
We believe that these results would improve if specialized algorithms [16] which

respect the structures in (6) and (10) were used instead of a general purpose algorithm.
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A NOTE ON THE SHORTED OPERATOR*

C. A. BUTLER]" AND T. D. MORLEY

Abstract. The Schur complement of a partitioned operator

A=[A
LA21 AE2J

is defined by the formula S(A) AI AI2AA2. In finite dimensions S(A) is the unique map c d defined
by the equations Ac + Al2Y d, A2 + A22Y 0. In infinite dimensions the shorted operator of a positive
operator generalizes the Schur complement; however, the above matrix equations no longer hold. We show in
what sense the above equations approximately hold. Applications to infinite networks are shown.

Key words. Schur complement, electrical networks, shorted operator

AMS(MOS) subject classifications. 15A09, 15A30, 47A99, 94A20

1. Introduction: Finite dimensions. Let A be a bounded linear operator on a Hilbert
space /o. Let S be a closed subspace of. Then with respect to a suitable onhonoal
basis we may wdte

A
LA21 A22

with All: S S, AI2 S, A21 S S&, and A22 S S&.
The Schur complement ofA to a subspace S is the operator S(A): S S defined

by the formula

(1) S(A) All AIzAA21.
Of course, the Schur complement is not defined unless (A22)-1 exists.

It is easy to see that the Schur complement, if it exists, is uniquely defined by the
matrix equation

 ll

A A w

where, of course, w depends linearly on c.
If is finite-dimensional and if the matx A is positive, i.e., if A A* and

(Ax, x) 0 for all x, then the above matrix equation defines a unique operator S(A)
iespective ofthe inveibility ofA. In this case, we refer to S(A) as the shoed operator.
The shoed oerator was introduced by Anderson in connection with electcal net-
works. We now befly describe this connection.

An n-po is an electrical device with n pairs of teinals to the outside world. Its
external behavior is determined by a matrix {a}. If a cuent source of x amps is
connected across the jth terminal pair (or port), the voltage v across the ith teinal is
given by

aij xj,
j=l

or in matrix notation

v=Ax.

The matrix A is termed the impedance matrix of the n-port.
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148 C. A. BUTLER AND T. D. MORLEY

If the n-port consists entirely of resistors and (ideal) transformers, then the matrix
A will be positive; see Fig. 1. (Moreover any positive matrix arises in this way [20].)

If the last several ports of an n-port are shorted together, as in Fig. 2, then any
current is possible across the shorted terminals. However, the voltage across the shorted
terminals must be zero. This gives rise to the matrix equations

Solving formally for v as a function of c, we have

(A AA:A2)c v.

Thus the Schur complement (or shorted operator) represents the impedance matrix of
the shorted n-port.

Anderson has shown [1] that ifA is a positive matrix, then (2) uniquely defines the
impedance matrix of the shorted n-port.

The following definition is equivalent to that given by Ando [4].
DEFINITION. An operator A is termed complementable to S ifgiven any c e S, there

is a w S1 and a unique d 6 S such that

A A2 c

IfA is complementable, we define the generalized Schur complement by S(A)c d in
the above equations.

Thus in finite dimensions positive operators are complementable, and the shorted
operator construction of Anderson and the generalized Schur complement of Ando
[4] agree for positive operators.

2 ---O

3

4

FXG. 1. A 4-port.

FIG. 2. A shorted 4-port.
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2. Infinite dimensions and some notation. The shorted operator construction in
infinite dimensions of Anderson [1 ], Anderson and Trapp [3] and Krein [16] is a gen-
eralization of the Schur complement to positive operators on a Hilbert space f.

Let A be positive, i.e., A A* and (Ax, x) >= O. Let S be a closed subspace and
partition A as before.

THEOREM [3]. There is a unique operator S(A) such that

S(A) sup X: 0 _-< X, =< A
x 0

The operator S(A) agrees with the classical Schur complement ifAz2 is invertible. Infact
S(A) limA A12(A22 -- e)-lA21e+0

If Jog is finite-dimensional, then the shorted operator construction agrees with the
generalized Schur complement [2]. However, in infinite dimensions the shorted operator
may exist (as a bounded operator) when the generalized Schur complement of Ando
does not exist.

In the following sections S(A) always refers to the shorted operator construction of
Krein and Anderson.

3. The approximate equations for the shorted operator. In this section we give the
following limiting equations

lim Ac+A:y, d,

lim AzlC-b Azzyn O,
n--oo

(AzzYn,Yn)M

that uniquely define the shorted operator S(A)c d.
The following proposition is a direct corollary of a result of Douglas 11 ]. Its proof

may be found in [3].
PROPOSITION 1. Let A be a positive operator where A is partitioned as

A
[A21 A2:z

Then there is a unique operator C such that

A21 A/zZC, and

ker C*
_
ker A/22

The following proposition gives a formula for the shorted operator due to Anderson
and Trapp (see [3]).

PROPOSITION 2. Let A be as above and let C be the unique operator satisfying
A2 A/22C and ker C*

_
ker A/2. Then the shorted operator S(A) is given by S(A)

A C*C.
We are now in a position to prove our main result (Theorem below) in a series

of lemmas.
LEMMA 1. Let A be positive. Partition A as

AI2]A
[A21 A22
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Let c 3g. Then there is a sequence (or net) {yn ) and a real numberM such that

AzlC WAzzYn" O,

(A22Yn Yn <= M, and

AlC+A2yn’- S(A)c.

Proof By Proposition 1, there is a unique operator C that satisfies both A2
A/2C and ker (C*)

_
ker (A/22). From the latter condition we obtain range (A/22) =_

range(C). Thus we may choose {Yn} S+/- so that lim._ A/zZy. C(-c). It fol-
lows that

lim A21C q- Az2Yn lim A/22Cc 1/2 1/2+ A22 (A22 Yn)
n

A/z2Cc + A/22C(-c) O.

Similarly, after noting that AI2 A C*A/22, we compute lim.-.oo AllC + AlzYn
(A C*C)c S(A)c. Finally, (Az2Yn, Yn) IIAl/22ynI[ 2 which converges and hence is

bounded. [2]

LEMMA 2. Let A be positive and let S be a closed subspace. Partition A as above.
Then for any sequence (or net) {y }, d o’g, andM satisfying

A l2Yn -*" d,

AzzYn 0, and

(Az2Yn, Yn) <= m,
we have A lzYn O.

Proof Since (Az2Yn, Yn) is bounded, we may find a subsequence {y,} of {Yn} such
that A/Zy’ converges weakly to some e S. By the Hahn-Banach Theorem there is a
sequence {z.} with z. convex hull {y;}o=. with

Al2Z.-* d,

A22 Zn O,

A /z2Z. --* e.

(It is not difficult to maintain the first two limits; remember z. is in the convex hull
of {Yi}?=n.)

Since x (A:zzx, x) is convex, it follows that (A22zn, z,,) <= M. From A:z2z,,
A/2(A/2Zn) it follows that A/22 e 0 and thus Aze O.

Choose No so large that IIA/2z =< Ilell / for all n > No. For any e > 0 there is
an N > No such that for all n >= N

Consequently,

however, since

I(A/Zz., A/zZz. e)l =< e(llell + 1).

irn A /22Zn A /22zn e) 0;
n 0

(A/z., e) (z., A/22e) 0,

it follows that (A/zZZn, A/z2Z.) "-* 0 and we conclude that e 0.
Now for any x e 3g and any X we have

nlkrrl [A21 A22 kZn kZn
=(AIIX, X)+ 2(d,x)X.
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If d 4: 0, then an appropriate choice of X and x will make the above expression negative.
The result follows. [-1

THEOREM 1. Let A >= O, c t. Partition A as

A
IN21 A22

Let {} ,M , d satisfy

A21c+A22nO,

(A22n,n M,

AlC+Al2Yn d;
then

Ac+A2Yn S(A)c.

Proof Let Zn be the sequence guaranteed by Lemma 1. Then

and
(A22 2n 2n -< m.

Now let wn =Yn- zn. Since x (A22x X) is a (semi-) inner product, the sequence
(Az2wn, Wn) is bounded. Now apply Lemma 2 and the result follows.

COROLLARY 1. Let A be positive and let c . Partition A as

A
LA21 A22

Let Yn , M , d satisfy

IIA,c+A2YIIM,

weak lim A2c+A22Yn O,

(A22Yn Yn <= M;
then

weak lim A c +A 2Yn S(A c.
n.-.oo

Proof Let {y ,} be any subsequence of {y,}. Let {y } be a further subsequence of
{y ,} such that

weak lim A c+A.y, d.
n--

Now let {z} be a sequence with zn e convex hull {y’}=, and

Ac+A2zn" d,

A2c+A22zn-’ O,

(A22 ;Zn Zn < M.

(We can maintain boundedness of (Az2Zn, Zn) because x - (Az2x, x) is convex.) Now
apply the previous theorem to conclude that d S(A)c. []
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4. An example. In this section we give an example of a positive operator A and a
sequence {Yn} which show that the boundedness of (AEEYn, Yn) is essential in Theorem
and its corollary.

Consider the following matrix:

a 0/2 o/3

A(a,0 a

O3 3

If 0 < a, fl < 1, then A(a, fl) is a bounded operator A: 12 - 12. Let

X1

X X2
X3

be in 12; then

(A(a,/3)x, x) + 2 Z olixi’4;- Z xi.i2
i=1 i=1

However, by differential calculus, if 0 < a, fl < 1, then

Therefore,

2i

02)i.
If a/B _-< 1/2, it follows that A(a, B) is positive.

Now let a I and . By the above computation A(I, I) is positive. Setting

-0--!

Yn= 4
0

we have
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while

Letting

# 0 0

2 4 4n 2n.
0 0

"A A12"a =A(1/4,-)
.A21 A9_2.

be the partition relative to the upper left (1 1) corner, we may restate the above cal-
culations in the form

A10 +A12Yn -’ 4: S(A)O,

AzlO WA22Yn’- O,

(Az2Yn,Yn)=4n.
This shows that without the boundedness of (A:z2y,,, y,,) the conclusion of Theorem
may fail.

For completeness sake we point out that Proposition 2 enables us to compute

S(A) 1- , (i-i4-i/2)(8-i4-i/2)
i=1

=1-- 2-i

i=1

5. Infinite networks. The rigorous treatment of infinite resistive networks does not
have a long history. As shown by Flanders [13], [14], Zemanian [22]-[24] and others
many ofthe classical theorems for finite networks fail for infinite networks. In this section
we derive as a corollary to Theorem an existence and uniqueness result for infinite
networks similar to a result of Flanders [13]. Our formulation of Kirchhoff’s laws fol-
lows 10].

Given an infinite connected directed graph with edge set B, node set N, we define
its incidence matrix

E= {eO}isN,jel
by

eij
0

if edge j points to node i,
if edge j points away from node i,
otherwise.

Let 0 and be two distinguished nodes. Assume that the graph is locally finite except
perhaps at zero. Set

E’= {eij}ieN\{O},jeB,



154 C. A. BUTLER AND T. D. MORLEY

the matrix obtained from E by deleting the row corresponding to node 0. Under the
assumption of local finiteness, the rows of E’ will have finite support. Thus E’ induces a
continuous operator

and also a continuous operator

E’: 12(B)-- 12(N\ {0})

E’: s__ N\{0},

Here 12(B) denotes the Hilbert space of all sequences {Xa}bn with bn ]Xb]2 < OlD. The
notation denotes unrestricted sequences {Xb}an with the topology ofcoordinate-wise
convergence.

Let e lz(N\ {0})
_
N\0 be the vector c {Ci}iN\0 defined by c 1, ci 0,

4: 1. Kirchhoff’s current law (for a current source of one amp connected between 0
and 1) may be expressed as

E’x=c

where x B denotes the branch currents. Kirchhoff’s voltage law becomes

vrange (E’*) ker (E’)+/-

where v s denotes the branch voltage drops [10]. (The fact that range (E’*) ker (E’)+/-

follows from the Fredholm alternative in the 12 case, the case can be found in [13].
By orthogonal complement in we mean the closure in s of the 12 orthogonal com-
plement.)

Let ri > 0 denote the resistance in the th branch. Assume ri < M for all i. Then
the operator Rx v, where vi rixi is continuous either on /2(B) or s. Now the
equations

(3)
E’x=c,
Rx-E’*w=O

formally express the laws of Kirchoff and Ohm.
THEOREM. Assuming the hypothesis above, there is a unique w , w range E’*,

such that there are Xn e lz(B with
(1) lim Rxn W - ker (E’)1,
(2) E’xn c,
(3) (RXn, Xn) is bounded.
Proof Let S ker (E’)+/-. Now partition R as

[RI1 Rl2]R
JR21 R22 J

with Rl; S S, etc. If the underlying graph is connected, then there is a d S
(ker E’)+/- with E’d c. With respect to the above partition, the condition that E’x c
may be rewritten as

where y S+/- ker E’. Thus (3) may be rewritten as

Rd+Rl2Yn w,

(3’) Rzc+ Rz2Yn.- O,

(R22Yn, Yn) < M.
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The existence of such a sequence {Yn} is guaranteed by Lemma 1. By diagonalization
choose a z e B with yn -- z through a subsequence. Such a z exists, since for each

B, riy2n,i <= (Rye, Yn) <= M. Existence now follows. For uniqueness, let Yn -- z and
y, -- z’ solve (Y), then y y, satisfies the conditions of Lemma 2. Following the
proof of Lemma 2 we may replace yn y, by sequences {z z, }, with Zn z’
convex hull {yi-y}=n, such that (R22(Zn-Zn), (Zn-Zn))"O, and such that
the limits z lim._, z. and z’= limn_. z. are not disturbed. It now follows that
Z Z’.
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Abstract. Several inequalities involving the trace ofmatrix exponentials are derived. The Golden-Thompson
inequality tr ea B _< tr eaeB for symmetric A and B is obtained as a special case along with the new inequality
tr eaear _-< tr ea +at for nonnormal A.

Key words, matrix exponential, inequality, trace
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1. Introduction. For n n real symmetric matrices A and B, the Golden-Thompson
inequality ]-[5] states that

1.1 tr ea / B __< tr e eB.
Reference [5] generalizes (1. l) to allow arbitrary spectral functions in place of the trace
operator and provides an overview of applications in which these inequalities arise.

In contrast to (1.1), problems in linear-quadratic optimal feedback control [6] typ-
ically involve a performance functional J of the form

(1.2) J= tr eAtveartR dt,

where Vand R denote noise intensity and performance weighting matrices, respectively,
and A denotes the linear system dynamics matrix. The form of (1.2) thus suggests in-
equalities of the form (1.1) involving A and A, where A is nonnormal, in place of
symmetric A and B. Such inequalities are motivated by robust sampled-data control-
design problems which require performance bounds for uncertain system models.

The main result of the present note is the inequality

(1.3) tr eaea
r <= tr eA + Ar.

Rather surprisingly, the sign of the inequality (1.3) is opposite to the sign of (1.1). To
understand why this is the case, we derive a series ofinequalities which, upon appropriate
specialization, yield both 1.1 and 1.3).

2. Inequalities. The following lemma is required. (Let Cr denote the transpose of
a matrix C.)

LEMMA 2.1. IfC c= R and r is a positive integer, then

(2.1) tr C2r tr crcrT tr (CCr)r.
Proof The first inequality follows from tr (Cr- crT)(Crr- Cr) >= O, while the

second follows from a result of K. Fan (see [4, pp. 234, 516]). ff]

THEOREM 2.1. IfA, B Rn n, then

tr eA + -< tr e(A + B)/2c(A + B)T]2 tr e(A + ar + + BT)/2

(2.2)

(2.3)

-< tr e(A + Ar)/2e(B + BT)/2 < 1/2 tr (e + AT+ e. +.T),
tr eAe

_-< 1/2 tr (eAeAT+ e’eEr) <= 1/2 tr (eA + AT+ e +

1/2 tr (e2a + e2B)

Received by the editors January 21, 1987’ accepted for publication May l, 1987. This research was
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Proof Defining C eA/2reB/2r, (2.1) becomes

tr (eA/2reB/2r)2r <= tr (eA/2reB/2r)r(eBr/2reAr/2r)r <= tr (eA/2reB/2reBr/2reAr/2r)r.
Letting r-- oe, the exponential product formula [5, p. 60] and its generalization
[7, p. 97] yield the first two inequalities of (2.2). The third inequality of (2.2) follows
from Corollary 3 of [5] while the fourth inequality of (2.2) follows from

0 =< tr [e(A + AT)/2 eB + BT)/2]2.
TO prove (2.3) note that the upper leftmost inequality follows from 0 =<

tr(eA- eB)(eA- en)r. The remaining inequalities in (2.3) follow from tre2A=<
tr eaeAr <- tr eA + At, which is a consequence of (2.2) with B A.

COROLLARY 2.1. IfA Rn ", then

eZ(A + AT),(2.4) tr e2A <- tr eAeAr <= tr e +r=< + tr

n n e2(A +AT)(2.5) tr e2a _-< + tr eZae2a =< + tr

IfA, B R are symmetric, then

(2.6) tr eA + <= tr eae_-< 1/2 tr (e2A + e2).

Proof The first two inequalities of (2.4) follow from the first two inequalities of
(2.2) with B A. The last inequality of (2.4) follows from the last inequality of (2.2) with
B 0 and A replaced by 2A. Inequalities (2.5) follow from (2.3) with B 0 and A
replaced by 2A while ignoring the lower leftmost term in (2.3). Finally, (2.6) follows
from (2.2).

Remark. The second inequality in (2.4) and the first inequality in (2.6) correspond
to (1.3) and (1.1), respectively.

3. Additional inequalities. The question immediately arises as to whether any ad-
ditional inequalities involving the expressions appearing in (2.4) and (2.5) are true. Note
that tr eAe in (2.3) cannot be merged with (2.2) because of the sign reversal between
(1.1) and (1.3). It can readily be seen that the only remaining possibilities are

(3.1) tr e(A + ar)/Ze(/ + tr)/2

_
1/2 tr (eaear+ ee),

(3.2) tr e(A + Ar)/2e(B + BT)/2 - 1/2 tr (e2A + e2B),

(3.3) tr eaen 1/2 tr (e2A -+- e2).
By randomly generating A and B, (3.1) was shown to be false. Since (3.2) implies (3.1),
(3.2) must also be false. Furthermore, in the case Br- -B, inequality (3.1), which
becomes

(3.4) tr e(A + At)/2 + tr eaea,

was also shown to be false. Hence (2.4) and (2.5) cannot be merged. Finally, the remaining
inequality (3.3) was also shown to be false even when B 0.

Remark. The results of this paper can be generalized to the case in which A and B
are complex matrices. Generalization to arbitrary spectral functions [5] remains an area
for further research.
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COMPLETION OF TOEPLITZ PARTIAL CONTRACTIONS*

CHARLES R. JOHNSONf AND LEIBA RODMAN

Abstract. Those patterns for the specified entries ofa partial Toeplitz matrix (whose specified entries occur
on consecutive diagonals) are characterized, which ensure that a Toeplitz partial contraction may be completed
to a Toeplitz contraction. The answer is rather different from that of the corresponding question without the
Toeplitz condition.

Key words, contraction, matrix completion, partial matrix, Toeplitz matrix, specified entries
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1. Introduction and the main result. An m-by-n complex matrix A (ao) is called
a Toeplitz matrix if

a a
for some sequence of rn + n -1 complex numbers

a-(m- 1) a0 an-1,

i.e., a Toeplitz matrix is constant along upper left-to-lower fight diagonals. An m-by-n
complex matrix B is called a contraction ifI- BB* is positive semidefinite. Equivalently,
each eigenvalue of BB* (or singular value of B) is -< 1. The m-by-n matrix A is called a
Toeplitz contraction if it is both a Toeplitz matrix and a contraction.

By a partial matrix we mean an m-by-n array A, some ofwhose entries are specified
complex numbers, and whose remaining entries are unspecified (i.e., free variables whose
values are to be chosen from the complex numbers). A completion of a partial matrix is
simply a particular specification of the unspecified entries resulting in a conventional
matrix. For example,

0 -i 2

is a completion of the 2-by-3 partial matrix

9 -i 2

We adopt the convention ofdenoting unspecified entries by ?’s. When just the placement
of specified entries is to be indicated, we denote them with X’s as in

Partial matrices have been discussed in [1 ]-[5].
A partial Toeplitz matrix is simply an m-by-n partial matrix A (ao) such that if

a0 is specified, then akt is specified and equal to a0 for each pair k, l with k l j,
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i.e., A is Toeplitz to the extent it is specified. The first partial matrix mentioned above
is a partial Toeplitz matrix. A partial contraction is a partial matrix each of whose rec-
tangular submatrices consisting entirely of specified entries (i.e., specified submatrices)
is itself a contraction. If a partial matrix is to have a completion which is a contraction,
it must be a partial contraction. A Toeplitz partial contraction is a partial matrix that is
both a partial contraction and partial Toeplitz.

We are interested in which Toeplitz partial contraction have completions that are
Toeplitz contractions. In [5] we studied the question of which partial contractions have
completions that are contractions. Here we address the Toeplitz version of this question
in a similar qualitative manner, a question suggested to us by C. Foias, who pointed out
that problems ofthis type arise in the analysis ofinput-output response in layered media.

We shall often be interested in the pattern P for the specified entries of (a class of)
partial matrices. In the case of partial Toeplitz matrices, this would be an indication of
which diagonals are specified and which are unspecified. We adopt the convention of
numbering these diagonals so that the i, j cell lies on diagonal j i, i.e., an m-by-n array
has rn + n diagonals numbered -(m 1), 0, (n 1) from the lower left
to upper fight.

We address the question of which patterns for the specified entries of a Toeplitz
partial contraction guarantee that it may be completed to a Toeplitz contraction. We
give a complete answer in the case in which the specified diagonals form exactly a con-
secutive sequence of diagonals. Note that the number d of specified diagonals is always
_-<m + n for an m-by-n partial Toeplitz matrix A. Our result is the following.

THEOREM 1. Let P be an m-by-n partial Toeplitz pattern whose d specified diagonals
form a consecutive sequence. Then every partial Toeplitz contraction with specified entries
ofpattern P has a Toeplitz contraction completion ifand only ifat least one ofthefollowing
conditions is satisfied:

(i) rn= orn= 1,
(ii) d _-< 1,
(iii) d-> rn + n- 2, or
(iv) rn= n and d= 2n- 3.
According to the theorem, the only partial Toeplitz patterns (up to transposition)

that ensure completion of a partial Toeplitz contraction to a Toeplitz contraction are
the following:

(i) a single row,
(ii)

(iii)

X
X

X

X X ?
X

X X X

and
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(iv)(a)

(iv)(b)

? X

X X ?
X

X ?
X

or

in the square case.

It should be noted that, although the completable patterns are on the whole more restrictive
in the Toeplitz case, the answer is quite different from the general contraction case [5].
The pattern (iv)(a) is not a completable pattern in the general contraction case, while
many patterns allowed in the general case [5] are excluded in the Toeplitz version.

It should be noted also that, as follows from Theorem 1, not every Toeplitz subpattem
(with obvious definition ofthis notion) ofa completable Toeplitz pattern is completable.
This is in contrast with the case of general (non-Toeplitz) contraction completions
(see [5]).

2. Proof of Theorem 1 (sufficiency). The general strategy of proof is similar to the
characterization of completable patterns in other settings [3]-[5]: verify the completability
of the identified patterns (in this case this is relatively straightforward) and then present
a class of counterexamples that show that no other patterns can be augmented without
a contradiction (in this case this part is relatively more intricate than in [5]).

We first note that each of the patterns (i)-(iv) permits completion of a Toeplitz
partial contraction to a partial contraction. In cases (i) and (ii) choosing the unspecified
entries to be 0 is easily seen to produce a contraction if the partial matrix is a partial
contraction. For (iii) and (iv) we recall the basic result (see [1], [5]) that in the general
(not necessarily Toeplitz) case the block pattern

for a partial contraction always permits a contraction completion. Case (iii) follows directly
from this fact; since only one entry is unspecified, the Toeplitz restriction on the com-
pletion is irrelevant. Case (iv) is slightly more subtle. In case (iv)(a) note that the upper
fight ? completes two maximal submatrices: the top n rows and the last n
columns, but these two are essentially the same because ofthe Toeplitz restriction. Thus,
specification of the ? using the above fact for one ofthese will necessarily satisfy the other
and result in a Toeplitz partial contraction with only a ? in the lower left. An appeal to
(iii) then completes the analysis of (iv)(a). Case (iv)(b) is similar. Again the two maximal
submatrices completed by the specification of diagonal number n 2 are the same due
to the Toeplitz condition and this diagonal may be specified (using the same fact again
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applied to appropriate submatrices) to produce a Toeplitz partial contraction oftype (iii),
thus completing case (iv)(b) and the sufficiency of cases (i)-(iv).

The proof that no further patterns always allow completion to a Toeplitz contraction
is based upon what might be called the principle ofincompatible specification. (Though
not formalized, this has been the guiding notion in prior work [3]-[5].) Note that in the
sufficiency of cases (iii) and (iv) above, although specification of an unspecified diagonal
sometimes completed more than one maximal submatrix, these submatrices were essen-
tially the same; and, thus, the conditions upon the entry (diagonal) to be specified were
compatible. In all other patterns, specification ofa "next" diagonal completes more than
one maximal and essentially different submatrix. It turns out that data for the specified
entries may always be exhibited in such cases so that the various conditions placed upon
the next diagonal are incompatible. In fact, this may be done so that two ofthe different
completed submatrices uniquely determine the new entry to be two different values. This
is the incompatible specification principle.

3. Auxiliary results. We shall develop some auxiliary results of computational
character in order to put the incompatible specification principle to work.

LEMMA 2. Let G(x, y) be a q-by-r matrix (where <= q <= r) all ofwhose elements,
with the exception of one diagonal consisting of q elements, are equal to y, and these
exceptional entries are equal to x (here x, y C). Then G(x, y) is a contraction ifand
only ifthefollowing conditions hold:

(1) For q >= 2, either

]x-y]<l and (r-2)lYl2+x+y<-_q-(1-1x-yl2)
or

IX-- Yl and (r- 2)lYl2 + x37+ y?= 0.

(2) For q 1,

(r- )lyl2 + Ixl 2 1.

In particular, G(x, x) is a contraction ifand only if lxl <= (qr)-/.
Proof Leaving aside the trivial case q 1, assume that q _>- 2. A calculation shows

that the q-by-q matrix I G(x, y)G(x, y)* is equal to

(1) (1 -Ix-yl2)I-((r 2)lyl2 +x+yy)e eq

where eq is the 1-by-q row all of whose entries are 1. Since q -> 2, in order that (1) be
positive semidefinite it is necessary that Ix Y =< 1. The case Ix Y being evident,
assume that Ix Y < 1. Then (1) is positive semidefinite if and only if I we eq is
such, where

w (1 -Ix- yl2)-l((r 2)lYl - + x37+
Now

(2) ((I- we eq)x,x) (x,x}- wl(eg,x)l2

for every x e Cq. (Here (., stands for the standard inner product on cq.) It follows
that (2) is nonnegative for every x Cq if and only if

1-w(e,e)>=O
which means that w =< q-l.

LEMMA 3. Let Fo, be a q r matrix (q >= r >= 1), whose every entry, with
the exception of one unspecified entry in the upper right-hand corner, is equal to
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[(q 1)r]-1/2. Then there is a unique contraction completion OfFq,r, and it is obtained
by specifying the upper right-hand corner to be

(3) Wo -(r- 1)[(q- 1)r] -1/2.

Proof It follows from Lemma 2 that Fq, is a partial Toeplitz contraction. Let F(x)
be the q-by-r matrix obtained from Fq, by specifying the upper fight-hand corner to be
x C. Then, denoting w [(q 1)r]-/2, we have

(r- 1)lw[2- Ixl 2I- F(x)F(x)*
[-(r- )lwl--.w]e_

[-(r- 1)lwl2 x]eq_ ]
V

where eq_ [1 1] is 1-by-(q- 1) row and

V=I-rlwlZe_eq_=I-(q 1)-e_eq_
is (q 1)-by-(q 1) matrix. One verifies that e_ belongs to the kernel of V. Let U be
a (q 1)-by-(q 1) unitary matrix whose first column is e’_ /[[e_ [[. Then the 2-by-2
upper left-hand corner in

is

U*
(I- F(x)F(x)*)

0

(r- 1)lwl Ixl 2 (q 1)’/2[-(r- 1)lwl xV]l
(4)

(q- 1)/2[-(r 1)lwl z ?w] 0 ]"
The matrix (4) is positive semidefinite only if

-(r- 1)lw[2 xv 0,

or

x- -(r- 1)w.

So, if there exists a contraction completion of Fq,r, it must be specified by (3). But the
existence of a contraction completion of Fo, follows from [1], [5], and the lemma is
proved.

Using Lemma 2 and calculations similar to that in the proofofLemma 3, we obtain
the following statement.

LEMMA 4. Let H(x, y) be a q-by-r partial matrix (where 2 <-_ q <= r 1) all ofwhose
entries exceptfor the upper right-hand corner are specified. The specified entries are equal
to y, except for one diagonal consisting of q elements which does not intersect the last
column in H(x, y); the entries on this exceptional diagonal are equal to x. Here x and y
are complex numbers such that

[x-yl < 1, y4:0,

(r- 2)[yl2 +xy+Y,y=(q 1)-1(1 Ix-y[2),

(r- 3)[ylz + x7+ .y =< q-l(1 -Ix- y 1-).

Then there is a unique number z such that by specifying the upper right-hand corner in
H(x, y) to be z, one obtains a contraction. This number is given by theformula

z [-(r- 3)lyl x;- y]37-.
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We remark that the statements in Lemmas 3 and 4 concerning the values of w0 and
z, respectively, can also be obtained from a general formula for contraction completions
[1, Thm. 1.2].

4. Proof of Theorem 1 (necessity). Let P be an m-by-n pattern of specified entries
that is not covered by (i)-(iv) ofTheorem 1. We shall show that not every partial Toeplitz
contraction of pattern P admits a Toeplitz contraction completion. By passing to a sub-
pattern, we can assume that 2 =< m < n and either

[ ?](5) P= or
?

(6)

Consider first the case P as given by (6), and let 3 =< m =< n 2. Let K be an m-by-n
partial matrix with pattern P with the following properties:

(1) The specified entries in K, with the exception of one diagonal consisting of m
elements which does not intersect the two last columns of K, are equal to

y: ((m 1)(m 2) + (n + m)-)-1/-.

(2) The specified entries on the exceptional diagonal in K are equal to

One verifies that

m-n+l
X--

Ix-y[<l,

(n 2)y2 + 2xy (m 2)-(1 -Ix- yl2),

(n 3)y2 + 2xy (m 1)-1(1 -Ix- y[2),

(n 4)y2 + 2xy < m-l(1 -Ix- y[2).
So by Lemma 4, K is a partial Toeplitz contraction which does not admit a Toeplitz
contraction completion.

Assume now that rn n -> 3 (and P is given by (6)). Let K be a partial Toeplitz
matrix with pattern P each entry of which is ((n 2)(n 1))-1/2. By Lemma 2, K is a
partial contraction. IfKwere to admit a Toeplitz contraction completion, then by Lemma
3 the only possibility in the (1, n 1), hence also in the (2, n) entry, would be

-(n- 2)((n- 2)(n- 1))-1/2.

However, this is impossible, because one easily checks that the n-dimensional row

[ww... WWo],

where w ((n 2)(n 1))-/2, w0 -(n 2)w, is not a contraction for n > 1.
It remains to consider (still assuming P has the form (6)) the case rn 2, n > 2.

If n 3, then we are done by letting the specified entries be t/2. If n -> 4, then put

y= n- 2 +(n- 5)2 x -----y,
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and verify that

[x-yl < 1,

(n 4)y2 + 2xy 1/2(1 -Ix- y12),

(n 2)y2 + x2 1.

Let K be the partial Toeplitz matrix with pattern P, all of whose specified entries are y,
with the exception of (1, 1) and (2, 2) entries which are x. By Lemma 2, K is a partial
contraction. Arguing as in the proof of Lemma 4, we see that the only way K can be
completed to a Toeplitz contraction is by putting

z -(n 4)y 2x

in the (1, n 1) position. However, the n matrix

[yxy... yz]

is not a contraction, so K does not admit a Toeplitz contraction completion.
Consider now the case when P is given by (5). If 3 -< m =< n 2, then we are

done by arguing as in the case when P has the form (6). Assume that m n >= 2.
Let K be the partial matrix with the pattern P all of whose specified entries are
((n 2)(n 1))-1/2. Then Kis a partial Toeplitz contraction by Lemma 2. By the principle
of incompatible specifications, and using Lemma 3, K is not completable to a Toeplitz
contraction. Finally assume that m 2, n >= 4. Let

)-1/2y= n-2+(n-5)2

and let K be the partial matrix with pattern P all of whose specified entries are y except
for the (1, 2) and (2, 3) entries which are x. As in the case when P was given by (6), one
verifies that K is a partial Toeplitz contraction which is not completable to a Toeplitz
contraction.

Theorem is now proved completely.

5. Partial Toeplitz contractions with scattered diagonals. In this section we consider
briefly the Toeplitz completion problem for the case of scattered diagonals.

Given an rn n matrix A with entries ai/(1 <= <= m; <-_ j <- n), the diagonals of
A that are parallel to the main diagonal will be numbered from -(rn 1) to n 1,
starting in the lower left-hand corner and ending in the upper fight-hand corner. Thus,
the diagonal {ai/I-i + j d}, where d is fixed, has number d. Let

T(m, n; dl, d2, ,dr)

be the set of all m n partial Toeplitz contractions whose specified diagonals have num-
bers dl, dr (it will be assumed that dl < d2 < < dr). The set

T(m, n; dl d2, dr)

will be called completable if every matrix from T(m, n; dl, d2, dr) admits a Toeplitz
contraction completion.

Some completable sets (apart from those described in Theorem 1) are given below.
As the cases when r or min (m, n) were covered in Theorem 1, we assume

in the following theorem that r >_- 2 and both m, n are greater than one.
THEOREM 5. Assume that dl, dr form an arithmetic progression, i.e.,

dl + k(j 1), j 2, r, for some k > 0 (independent ofj), and assume that dl
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-okfor some integer p. Then T(m, n; d, dr) is completable ifand only ifat least
one ofthefollowing conditions is satisfied (here the integer p is defined by dr bk):

(1) /(o4- 1)k>mandl +(+2)k>n;
(2) +(o+2)k>mandl +(+ 1)k>n;
(3) + (+ 2)k> m_>- + (+ 1)k, + (+ 2)k> n >_- + ( + 1)kand
=4;

(4) +(+ 1)k>m, +(+3)k>n>= +(+2)kand=4;
(5) +(+ 1)k>n, +(+3)k>m>_- +(+2)kandp=4.
Proof Assume at least one of the conditions (1)-(5) is satisfied. Given a partial

Toeplitz contraction A T(m, n; dl, dr), let be the matrix formed by the entries
(specified or not) ofA in the positions (sk + 1, tk + 1), where s, are integers. By Theorem
the partial Toeplitz contraction is completable to a Toeplitz contraction. It is easy

to see that by using this Toeplitz contraction completion in the entries (sk + 1, tk + 1)
of A (where s, are integers), and by putting zeros in all the remaining entries of A, a
Toeplitz contraction completion ofA is produced.

Conversely, if none of the conditions (1)-(5) is satisfied, then by Theorem there
exists a partial Toeplitz contraction A T(m, n; dl, ", dr) such that (constructed as
above) is not completable to a Toeplitz contraction. Then, obviously, A cannot be com-
pleted to a Toeplitz contraction as well. ff]

One can describe, using the same idea as in the proof ofTheorem 5, all completable
sets T(m, n; d, dr) where d’s form an arithmetic progression but d is not necessarily
an integer multiple of k. However, this description is messy and hence will not be pre-
sented here.

We were not able to describe the completable sets T(m, n; d, dr) in general.
We propose the following conjecture.

CONJECTURE 6. Assuming that r > and both m and n are larger than one, all
completable sets T(m, n; d, , dr), possibly with very few exceptions, are those described
in Theorem 5.

It should be noted that the "one-step extension" approach (see [2], [4], [6]) does
not work for the Toeplitz contraction extension problem, as can be seen already from
Theorem 1.

6. Final remarks. We conclude this paper with several observations concerning the
main result (Theorem 1).

First, Theorem is true also if all partial Toeplitz contractions involved, as well as
their Toeplitz contraction completions, are assumed to have real entries. This is proved
in exactly the same way as Theorem 1.

Another version ofTheorem can be obtained by replacing contractions with strict
contractions (an m-by-n matrix A is called a strict contraction if I- AA* is positive
definite). In this case the sufficiency part is proved as in the proof of Theorem 1. For the
necessity part one has to modify slightly the arguments given in 4. We omit the details.

Finally, let H be a Hilbert space. An m-by-n matrix A (A j), where Aij H -- Hare linear bounded operators, is called block operator Toeplitz if Aj Aj_ for some
operators A-m-1), "’", A0, "’", An-1. Now the notions of a partial block operator
Toeplitz contraction and ofa block operator Toeplitz completion can be obviously defined,
and Theorem is true, together with its proof, in this framework.
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Abstract. This paper provides a theoretical basis for establishing the convergence of semi-iterative and
iterative techniques, especially Jacobi and Gauss-Seidel techniques, for computing nontrivial solutions of
Ax 0 where A is a singular M-matrix. These results do not assume A to be irreducible. The convergence
question for iterative techniques continues to be studied extensively. The interest has been primarily in rearranging
states on the rate of convergence. Here we begin the investigation of an alternate technique, namely a semi-
iterative or averaging process, to attain convergence.
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1. Introduction and notation. Many applications are modeled by a queueing system
in which the problem is to find the stationary vector for a stochastic matrix. This is
usually rewritten as

(.) Ax=O

where A is a singular M-matrix. (See, e.g., Barker and Plemmons 1986], Kaufman 1983],
Mitra and Tsoucas [1987], or Rose [1984].) An instance of such a model is the simple
production line cited in Mitra and Tsoucas [1987], which is a tandem ofM machines
each of which is equipped with a finite buffer. Together with probabilistic assumptions
concerning arrival rates and service times this is modeled by a finite-state continuous-
time Markov process. By, for instance, observing the state of this process immediately
after a state transition we proceed to a discrete-time Markov chain whose stationary
vector we wish to compute.

Particular applications involve representing A as

(1.2) A=I-B

where B is column stochastic, or as

(1.3) A:D-L-U

where: D, L, and U are entrywise nonnegative; D is diagonal; and L and Uare, respectively,
strictly lower and strictly upper triangular. The solutions of (1.1) then correspond to
solutions of

(1.2’) Bx x

or of

(1.3’) (D- L)- Ux x.

These are important special cases of a matrix splitting A M- N with a corre-
sponding iteration matrix T M-N. The iteration procedure becomes

Mx(k + ) Nx(k).
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In general, if M is nonsingular and T M-1N is semiconvergent, then for a suitable
initial approximation xt) the sequence

xtk)= TxtO)

will converge to a nonzero solution of (1.1). This follows immediately from

Axk) MTkxtO)- NTkxo) NTk- lxO)_ NTkxtO).

Recent studies have assumed the irreducibility ofA together with various other conditions
which ensure that

exists. Here we impose conditions on A which guarantee the convergence of semi-iterative
techniques and also the convergence of relaxation methods for not necessarily irreduc-
ible A.

We draw heavily on the theory of nonnegative matrices, and our basic references
are Berman and Plemmons [1979, Chap. 2], Gantmacher [1959, Vol. II, Chap. 14], and
Varga [1962, Chap. 2]. Specifically, a matrix B (b0) is nonnegative (B >= 0) if and only
if bij >= 0 for all and j. Further, if r(B) denotes the spectral radius of B, then we know
that B >= 0 implies r(B) a(B), where a(B) denotes the spectrum of B. In this case this
eigenvalue is called the Perron root ofB and is denoted by o(B). A matrix A (nonnegative
or otherwise) is termed reducible if there is a permutation matrix P such that

where N1 and A are nonempty square submatrices. If A is not reducible, it is called
irreducible. The convergence rate of an iteration matrix is controlled by the parameter
3’(T) which is defined by

3’(T) max {IXI: Xea(T), ,# 1}.
A matrix T is called semiconvergent provided limn-,Z exists. Thus T is semiconver-
gent if and only if r(T) =< 1, a(T) implies its elementary divisors are linear, and
3,(T) < 1.

A matrix of the form

A=sI-B

where B >= 0 and s >-_ o(B) is called an M-matrix. If s o(B), then A is a singular
M-matrix. An important special class of singular M-matrices are the Q-matrices (see
Rose [1984] or Barker and Plemmons [1986]). A singular M-matrix A (ao) is a
Q-matrix if

(1.4) ai2 =0, _-< j<=n.
i=1

Finally, let A be an n n matrix with spectrum r(A), and let 9 a(A). Recall that the
index of ) is defined by the condition

indx (A) inf k: ker (M-A) ker (M-A) + }
where ker A is the kernel (or null space) of the linear transformation A.
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2. Semi-iterative methods. Following Varga [1962, Chap. 4] we use "semi-iterative"
to describe an iterative technique together with an algebraic combination ofthese vector
iterates.

DEFINITION 2.1. Let Z be an n n matrix with spectral radius p(Z). Z is said to
satisfy property (E) if and only if for all a(Z), I1 (z) implies that the elementary
divisors of X are all linear.

Remark 2.2. The notation arises since this property allows us to prove a type
of the mean ergodic theorem. This property is obtained for important classes of
matrices. It is classical that this property is satisfied ifA is a stochastic matrix. Further,
ifA M N is a nontrivial M-splitting of an irreducible M-matrix A (that is, M is itself
an M-matrix) then from Theorem 3.5 of Schneider [1984] we know that the iteration
matrix T M-IN satisfies property (E). Quite similar ideas for semiconvergent iteration
matrices T are discussed in Neumann and Plemmons [1978].

LEMMA 2.3. Let Z >= 0 be an n n matrix which satisfies property (E) and for
which o(Z) 1. Then

n

z
n+l= o

converges to a projection P >- O. Further, ifx) is any vector, then

Z(px(O)) px(O).

Proof The proof is standard (cf. Barker [1974]), so it will only be outlined here.
Choose S so that S-Izs is in Jordan normal form:

S zs I ( W I ( () wpI ()(XlI--U)()’’’ () XqI -Ji U)

where the I’s denote identity matrices of appropriate sizes, the U’s have l’s along the
first superdiagonal and zeros elsewhere, Io1 1, j 1, ..., p and IjI < 1, 1, ...,
q. It is well known that

n+l
o --0

k=

as n -- o when Iwl =< 1, w 4: 1. Further,

(ksI+ U)k
k=0

is bounded. Thus,

,,o n + (S-IZS)k I (R)0 0.
k=0

Consequently, the limit

n n+lk=
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is a nonnegative projection which commutes with Z. Finally, for any vector x we have

Z Ze x (Z+ + )x
n+lk= o n+l

-n+2-1 (n+21)(i+Z+n+ 4rZn+l)x n+21 (n+2)n+l x,
and a passage to the limit as n -- oo shows that ZPx Px.

Remark. Ifx has all entries positive, then since P >= 0 it follows that Px 4 O. Thus
for a positive vector x we see that Px is a nonnegative eigenvector of Z belonging to 1.

Semi-iterative methods.
(a) IfA I- B we call the scheme

x(n) Bx(n- l)

nytn) (xtn) -t- -- X(0)) x(n) + y(n- )

n+l n+l n+l

the (C, 1)-Jacobi method.
(b) IfA D L U we call either of the schemes

(D- L)x(") Ux("-

ny(n) X(n) + y(n- 1)

n+l n+l

or

(D- U)x(n) Lx(n- ),
ny(n) x(n) + y(n- 1)

n+l n+l

a (C, )-Gauss-Seidel method.
THEOREM 2.4. Let A be an n n singular M-matrix.
(a) IfA I- B where B is a stochastic matrix, then for any positive initial vector

x() the (C,1)-Jacobi method converges to a nonnegative nonzero solution ofAx O.
(b) IfA D L U is an irreducible singular M-matrix as in (1.3), then for any

positive initial vector x() the C, )-Gauss-Seidel method converges to a nonnegative non-
zero solution ofAx 0 which is unique up to scalar multiples.

Remark. Although the limit in (b) is unique apart from scalar multiples, the same
is not generally true in (a). In fact, if we decompose n as

E() S,

where E is the eigenspace corresponding to a(B) and S is the invariant subspace
corresponding eigenvalues of B, then the (C, 1)-limit

n+lk=
is the projection onto E along S. P is nonnegative and is the operator residue
of the resolvent (zI- B)- at z 1. Thus, the (C,1)-limit which is Px) depends upon
x() and is not unique (up to scalar multiples) unless dim E 1. Since B is stochastic,
dim E when and only when B is irreducible.
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Proof (a) It is well known (cf. Gantmacher 1959, II, p. 86]) that ifB is stochastic,
then B satisfies property (E). Now apply Lemma 2.3.

(b) If A is irreducible, then A (D L) U is a nontrivial M-splitting. Put T
(D L)-U. From Theorem 3.5 of Schneider [1984] we have that T satisfies property
(E) and the result follows from the lemma.

It is well known (see Gantmacher [1959]) that if B is an irreducible nonnegative
matrix, then

B p(B)D-PD

where D is a positive diagonal matrix and P is stochastic. Thus, in principle, case (b) can
be reduced to case (a) by a diagonal similarity and a scaling. The second case is stated
for comparison with previous work. We know (cf. Barker and Plemmons 1986, p. 395])
that for an irreducible singular M-matrix we can always permute the rows and columns
so that the Gauss-Seidel method converges. The comparison to be made is between the
cost ofthe graph search together with the Gauss-Seidel iterations and the cost ofaveraging
for a (C, 1)-Gauss-Seidel method.

The ideas of (C,1) iterative solutions are by no means new. They are discussed
extensively in Rothblum ([ 1980] and [1981]), who uses the term average convergent.
Rothblum obtains explicit forms of solutions in terms of Drazin inverses and relates
(C,1)-convergence of nonnegative matrices to the structure of the fundamental classes.
In particular Lemma 2.3 is contained in his Lemma 3.2. Our primary observation here
is that (C, 1)-convergence applies to some important cases where we can spell out a (per-
haps) useful iterative method.

3. Basic methods and singular M-matrices. A great deal is known about irreducible
M-matrices. In particular, one may consult Schneider 1984] and Berman and Plemmons
[1979] from which we quote the following result.

THZORZM 3.1. Let A be a singular irreducible M-matrix oforder n. Then
(a) rankA=n- 1,
(b) there is a positive vector x such that Ax O,
(c) A has property C, that is, A sI B, s > O, B >= O, and (1/s)B is semiconvergent.
If A is an irreducible singular M-matrix, then there are positive diagonal matrices

D and D2 such that

DAD_ I-L- U I- B

where B is column stochastic and trace B 0. In fact, for each e > 0 there is a positive
diagonal matrix

O(e) diag (d(e), dn(e))

such that all the column sums of D(e)(A + el) are positive:

(3.2) (ajj + e) dj.(e) > laijl di(e), j 1, n.
i4j

We may divide both sides of (3.2) by (dl(e)2 + + dn(e)2) 1/2 and so may take the vec-
tor (dl(e), dn(e)) to be on the unit sphere. By compactness there is a subsequence
ek -- 0 such that (ek) -- >= 0 for j 1, n. Hence

(3.3) ad >_- lal di, j 1, n.
i4j

Since (d, dR) is a unit vector it is nonzero and so

S ={j:dj>0}4=.
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We may assume without loss that

S= {1,2, ,l}, l<-_n.

If < n, then for each j with < j =< n and all < j,

a0 =0.

This follows from (3.3). Since this contradicts the irreducibility ofA, we have that l n.
Finally, let

d diag (d, d,).

Then for D D- and D_ D diag (1/a, 1/a,,,), we have

DAD2 I- B

where B >= 0, trace B 0, and B is column stochastic.
The hypothesis of irreducibility also imposes restrictions on the multiplicity and

index of the eigenvalue 0 of A. We shall deal with a slightly larger class of singular
M-matrices which contains both the scaled irreducible M-matrices and the Q-matrices.
Specifically, we assume that

(3.4) A=I-L-U=I-B

is a singular M-matrix, L is a strictly lower triangular matrix, while U is (not necessarily
strictly) upper triangular and

(3.5) ind0 (A)= 1.

Note that A is a Q-matrix when B is column stochastic.
If A I- B is irreducible, then B is irreducible. Thus for any c > 0, cd + B is

primitive. Split A as

A=lI-e-( 1-el+B)e
and denote the JOR iteration matrix by

(3.6) W(e) I+ B (1 e)I+ eB

for 0 < e < 1. Young [1972] calls e the Jacobi overrelaxation (JOR) parameter while
others (e.g., Mitra and Tsoucas [1987]) use a e (0 =< c < 1) as the relaxation
parameter. W(e) is primitive and o(W(e)) 1, whence W(e) is semiconvergent. In par-
ticular, if x() >_- 0 is a nonzero initial vector, then the sequence

x() w()lx(0)

converges to a positive solution ofAx O.
There is an analogous Gauss-Seidel type of iteration. For let 0 < e < and put

A=I-L-U -I-L I+U

We then obtain the successive overrelaxation (SOR) iteration matrix (cf. Barker and
Plemmons [1986, p. 395])

( )-1( 1-e )(3.7) T(e) 1 L I+ U (I- eL)-((1 e)I+ eg).
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We now have

T(e) (I- t:L)-l(( e)I + eU)

(I+ eL +... + ,n 1Ln- 1)((1 e)I+ eU)

>= e(1 )(I+ L + U)

e(1 e)(I+ a).

If A is irreducible, then I + B and hence T(e) are primitive. Since p(T(e)) 1, we see
that T(e) is semiconvergent. If x() >_- 0 (x() 4: 0), then

x* lim [T(e)]kx)

is a positive solution of (1.1).
We now relax the conditions on A in the convergence results.
PROPOSITION 3.8. Let A be an n n matrix which satisfies the assumptions (3.4)

and (3.5). Then the iteration scheme

x(k + 1) W(,)x(k), X(0) > 0,

convergesfor any e in (0, 1) to a nonzero nonnegative solution of(1.1).
Proof Clearly a(W(e)) e + eX: X a(B)). We have o(W(e)) 1, this eigenvalue

has index 1, and 7(W(e)) < 1. Therefore W(e) is semiconvergent for 0 < e < 1.
Conditions (3.4) and (3.5) are slightly weaker than the assumption that the iteration

matrix is semiconvergent. The latter assumption has been used for an extensive study of
regular splittings in, for instance, Neumann and Plemmons [1978]. The main result of
our paper is the next theorem which shows that convergence of the iteration scheme
occurs with our somewhat weaker hypotheses.

THEOREM 3.9. Let A be an n n matrix which satisfies the assumptions (3.4) and
(3.5). Then the iteration scheme

xk + l) T(e)Xk), X)> O,

converges to a nonnegative nonzero solution of(1.1).
Proof As in the discussion following (3.7), we have

(3.10) T(e)=(I+ eL + + en- lLn-1)((1-e)I+ eU).

From (3.10) we infer that

[T(e)]-< [(I+ e+... + e 1Ln-l)(i+ ,u)]k
(3.11)

<= [I + eL + eU]nk <= f[W(e) "link
-1

and that

(3.12) T(e) >_-(1-e)I+e(1-e)L+eg>=(1-e)W(e).

For a suitable permutation matrix P, we have

pT(e) p-1

Tll 0 0
T21 T22 0

Tml Tm2 Tmm
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where each Ttt (l 1, m) is an irreducible square matrix. (N.B. The zero
matrix is regarded as an irreducible matrix.) If T(e) is not semiconvergent since by Theo-
rem 4.5 of Schneider [!984] we have

ind (T(e))= indo (A)= 1,

then there is some Ttt and some permutation matrix Q for which we have

and

(3.13) QTttQ-
where h > 1. Now let

p( Tll) p( T(e))

0 C12
0 0

0 0
CI 0

=C

l<=i, j<-g, k =1,2,.-.

where g is of the order Tit. It is clear from (3.13) that for any pair (i, j) there is a k,
_-< k =< h, such that

c =0,

and, further,

We have by (3.12) that

and hence

Cj’k +/h) 0, f =0, 1,2, "’.

P[T(e)lkpr >= (1 e)kp[ w(e)]kP

E(k)

(3.14) (1--e)-2kck>=Q(l e)kQ T

where E(k) is the g g submatrix of P[W(e)]kPT corresponding to Ttt. (Note that the
exponent in E(k) is an index, not a power.) Now W(e) is semiconvergent so that

exists and, consequently,

lim P[W(e)]kPT

lim E(k)

exists. But by choosing a suitable subsequence we see that cf 0, whence

lim [E()(1 e)-] 0.

But then from (3.11) it follows that

lim (Ttt)k 0,

which contradicts p(Tll) 1. Therefore, T(e) is semiconvergent.
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4. Rates of convergence. Given a convergent iteration scheme

(4.1) x(k + l) Nx(k), k O, 1,

the asymptotic rate of convergence is the parameter -ln [’y(N)] (see, e.g., Funderlic and
Plemmons [1984]). Thus, the smaller ,(N) the faster we expect (4.1) to converge.

Let N(e) in (4.1) denote either the JOR or the SOR iteration matrices, that is,

or

N(e) W(e) (1 e)I+ eB (0 < e <= 1)

N(e) T(e) _1 I- L I+ U (0 < e < 1).

The entries of N(e) are continuous functions of e so that 3,(N(e)) is a continuous function
ofe.

DEFINITION 4.2. We call e0 (0, 1] an optimal value if

y(N(eo)) --< y(N(e))
for each e (0, 1].

Considerable work has been done on these optimal values. For a general survey
including the complex case, see Hadjidimos [1984], [1985].

If there is an optimal value co, then N(eo) should ivc the fastest rate of convergence
in the iteration (4.1). The next result shows that the optimal values exist.

THEOREM 4.J. For the basic iteratio schemes a optimal alue o, as defied aboe,
always exists.

Proof Clearly W(0) I. If we rewrite T(e) as

T() (I- L)-I ( 1-I+ U] (I-L)-l((1 )I+ eU),
/

then T(0)= I. Since

lim N(e)= I
e--0

and is an eigenvalue of multiplicity n of/, we have

lim (N(e))= 1.
0-k

For simplicity let g(e)= "y(N(e)). Then g(e) is continuous on [0, 1] so there exists a
6 > 0 such that

(4.4) g(e)>=g(61)

for any 0 < e < 61 < 1. If N(1) is semiconvergent, there is an e0 [61, c (0, at which
g takes a minimum value. Then (4.4) implies that g(eo) is a minimum on (0, ], that is,
e0 is an optimal value.

If N(1) is not semiconvergent, then since indl (N(1)) it follows that N(1) has at
least two different eigenvalues on the unit circle. In this case

lim 3,(N(e))= 1,

whence there is a 52 > 0 such that

(4.5) g(e)>=g(1 -62)
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for any e in (1 62, 1). Since there is an eo e [61, 6] at which g takes a minimum
value, (4.4) and (4.5) imply that this eo is an optimal value.

The computation of the optimal value eo seems to be a difficult problem. As an
indication of how we might approach the general case, we shall consider the 3 3 case
and obtain an estimate for eo. Here A is a singular M-matrix of rank 2 whose column
sums are zero. That is, A I- B is a Q matrix of rank 2 and trace 3.

In detail, let

ta- -t3
(4.6) A --tl t3-- I-- L- U

tl- -t2

where

0 0 0 0 t2 t3
L t 0 0 U-- 0 0 l-t3

-tl t2 0 0 0 0

We have 0 =< ti <= 1, 1, 2, 3, and det A 0. This last condition yields

-/1)( t2)( t3) tlt2t3 tl( t2) + t2( t3) + t3( tl).

We have

(4.7)

T(e) I- L I+ U

e 0 O-

tie e 0

tt2e +(1 tl)e2 t2e

t2 t3

lm/3
0 -t3

0 0

Let r(T(e)) {1, X+(e), X_(e)}; then

X_+(e) 1/2 {tr T(e)- + [(tr T(e)- 1)2 4 det T(e)l 1/2 }
(4.8)

where for b ttzt3 we have

4)(e) tr T(e)- be + [1 b-(1 t)(1 t2)(1 t3)]e2- 3e + 2

and

(4.10)

b(e) [4ffe)]2 4(1 -/3)3.

LEMMA 4.9. Ifp(/3,) p(/3) O, for 0 <=/3 </3 < and l(/3)l > 0 on (/3, /3), then

min g(/3) <= g(/3*)

where/3* is the largest zero ofp(/3) on (0, 1).
Proof There are two cases.
Case A. (e) < 0 on (e, e). In this case (4.10) follows from

g(/3) y(T(/3)) 1/2 [(4ff/3))2 + 4(1 -/3) ((])(/3))2] 1/2 (1 -/3)3/2
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and

and

gt() __(1 )1/2 < 0 on (0, 1).

Case B. p(e) > 0 on (e,, ca). In this case we have

g() 1/2 [1()1 + 7-ff()], (.,)

We claim that

(4.11)

g’(e) [b’(e)(sgn (4(e))fe) + 4fie)) + 6(1 e)21/(2Ve)).

49’(e) 3be2 + 2[t( t2) + t2( t3) + t3( t)]e 3 < 0

for e (0, 1). Obviously this holds when b 0. When b > 0, 4"(e) has only the zero

e -zT, (t(1 t2) + t2(1 t3) + t3( t)) < 0,
.50

whence

max ’(e) max { ’(0), ’(1) < 0,
0_e_l

and this implies (4.1 1).
Since 4(e) [4fie)]2 4(1 e) > 0 implies 14(e)l >= V > 0 on (e, ee), then b(e)

is of constant sign on this interval and its sign is also the sign of sgn ((e))Vff(e) + (e).
If (e) < 0 on (e, ca), then g’(e) > 0 there and so

min g(e) g(e,) <= g(e*).
ea - _

If 4(e) > 0 on (,, ), then

g(e) 1/2 [4(e) +]>= 1/2 q(e) g(e).

Therefore

min g(e) g(ea) <= g(e*).

TIaEOREM 4.1 2. Let N T(e) be the 3 3 matrix (4.7); then when

(1 t,)(1 t2)(1 t3) 0

the iteration scheme (4.1) has the only optimal value one; when

(1 t)(1 t2)(1 t3) 4:0

it has only the optimal value e*, the largest zero ofp(e) on (0, 1).
Proof p(0) 0. If(1 tl)(1 t2)(1 t3) 0, then we have

b(e) (e 1)(be2 + e 2),

(e) e2(e 1)2(b2e2 + 2be + 4b)

and hence (1) 0. When b _-< , we have (e) > 0 and (e) > 0 on (0, 1). In this case
g(e) >- 1/2(1) g(1) by (4.13), that is,

min g(e) g(1).
0_e_l



METHODS FOR SINGULAR M-MATRICES 179

Lemma 4.9 implies that g(e*) min0__c, g(e) whenever e* exists. When b > ,
e* 7 (2V- 1) exists and 4(e) > 0, (e) > 0 on (e*, 1).

O

In this case

g(1) min g(e) min g(e).

If (1 t)(1 t2)(1 t3) 4: 0, then 4(1) -(1 t)(1 t2)(1 t3) < 0 and 4if0)
2 > 0. So there exists an e’ (0, 1) such that 4(e’)= 0 and p(e’)< 0. Since p(1)=
14(1)l > 0, there must be an e (0, 1) such that 4(el) 0. In this case e* exists and
4fie) < 0, p(e) > 0 on (e*, 1). Therefore g’(e) > 0 on (e*, 1), min,zz g(e) g(e*),
and hence

g(e*)= min g(e).
0_e_l

Note that if (1 t)(1 t2)(1 t3) 0, then T(1) is always semiconvergent.
As an example for the matrix

the optimal value is e* 0.965 with g(e*) 0.00396, g(1) 0.037, and g(0+) 1.

5. Summary. We have discussed some ofthe theory concerning the iterative solution
of

Ax 0

when A is a singular M-matrix. Most applications to date can be reduced to the situation
where A is irreducible. However, we show that under certain conditions (cf. Theorem
2.4) that a (C, 1)-semi-iterative procedure converges to a nonzero solution even for re-
ducible A. The comparison for an irreducible A I- L U is between the cost of the
averages in the (C, 1)-process and the cost ofa graph algorithm to determine a permutation
P such that PrAP has a semiconvergent iteration matrix. The main result is that if

A=I-L-U

is a singular M-matrix and if the index of 0 in A is 1, then the SOR iteration converges.
Irreducibility ofA implies our condition, but the two are not equivalent. The computation
ofthe optimal value of the relaxation parameter seems to be difficult. We treat an instance
of the 3 3 case and obtain some estimates.
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TOEPLITZ SYSTEMS ASSOCIATED WITH THE PRODUCT OF A
FORMAL LAURENT SERIES AND A LAURENT POLYNOMIAL*

WILLIAM F. TRENCH

Abstract. A method is proposed for solving linear algebraic systems with Toeplitz matrices generated by
T(z) C(z)cb(z), where C(z) is a Laurent polynomial and O(z) is a formal Laurent series, and a convenient
method is available for solving systems with Toeplitz matrices generated by (z). Special cases of the method
provide O(n) procedures for solving n n systems with banded or rationally generated Toeplitz matrices. The
latter do not require recursion with respect to n.

Key words. Toeplitz systems, banded Toeplitz matrices, rationally generated Toeplitz matrices

AMS(MOS) subject classifications. 15A06, 65F05

1. Introduction. To motivate the problem considered here, let (xj} be a wide-
sense stationary time series (possibly complex-valued) with zero mean and covariance
E(xi) cki-j. If

p

Y b x -o <j< ,
/=0

then { y} has zero mean and covariance E(yi) ti-j, where
p

(1) ti E Cl(i-l,
l=-p

with

and

p-l

c , [.b.+, O<=l<-p,
g=O

p+l

ct ., bb_t, -p<-l<=-l.
v=0

Minimum variance estimation problems concerning the time series { y} require
solutions of the systems

(2) TnX= Y,

where Tn is the n n Toeplitz matrix

(3) Tn (ti-j)in,j= 1.

(See, e.g., [16, pp. 20-23].) Definition (1) suggests that if we have an efficient way to
solve the systems

where

(5) (Im ((i-j)i,r 1,
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then it should be possible to exploit it in solving (2). Here we propose a method that
does this; however, since our results are not restricted to systems with positive definite
Hermitian Toeplitz matrices, we first formulate the situation more generally.

Let

be a formal Laurent series, and let
p

(6) C(z) , cj zj

be a Laurent polynomial, with

(7) p,q>-O,

Now define

so that

p+ q: k>= 1, CpC_q4=O.

T(z) C(z)O(z) tj zj,

P

(8) li l(i -1.
l=-q

We are still interested in solving (2).
There are many algorithms for solving Toeplitz systems that take advantage of

their special simplicity. (See, e.g., [3], [8], [11], [12], [17] and [18]--by no means a
complete list.) However, most require assumptions that are not met by all Toeplitz ma-
trices, and some are stable only for certain classes ofToeplitz matrices. (In this connection,
see [2].) Our results should be useful if there is a convenient algorithm for dealing with
the matrices generated by (z) which does not apply to those generated by T(z). This
could be so, for example, if the former are Hermitian, symmetric, triangular, or positive
definite, or if there is a convenient explicit formula for their inverses, while the latter do
not exhibit the desirable property. Our results provide a way to transfer the burden of
computation in solving (2) to a problem involving Cn + k and the banded matrix

(9) C,+k:(Ci "+-jJi,j

(cf. (7)). The method also entails the solution of a k k system. Since there are several
algorithms for solving banded Toeplitz systems (see, e.g., [1 ], [4], [9], [10], [13], and [14]),
this procedure should be useful ifn is large compared with k. Moreover, we also formulate
a procedure that avoids using any of the previously published algorithms for solving
banded Toeplitz systems and--as a by-product--provides a new method for this purpose;
however, for reasons of stability, this method requires some knowledge of the locations
of the zeros of C(z). The method also provides an O(n) procedure for solving (2) when
T, is generated by a rational function. (See 4.)

2. Derivation of the method. We emphasize that we are not proposing to produce
a complete algorithm here. Rather, we are assuming that an algorithm is already available
for solving the system (4), where m n + p + q n + k henceforth, and we wish to
indicate how this can be exploited to solve (2).
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Let " be the underlying field. From (5), (8), and (9),

[pp] [pn] [pq]

Cmm [np] Tn [nXq]

[qp] [qn] [qq]

where Tn is as in (3) and the other blocks have the indicated dimensions. Therefore, an
n-vector X satisfies (2) if and only if

Cmm X Y
Oq V0

where 0p and 0q are zero vectors of dimensions p and q, respectively, U0 e op, and
V0 e q. For our purposes, it is convenient to view this in the manner stated in the
following now obvious lemma.

LEMMA 1. The system (2) has a solutionfor a given Y ifand only ifthere are vectors
Uo in ’ and Vo in q such that the system

(10) CmdmG y

Vo

has a solution G oftheform

(11) G X
0q

in which case X satisfies (2).
Now let /’ be the subspace ofm consisting of vectors

W--[W_p+l, ,Wn+q]

whose components satisfy the homogeneous difference equation
p

(12) , ClWi_ =0, <=i<=n,
l=-q

and let

(13) W W(--Jp) (j)
+1 Wn+q]t,

form a basis for t/’. Let

lj<=k,

(14) F= [f_p+ , ,f + q]’

be a vector in m whose components satisfy the nonhomogeneous difference equation

p

(15) cf_t=yi, <=i<-n.
l=-q
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From the definition of Cm, (12) is equivalent to

(16) Cm Wj On

and (15) is equivalent to

(17)

<:j<:k,

where U, U, Uk are in P, 0n is the zero vector in fin, and V, V1, Vk
are in q.

There is no doubt about the existence of F and W, ..., Wk; in fact, there are
many ways to choose them. We will discuss this in 3.

THEOREM 1. Let F and WI, Wk be as just defined. Suppose that for each
j 1, k the system

(18)

kas a solution

(19)

dmF= F

and that the system

(20)

has a solution

(21) P= I7

where { O, O,, O} C o------------------p, { ’, H,, H) C n, and
Then the system (2) has a solution ifthere are constants a, ak such that

l]-t- -Fak[lk],
in which case the vector

(23) X= -aHI akHk

satisfies (2). Moreover, the converse is true ifCm is invertible.
Proof For sufficiency, suppose that (22) holds, and let

G= P- a l, a,
which is of the form (11) with X as in (23), from (19), (21), and (22). From (18) and (20),

CmbmG= Cm(F- aW ak Wk),
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and so (16) and (17) imply (10), with

u0

Therefore, Lemma implies that X as defined by (23) satisfies (2).
For the converse, suppose that Im is invertible and (2) has a solution X. Then the

vector G in (11) satisfies (10) for some U0 in P and Vo in q. From (10) and (17),

u-u
Cm(F- dmG) On

V- Vo

SO F- mG E /’; hence

F- bmG aW +"" + ak Wk

for some scalars a, ak. From (18) and (20), this can be rewritten as

m(P- G) bm(a ll +"" + ak I),
so

P- G aI +... + a,
since Im is invertible. Now (11), (19), and (21) imply (22) and (23). This completes
the proof.

THEOREM 2. Suppose that m is invertible, let W, W be any basis for t/’,
and let x be the k k matrix

fl
with l, and 1, as in (19). Then T, is invertible if and only if, is
invertible.

Proof Since Om is invertible, Il, exist; moreover/ exists for every choice
of F. If is invertible, then (22) has a solution a, a for every U and V; hence,
Theorem implies that (2) has a solution for every Y, and therefore T, is invertible. For
the converse, suppose that is noninvertible. Then there are constants b, .-., b, not
all zero, such that

This implies that

(24)

with

H=bH1 + +bH
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(cf. (19)). Because of (18), we can rewrite (24) as

Oq.l

which makes it apparent that H 4: On, since { W, We} is linearly independent. Now
(16) and (25) imply that

(26) Cmfm On
L0q V0

with

k k

j=l j=l

However, (26) and Lemma with Y On and X Himply that T,,H On, and therefore
Tn is noninvertible, since H 4: On.

Henceforth we assume that I) is invertible and that an efficient algorithm is available
for solving systems with coefficient matrix m. Theorem suggests a procedure for solving
(2), as follows:

Step 1. Obtain a basis W, Wk for /’, and solve (18) for I, Irk. If (2)
is to be solved for more than one Y, then store 1, for repeated use.

Step 2. For the given Y, let F in (14) be a solution of (15), and solve (20) for .
Step 3. Solve the k k system (22) for a, a. (If (22) has no solution, then

(2) has no solution.)
Step 4. Compute X from (23), with H, H as defined in (19) and I? as in (21).

The missing link in this procedure is a discussion of methods for obtaining F and
W, W. This is the subject of 3.

3. Computation of F and W1, "’", Wk. As mentioned earlier, there are many al-
gorithms specifically designed to solve banded Toeplitz systems efficiently. If Cm is in-
vertible, then we could obtain F by solving (17) with U 0p and V 0q by means of
one of these algorithms. We could also obtain W, Wk by solving (16) in this way,
with

U1 gk] ik"
gl Vk

However, all algorithms for solving banded Toeplitz systems require some kind of as-
sumption on Cm; in fact, most require that Cm and all its principal submatrices be in-
vertible. Therefore, we will suggest a recursive method for computing suitable vectors F
and W, W. This method requires no specific assumptions on Cm (even that it be
invertible), and it addresses the question ofstability; however, it does require information
on the zeros of C(z).
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One solution (14) of (15) can be obtained from the recursion

(27) fi=_q Yi-q Clf-q-I q+ <=i-<n+q,
l=-q+

withf 0, if-p + _-< q. To exhibit a basis for #/’, we first consider the Maclaurin
expansion

[ZqC(Z)]-1-’- Z Olu Zu.
u=0

The {a.} can be computed recursively

P

(28)
C-q -q +

with a. 0 if u < 0 and ao 1/C_q. The vectors (13) with

(29) wi =ai-+p, -p+ in+q, jk,

form a basis for ’. To see that they satisfy (12), observe that if (29) holds, then
p p

(30) Z cw Cli-j+p-l.
-q -q

However, from (28)
p

Z c._= 0,
l=-q

#> -q.

Therefore, the fight side of (30) vanishes if >_- and _-< j =< k, since then i-j +
p > -q. To see that W, ..., Wg are linearly independent, it suffices to observe that the
first k rows of the (n + k) k matrix

(31) [W, ..., W]
form an upper triangular matrix with 1/C_q in each diagonal position; hence, (31) has
rank k.

This procedure provides a formal method for obtaining Fand W, , Wk; however,
it is computationally useless for large n if C(z) has zeros in Iz[ < 1. To be specific, let
z, zL be the distinct zeros of C(z), with respective multiplicities m, , mL. Then

L

Oi Pl(i)z-i,
l=1

where pt is a polynomial of degree mt 1. This means that the sequence {o/i} grows very
rapidly with increasing if Iztl < for one or more values of l. Since the recursion (27)
has the explicit solution

i-q

fi ai-,-qy,, q+ <=i<=n+q,

with f 0 if-p + =< =< q, f also becomes large as increases. Therefore, these
recursions can lead to overflow for large n. Moreover, it is well known that the propagation
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of errors renders the recursi0n formula (27) useless if ]ztl < for some l. (To a lesser
extent, the presence of repeated roots on ]z] is also a source of instability.)

If C(z) has no zeros outside the unit circle, then it makes sense to replace the recursion
(27) by

fn-i=Cp Yn+p-i ClL+p-i-i P<i<n+p-1,
l=-q

withf_ 0 if --q =< =< p 1. This also yields a solution (14) of (15). To obtain a basis
for #/’ in this case, we consider the Laurent series

[z-PC(z)]-1= vZ-v,
v=O

convergent for large z. The {,} can be computed recursively

P-I
(32) 3,=---

Cpl= -q

with 3. 0 if v < 0 and 0 1/cp. The vectors (13) with

(33) Wi --n-p+j--i, -p+ in+q, <=j<-_k,

form a basis for W’. To see that they satisfy (12), observe that if (33) holds, then
p p

(34) cIwlJ)-l= Z Cln-p+j-i+l.
-q -q

However, from (32),
p

c,, += 0,
l=-q

> -p;

therefore, the fight side of (34) vanishes if =< n and j >= 1, since then n p + j
> -p. To see that W, ..., Wk are linearly independent, observe that in this case the

last k rows of (31) form an upper triangular matrix with 1/Cp in each diagnoal position.
Since

L

i-- X ql(i)zi,
l=1

where qt is a polynomial ofdegree mt- 1, it can be shown that this method ofcomputation
is stable iflzt] --< and mt if[ztl (1 _-< l_-< L).

If C(z) has zeros in both the interior and exterior ofthe unit disc, then the recursive
procedures that we have considered so far are both unstable. We will now propose a
procedure applicable to this situation. It requires that we know a factorization

(35) C(z) zs-qA(z)(1/z),

where

A(z) a,z’ (aoar 0),
#=0
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and

B(z) b,,z" (bob 4 0),
9=0

with r > 0, s > 0, and r + s p + q k, such that A(z) has no zeros in Izl < 1,
zSB(1/z) has no zeros in Izl > 1, and A(z) and zSB(1/z) have no zeros in common.
(This last assumption is clearly superfluous if C(z) 4:0 for Izl 1; however, if C(z) has
zeros on Izl 1, it may be convenient to allocate them between A(z) and zSB(1/z) sub-
ject to this restriction. This would be so, for example, if C(z) C(1/z), so that Cm is sym-
metric. In this case an appropriate factorization would be C(z) A(z)A(1/z), where
the zeros ofA(z) are in Izl =< 1.)

Since A(z) and zSB(1/z) are relatively prime by assumption, there are unique poly-
nomials g(z) and h(z) such that deg g < r, deg h < s, and

(36) zSg(z)B(1/z) + h(z)A(z) 1;

moreover, the coefficients ofg(z) and h(z) can be found by solving a k k linear system.
Now define

and

and notice that

(37)

Consider the expansions

Y(z): ytz
/=1

n

Zl-1"’(Z) ZYn /+1

/=1

Y(z) z"Y(1/z).

Y(z) ., i Zi +(38)
A(z) i=o

and

Y(1/z) Z 1’]i Z-i.(39) B(1/z)-i=
Notice that i} and {/i} can be computed recursively, as follows:

Yi+ l-- ali-i i>--0,
ao 1=

and

(41) 11i -00 Yn- + 1-- btli- >= O,
l=1

where, for convenience, we define Yi 0 if =< 0 or >= n + 1, and i r/i 0 if < 0.
Because ofthe assumptions on the zeros ofA(z) and B(1/z), the recursions (40) and

(41) are stable, or at worst, mildly unstable if C(z) has repeated zeros on Iz[ 1.
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Now define the formal Laurent series

F(z) zq+ lg(z) i Zi "-[" Zn+ q-Sh(z) ., Oi Z-i
(42) i=0 i=0

EjSz.
Then (35), (36), (37), (38), and (39) imply that C(z)F(z) Y(z). Therefore, (14)

withf_p+ l, fn+q as in (42) satisfies (15).
To obtain a basis W1, "", W for /’, we first define

r(z): z’g(z) Z .z. + h(z) Z,
(43) .=o .=o

E "YI zl,

where

(44) [A(z)]-=
.=0

and

(45) [B( l/Z)]-1
.=0

The coefficients {a.} and {/3.} can be computed recursively, with a. =/3. 0 if
#<0, ao= 1/ao,/3o= 1/bo,

a. ata.-t, >- 1,
aol=

and

bt/3,- l, # >- 1." bo
__

It is shown in [7] (see also [6]) that the Toeplitz matrix

Fn + k (,.yi ’n + k
-jli,j

is invertible. We will now show that the first r and last s columns of rn / k form a basis
for #/’. (This follows from the main result of [7]; however, we include its briefverification
here for the reader’s convenience.) To see this, let Wbe the th column of I’n+k, i.e.,

W-- [W_p+ 1, Wn+ q]t- [,i_,, ,’Yn+ k-

so that w 3’ +p-,, -P + <- -< n + q. Then
p p

(46) , ClWi-l Cl3’i-l+p-
-q -q

which is the coefficient ofz +P-" in the formal Laurent expansion of C(z)I’(z). However,
(35), (36), (43), (44), and (45) imply that C(z)I’(z) z-q; therefore, the fight side of(46)
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vanishes for =< =< n provided that + p u 4 s q for =< =< n. This condition
holds if =< u -< r or n + r + -< -< n + k, which proves our assertion.

4. Toeplitz systems with matrices generated by rational functions. If (z) 1, then
Tn in (3) is the n n band matrix

Wn (Ci-j)in,j 1,

and m Im. Now Steps 1-4 of 2 simplify to yield a procedure for solving (2) in which
the only simultaneous system to be dealt with is of order k.

Step 1. Obtain WI, Wk recursively, as described in 3. If (2) is to be solved
for more than one Y, store these vectors.

Step 2. Obtain F recursively, as described in 3.
Step 3. Solve the k k system

k

aw)= f, -p+ <-_i<=O, n+ <=i<-_n+q
j=l

for al, ak. (If this is impossible, then (2) has no solution.)
Step 4. Compute

k
(J)

Xi-- fi-- E ajwi
j=l

l<-i<__n.

The number of operations required for this procedure is O(kn) as n (as compared
to O(k2n) for methods for solving general n n banded systems that do not have the
Toeplitz structure). Although there are many "fast" methods for solving banded Toeplitz
systems, most ofthem require recursion with respect to n and are based on the assumption
that the principal submatrices of Tn are all invertible. Moreover, to the author’s knowledge,
the stability of these methods has not been studied, except insofar as Bunch’s results [2]
on stability of algorithms for general Toeplitz systems apply to them.

In the situation that we have just discussed, the matrices { Tn} can be described as
being generated by the Laurent polynomial C(z). Now we consider the case where they
are generated by the rational functions

T(z)

where C(z) is as in (6),

and

C(z)
P(z)Q(1/z)’

P(z) plZl
l=O

Q(z) Z qlZl.
l=0

We assume here that (# + u)poqop,q. 4: O, and that no two of the polynomials P(z),
Q(1/z) and C(z) have a common zero. Here we let if(z) be the formal Laurent expansion
of

R(z) [P(z)Q(1/z)]-
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obtained as follows:
(a) If Q 1, then

R(z) [P(z)]-: (lZI,
/--0

so that the matrices (5) are lower triangular.
(b) IfP 1, then

0

R(z) [Q(1/z)]-1 btz t,
l=

so that the matrices (5) are upper triangular.
(c) If > 0 and u > 0, then (z) is obtained from P(z) and Q(z) in the same way

that I’(z) (cf. (42)) was obtained from A(z) and B(1/z) in 3. (There is no need to assume
here that the zeros of A(z) are confined to [z] =< while those of B(1/z) are in [zl >= 1;
however, if these conditions hold with strict inequalities, then (z) is the unique Laurent
series which converges to T(z) in an annulus containing Iz[ 1.)

In this situation, the inverses (L} are banded matrices that are "quasi-Toeplitz"
in a sense made explicit in [7],.and systems of the form (4) can be solved explicitly with
a number ofoperations that are O(( + u)m) for large m; moreover, there is no possibility
of instability here, since the computation does not involve recursion. Since the formula
for ffl is given in [7], we will not include further detail here. Combining this formula
with the recursive methods of 3 yields the solution of(2) in O(n) (as n --* o) operations.

In 15] we gave explicit formulas for the solution of(2) when Tn is rationally generated
in this way, in terms of Y and determinants involving the values of P(z) and Q(1/z) at
the zeros of C(z). Although some discussion of numerical implementation was included
in [15], the principal interest there was in the formulas. To the author’s knowledge, the
only previously published O(n) algorithm specifically designed to solve n n systems
with rationally generated Toeplitz matrices is due to Dickinson [5]. However, Dickinson’s
method requires that T, Tn all be invertible, and he did not consider stability.
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PERMANENTAL INEQUALITIES FOR CORRELATION MATRICES*

ROBERT GRONE AND STEPHEN PIERCE’

Abstract. Let A be a positive semidefinite Hermitian matrix of order n with [all[ [a,n[ 1. We
prove that per (A) >= (1/n)IIAH 2, where [IAII is the Frobenius norm of A. This follows from a stronger result
when n 4, namely per (A) >_- (llAll2- 1). Various corollaries are obtained.

Key words, permanent, norm, inequality, correlation matrix
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1. Notation and results. An n-by-n matrix A is a correlation matrix if and only
ifA is positive semidefinite Hermitian and aii 1, for all l, n. The convex com-
pact set of correlation matrices is denoted by Cn. For A, B Cn we will use the notation
.4 B to denote that .4 is similar to B by a diagonal unitary matrix and/or a permu-
tation matrix. We will let [IAI[ 2 trace (A’A) Xi,j ]aijl2 denote the Frobenius norm of
A and per (A) denote the permanent of A. We remark that if A --B, then IIAI[
and per(A)= per(B). We let Jn denote the n-by-n matrix all of whose entries
equal 1.

When n 2, per (A) 1/2 IIAI] 2 for allA C2. In this paper we establish the following
inequality for n 3, 4.

THEOREM 1. Let A Cn, n 3 or 4. Then

(1) per (A) >_- + ,Z.,J [aijl 2.

Furthermore, equality holds ifand only ifeither: A 13, A 14, A Y3 I3 1/2 J3, or
A=-(R)Y3.

Theorem yields the following immediate corollary in the case n 3.
COROLLARY 1. IfA C3, then per (A) >= [[AI] 2, with equality ifand only ifeither

A I3 or A Y3.
The n 4 case of Theorem is used to obtain an analogue of Corollary when

n >- 4. Suppose n 4m + r, where 0 -< r =< 3. Let P denote the set of all partitions
of N (1, n} into sets N, Nm, Nm+ where INil 4, 1,..., m, and
INm+ r. For any subset S of N, let A[S] denote the principal submatrix of.4 with
rows and columns corresponding to S.

THEOREM 2. If.4 Cn, n >= 4, then
m+l

II(2) IPI per (A[Ni])>= 111112
P i= n

Furthermore, equality holds ifand only ira
Theorem 2 can be used to obtain the following theorem.
THEOREM 3. If.4 Cn, n >= 2, then

(3) per (A) >= 1 IIAll2"n

Furthermore, equality holds ifand only ifeither: n 2, A In, or n 3 and A Y3.
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Theorem 3 implies the following corollaries, each of which was conjectured in [1 ].
COROLLARY 2. IfA Cn, then

(4) per (A) >= lao] 2
i=1 j

Furthermore, equality holds ifand only ifeither: A In, A J2, or A Y3.
We remark that (4) can be restated as

per (A) >= (h(A2))
where h(A) I-I= aii. In this form, Corollary 2 resembles a result in [3], namely

(h(An))/n>= per (A) A positive semidefinite.

Our next result is the following corollary.
COROLLARY 3. IfA Cn and det (A) 0, then

per (A) >_-.
n-1

Furthermore, equality holds ifand only ifeither A J2 or A Y3.
Corollary 3 can be used to prove our next result.
THEOREM 4. Suppose A is n n positive semidefinite. Then

(n 1) per (A) + det (A) >_- nh(A).

Furthermore, equality holds ifand only ifeither: A is diagonal, A has a zero row, n 2,
or A DY3D, where D is a nonnegative diagonal matrix.

In [4] the second author has conjectured that the minimum value ofthe permanent
for A e Cn with A singular occurs exactly when A Yn (n/(n 1))In (1/(n 1))Jn.

Our last theorem validates this conjecture for n 4 and follows from the techniques
involved in the proof of Lemma 3.

THEOREM 5. Let A e C4 with det (A) 0. Then per (A) >= 40/27 with equality
holding ifand only ifA Y4.

2. Lemmas. For A 6 Cn, we define the function

f(A)=per (A)-1+,. .lal
We let )’n >-- Xn-1 Xl 0 denote the eigenvalues of A.

LEMMA 1. Ifn 3 and A e C,, then

f(A) g(X) ] (X + X + X) + XlX2X 3.

Furthermore, g(X) 0 with equality ifand only ifeither X X2 X3 or X3 X
> X =0.

LEMMA 2. Suppose that n 4,f(B) 0for all B C, A C, is positive definite,
andfhas a local minimum in C, at A. Thenf(A) O.

LEMMA 3. IfA C4 and det (A) 0, thenf(A) O. Furthermore, equality holds f
and only fA @ Y3.

3. Proofs.
Proof of Theorem 1. When n 3 Lemma yields (1) and implies that equality

holds if and only if A I3 or X3 2 > 1 0. In the second case, must be an
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eigenvalue of every principal 2-by-2 submatrix ofA by Cauchy Interlacing. This implies
that A Y3.

Suppose now that n 4 and thatf has a local minimum at A in C4. IfA is positive
definite, then Lemma 2 implies thatf(A) >= 0, which amounts to (1). Furthermore, since
for B C3, f(B) > 0 unless B 13 or B Y3, an examination of the proof of Lemma 2
will show thatf(A) > 0 unless A 14 in the case when A is positive definite. IfA C4 is
singular, then Lemma 3 completes the proof.

Proofof Theorem 2. If n 4, then the left-hand side of (2) is just per (A) and by
Theorem

per (A)>= +,.
Hence we may assume n >_- 5.

Also by Theorem we have that for n >= 5

l-I perA[N]>= i= +5(11A[Ni]112-4)
(5)

>+,==l (IIA[N;] 2 4).

Furthermore, equality will hold in (5) if and only if A[Ni] 14, 1, m.
Suppose now that n 4m or that n 0 (mod 4). Then, using (5) we observe that

the left-hand side of (2) is greater than
m

(6) +3-- (][A[Ni]]]2-4)"
Pi=

Furthermore, the equality will be strict unless all principal 4-by-4 submatrices ofA equal
I4, in which case A I,. Now consider that if # j, then la0[ occurs in the double
summation in (6) exactly IPl(3n/(n2 n)) times. Hence (6) becomes

( 3n lai12)=l+ lal+3--] Ie[n(n-l)i n--1

>=l+-la9 =-I[AII 2.
ni#j n

This completes the proof when n -= 0 (mod 4). Furthermore, since the inequality in (5)
is strict unless A In, the inequality in (2) is strict unless A In.

In the case when n 4m + 1, [a012 occurs in the summation (6) exactly
IPl(3(n- 1)/(n2- n)) times, and in this case the expression in (6) equals (1/n)llAII 2.
Hence (2) is valid, and the case of equality is again only when A In.

In the case when n 4m + 2, we use
m+l

(7) =]-’[ per (A[Ni]) >- +- i= (IIA[Ni]II2 4) +-(IIA[Nm +

Furthermore, equality holds in (7) if and only if A In. As before, we sum (7) over P
and obtain that the left side of (2) is greater than

m

(8) +3-- (llA[Nilil2-4)+2--l _,(][A[Nm+
Pi= P
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Now we count that laolz occurs exactly IPI ((3n 6)/(n2 n)) times in the first summation
of(8) and exactly IPl(2/(n2 n)) times in the second summation of(8). Hence (8) reduces
to (l/n)IIAII , Furthermore, the inequality in (2) is strict unless equality holds in (7), in
which case A In.

Finally, suppose that n 4m + 3. In this case the left side of (2) is greater than

(9) +3-- IIA[N]IIZ-4 -t-IIA[Nm+,]II 2- 3
i=

Counting the occurrences of laij] 2 as before yields that (9) is equal to

( 3(n- 3)
1+3-- IPI n2_n

6 ) (IIA 2- n) IIA 2+ Ielnz_n -Hence inequality (2) holds, and, as before, the inequality is strict unless A In. ff]

Proofof Theorem 3. The case n 2 is clear since per (A) 1/2 IIAII 2 in this instance.
The case n 3 is covered by Corollary 1. The case when n >= 4 follows from a result
of Lieb [2] which implies that each summand on the left-hand side of (2) is
dominated by per (A). Hence their average, the left side of (2), is also dominated by
per (A).

ProofofCorollary 2. For A 6 Cn, let ri = la;l 2. Then

+
per (A) >= >= (rl rn) l/n.

n

The first inequality is from Theorem 3, while the second is the arithmetic-geometric
mean inequality, ff]

ProofofCorollary 3. Suppose A Cn, det (A) 0, and , >= -> 2 >= 0 are
the eigenvalues ofA. By Theorem 3

(10) per (A) >=

Since ,, + + k2 n, the fight-hand side of (10) is minimized when

Proof of Theorem 4. Suppose A is positive semidefinite. If A is diagonal or has a
zero row, then there is nothing to prove. We may also dispense with the cases n 2 or
3. Define

o(A) (n per (A) + det (A) nh(A),

so that Theorem 4 can be restated as o(A) >= 0. Let D diag (a-{/2, a-n/2), and let
A DAD. Notice that o(A) o(A)/h(A), so that it will suffice to show that o(A) >_- 0.
In other words, we may assume that A Cn. IfA C, and A is singular, then Corollary
3 yields that o(A) >= 0.

If A is positive definite then A can be expressed as A cEl + A0, where a > 0,
and A0 is positive semidefinite and singular. We may assume without loss of generality
that Ao Cn. Let Ax XEl + Ao and define (x) p(Ax), so that

p(x) p(Ao) + x[(n 1) per A(1) + det A(1) n],
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where A(1) is the principal submatrix ofA obtained by deleting row and column 1. By
the singular case, we know that o(Ao) >= 0. If we assume an inductive hypothesis on n
and apply it to A(1), we obtain that the coefficient of x in (x) is

(n-1)perA(1)+detA(1)-n=[perA(1)-1]+[(n-2)perA(1)+detA(1)-(n-1)]>0.

Since o(A) (c) > 0, we are finished.
Proof of Theorem 5. Let the eigenvalues of A be )k4 )k )k2 )k 0, and let

Ek()) denote the kth elementary symmetric function of ), ()4,),3, ),2, )) for
k 1, 2, 3, 4. The permanent can be expressed as

per (A) 18 4E2()) + 2E3()) + 2Jq(A)

where

Jq(A) laaa3412 + [a13a2412 -+-la4a2312.
In the proof of Lemma 3 we establish inequality (17) for singular A in Ca which is

2]](A) >= 2E3(X)- 2E2(),) + 6.

From this we see that

(11) per (A) >_- 24 6E(X) + 4E3()).

For a function such as that in the fight-hand side of (11) we know that the minimum is
achieved when all nonzero )i’s are equal. Thus we easily verify that the minimum value
of the fight side of (1 1) is 40/27 and occurs when

Now suppose that per (A) 40/27 and )k4 )k 2 > )kl 0o In this case A
4314 B where B is rank Hermitian with b b44 . In this case B 1/2 J4 and
A Y4.

ProofofLemma 1. The expression forf(A) in terms of, 2, 3 follows since

per (A)- det (A)= la012,
i4=j

det (A)= ,23,

and

la21z- , + , + ,- 3.
i4"j

The inequality and cases of equality follow from calculus.
Proof ofLemma 2. If A ) B, B Cn-1, we are done since f(A) f(B) >= O.

Hence we may assume that la212 + + lalnl 2 > 0. For x > 0, let

and let

xa12 xa
xa21

Ax A(I)

Xanl

h(x)=f(Ax)=per A(1)- (llA(1)[]z- (n 1))

+ xZ[per A per A(1)-
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Since A is positive definite, so is Ax for all e < x < + e and some e > 0. Since A is
a local minimum forfon C,, we must have that h’(1) 0, or that

per A per A(1) (la212 +... + lanl2) O.

Now we apply the assumption concerning Cn- to A(1) in the previous expression to
obtain

per A [1 + (IIA(1)II 2 (n 1))] { (lall2 +... + lanl 2) >-- 0
or

f(A)>=O.

Note that if the inequality for A(1) e Cn- is strict, then f(A) > O.

ProofofLemma 3. Suppose A e Ca and det (A) 0. Let Ek(X) Ek(X, X2, X3, X4)
denote the kth elementary symmetric function of the eigenvalues ofA for k 1, 2, 3, 4.
Let )](A) and J(A) be the respective sums of the diagonal products of A corresponding
to the products of two disjoint transpositions and four cycles. More specifically,

J](A) la12a3412 + [a13a2412 h-[a14a23[2

and

j(A) 2 Re (a2a23a34a4 + a2a24a3a43 + a3a24a32a4).

By the arithmetic-geometric mean inequality it is clear that

(1 2) 2)](A) >= Ij(A)[ >-- j(A).
Each off(A) and E(,) can be expressed in terms of the diagonal products of A.

Using this and that E(,) 4, E4(,) 0, the following can be seen"

(3) f(A)= 3-Ez(X) + 2E3(X) + 2jS(A).

Evaluating det (A 14) yields

E2(X) E3(X) 3 -(X4 )(k )(X2

-det (A I4)

j(A)- j(A)

or

(14) Jq(A) j(A) + E2(X) E3(X) 3.

From (12) we see thatj(A) >= -2)](A) which together with (14) yields

J](A) >= -2Jq(A) + E2(,)- E3(X)- 3

or

(15) 2jq(A) >= (E2(X) E3(X) 3).

Using (15) together with (13) yields

(16) f(A) >= g(X) 11 E2(,) + E3(,).

Using (12) and (14) also shows that

J](A) =< 2j(A) (E3(X) E2(X) + 3)



200 R. GRONE AND S. PIERCE

or

(17) 2Jq(A) >= 2E3(X) 2E2(X) + 6.

Using (17) together with (13) establishes:

(18) f(A) >= g2(X) 19 E2(X) + 4E3(X).

We have now established thatf(A) is bounded below by each of the two functions ofthe
spectrum ofA, gl()‘) and g2()‘). The proof now splits into two cases.

In the first case, suppose the second smallest eigenvalue ofA satisfies 0 =< )‘2 -< 1.
In this case gl()‘) 0 when )‘ is constrained by )‘4 )‘3 )‘2 0, )‘2 and )‘4 -1- )‘3 -[-

)‘2 4. In fact, under these constraints, gl()‘) 0 if and only if ),4 ),3 and X2 1.
In the second case, suppose that -< )‘2 --< . In this case g2()‘) >- 0 when )‘ is con-

strained by )‘4 >- )‘3 >- X2 >-- and )‘4 + )‘3 + )‘2 4. Furthermore, g()‘) 0 if and only
if )‘4 )‘3 and )‘2 1.

In either case we have that f(A) >- 0 and that f(A) 0 implies )‘4 ),3 and
)‘2 1. If f(A) 0 we must also have that f(A) gl()‘) and f(A) g2()‘). This
implies that J(A) -2J](A) and J(A) 2Jq(A) so that equality holds in (15) and (17).
This yields J](A) 0. Using J](A) 0 together with )‘4 )‘3 and )‘2 yields that
A=- Y3. [3

4. A conjecture. We conjecture that Theorem holds when n >_- 5, and that equality
will hold if and only if either A I,, or A I,_ (R) Y3. Since Lemma 2 is valid for
general n, it would suffice to establish that Lemma 3 is valid for general n. In view ofthe
example ofA In- (R) Y3, this conjecture would be the best possible bound of the type

per(A) >- +k(llAll-n), AECn.
Since Lemma 2 reduces the conjecture to the singular case it seems as if Lagrange

multipliers could be useful. In fact this does yield some interesting information when A
is a local extreme for f(A) subject to A E Cn and det (A) 0. For simplicity we will
illustrate for real A, though the following holds for general A subject to our assumptions.

Let xij xji be real variables for all 4: j. Define Xii 0 and let X [xo]. Form the
Lagrangian

L f(A +X)-# det (A + X).

Set the partial of L with respect to xo equal to 0 and evaluate at X 0 to obtain

(19) 2 perA(ilj)-a=(-1)+2# detA(i]j) forall i4 j

where A(ilj) denotes the (n 1)-by-(n 1) submatrix ofA obtained by deleting row
and column j. Notice that the conditions (19) are quite stringent.

For a fixed multiply (19) by ai and sum over j 4 i. From the Laplace expansion
theorem for determinants and permanents, we then have

2
] a, -tz det a(i[ i).(20) per(A)-perA(ili)-3/i

Taking (19) and (20) together, we obtain

(21) p adj (A)- A adj (A)+ D,

where

p adj (A)= [per A(i[j)]
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D diag (per (A)- Ilrowll-).
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ON THE EVALUATION OF MATRIX FUNCTIONS
GIVEN BY POWER SERIES*
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Abstract. Matrix power series may slowly converge or even diverge if some eigenvalues of the matrix are
near the boundary or outside the disk of convergence. In this case it is proposed to apply suitably chosen
summability methods to accelerate or generate convergence; special attention is paid to Euler methods. The
matrix logarithm appearing in connection with stationary Markov chains is considered as an example.
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1. Introduction. Matrix functions appear in connection with many applications.
Often they can be defined by a power series with a finite positive radius of convergence.
The series may be slowly convergent in cases where some eigenvalue is near the boundary
of the disk of convergence or it may even be divergent although f(A) is well defined. In
both cases, summability methods seem to be appropriate tools for the evaluation off(A).
For the Neumann seriesf(A) yo= 0 Aj, a lot is known about the application of summa-
bility methods (see Eiermann, Niethammer, and Varga [3] and Niethammer and Varga
[9]). In this paper, we will show how some of those concepts can be applied to more
general functions, e.g., In (I- A). Since the exponential is an entire function, these
methods cannot be directly applied for the computation of exp (A).

In {} 2, the general concept of the application of summability methods to the com-
putation off(A) is described. Then it is shown how these results specialize for the class
of Euler methods. For measuring the efficiency ofa method, the asymptotic convergence
factor is introduced. In {} 4, some remarks are given concerning the algorithm. Finally,
an application is described; it deals with the computation of the matrix logarithm in
connection with stationary Markov chains.

2. Summability methods applied to matrix functions. Letf be given by its power
series expansion

(2.1) f(z)- uz, Izl <R,
j=0

which has a positive radius of convergence R, and let P (Trj,m)j_O,O<=m<=j be an infinite
lower triangular matrix with complex entries. A matrix summability method, induced
by P, is given by (see [9] for more details)

j

(2.2) f(z)’ Z vj(z), where v(z)= Z rr,mUmZm.
j=0 m=0

Usually, we identify P and the summability method induced by P.
DEFINITION. P sumsfin a domain S c C if and only if equality holds in (2.2) for

all z S and, in addition, the convergence is uniform with respect to z in each compact
subset of S.

Next, we formulate a well-known result.
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THEOREM (Perron-Okada; see [11 ]). Let P sum the geometric series ;)=0 zj in
a domain S c C, with 0 S, and letfbe holomorphic in a domain H C. Then P sums
fin
(2.3) F’= [’1 (S {zeC:z/gzeS}.

cC\H eC\H

Example 1. Consider

(2.4) In (1 z)
2m

Izl< 1,
m=l m

which is holomorphic, e.g., in the domain H := C\[ 1, oo). Then F consists of all z S
such that z e S with 0 =< =< 1. Thus if S is starlike with respect to 0 and 0 e S then,
for the series (2.4), F coincides with S.

In the following, let A denote an n-by-n matrix with complex entries. Usually, f(A)
is defined via the Jordan canonical form ofA (see [5]).

Now, iff is given by the power series (2.1) and ifthe spectrum a(A) ofA is contained
in DR(O), where Dp(z) := z e C: ]z l < p }, then f(A) is also given by

(2.5) f(A) ujA,
j=0

i.e., we have replaced the complex variable z by A in (2.1) [6, Thm. 11.2.3]. Analogously,
we conclude the following result from the uniform convergence ofthe transformed series
in (2.2) (see [5, p. 102]).

THEOREM 2. Let P := (Trj,m)j_O,O_m_j induce a summability method (2.2), let
r(A) F and let P sumfin F. Then

j

(2.6) f(A) , vj(A) where vj(A)= 7rj,mblmAm.
j=0 m=0

Our aim is to accelerate the convergence ofthe series (2.5) or--if(2.5) is divergent--
to produce a convergent series by the application of a suitable summability method.

Now, some questions arise:
(a) Given P, how can a region S be constructed such that g(z)= 1/(1- z)

is summed in S? (Some information about S is necessary for the application of
Theorem 1.)

(b) For judging the efficiency of a given method P, a measure for the rate of con-
vergence is needed.

(c) Given a functionfand a matrix A e Cnxn, how can P be chosen appropriately,
i.e., so that the corresponding rate of convergence becomes maximal?

(d) How should the corresponding computation be organized?
For one special matrix function, all these questions have been intensively dealt with,

namely for

(2.7) (I-T)-= TJ if p(T)< 1,
j=0

the Neumann series (see [9]) that appears in connection with the iterative solution of a
system of linear equations x Tx + c. A second well-known matrix function is the
exponential exp (A). But since exp (z) is an entire function the methods proposed here
have to be modified; this will be done in a forthcoming paper.
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A further important function is

Tj
(2.8) In(I-T)=- if p(T)<l.

m=l m

We will concentrate our considerations on this special function (see [1]). Many results
can be applied to other functions defined by a power series with a finite radius of con-
vergence.

In the following sections, we shall examine a special class of summability methods,
the so-called Euler methods, because these methods do have--as we shall see--favourable
properties concerning the analytic part ofour problem as well as its algorithmic solution.

3. Euler methods. Euler methods are used as a tool for numerical analytic contin-
uation (see [7], [8]) and for constructing and analyzing iterative methods for linear systems
of equations (see [9]). Here we apply Euler methods to approximate matrix functions.

Euler methods are generated by an Euler function p(z), i.e., p(0) 0, p(1) l,
and p is holomorphic in a neighbourhood of the unit disc D1 (we write Dr Dr(O)
{z C: Izl < r} and by/r we denote the closure of Dr). Let the power series ofpm be
given by

(3.1) (p(z)) %mZ, rn O, 1,2,....
j=m

Then, the coefficients %m,(_ 0,0

_ _
m) yield the summability matrix P ofthe corresponding

Euler method.
The region of summability of the geometric series is given by

(3.2) S(p)=C\(D,),

where C C U { and/ 1/p (see [9]). Thus, we have the information that is
necessary for the application of Theorem 1.

As a measure for the rate of convergence of a series Zm= 0 am, we introduce the
(asymptotic) convergence factor

The region

lim sup laml /m.

Sr { z: r(z) <= 1/r},
where for a given summability method the convergence factor of the transformed geo-
metric series summability method is bounded by 1/r, is

(3.3) Sr Sr(p)= C\/(Dr), r > 1.

By a close inspection of the proof of Theorem 1, we can establish the following result
concerning these so-called r-regions of summability (see [11 ]).

THEOREM 3. Under the hypotheses of Theorem 1, let 0 Srfor some r > 1. If
zFr I’ Sr-- N

C\H C\H

we have r(z) <= 1for the transformed series ofthefunction f.
The r-region of summability for the logarithm In (1 z) consists of all z for which

the line segment [0, z] is contained in St; St and Fr coincide if St is starlike with respect
to z O. We write F,(p) in the case of an Euler method.
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Since we are interested in approximating matrix functions, we need a result con-
cerning the convergence factor ofa transformed matrix series. We can guarantee a certain
convergence factor ifthe spectrum ofthe matrix is contained in an r-region ofsummability
for some function f. This is stated in the next theorem formulated for Euler methods.

THEOREM 4 (see [3]). Let a(A)
_

Fr(P) for an Euler function p and some r > 1.
Then we have (for an arbitrary matrix norm)

N j

(3.4) lim sup f(A)- , vj(A) I/N<= 1/r with vj(A)= 7rj,mUmAm.
N-- j=0 m=0

In the proof the Jordan canonical form ofA is used. Thus, (3.4) has only an asymp-
totic meaning, i.e., for finite approximations the rate of convergence may be influenced
by the size of the different Jordan blocks (i.e., by the geometric multiplicities of the
eigenvalues) and the condition number of the matrix that transforms A to its Jor-
dan form.

Finally, givenfand A e Cn n, we consider the question of how to choose an appro-
priate Euler method for the computation off(A). We assume that we know a compact
set 7 containing the spectrum a(A) and a (large) domain H such that fis holomorphic
in H. If now T is defined by

(3.5) T= {z/:ze f’, ’eC\H}
then, by Theorems and 2, our problem is reduced to the task ofsumming the geometric
function g(z) 1/(1 z) in T by an appropriate Euler method. This last question has
been extensively studied, e.g., in [9]. Thus, an Euler method induced by P0 is "optimal
with respect to T" if Sr(Po) T for some r > 1. An important consequence is the fact
that each Euler method induced by p is optimal with respect to all the nonempty sets
St(p), r > 1.

4. Computational remarks. Given A Cnn, a compact set 7 D a(A), f and a
domain H c C on which f is holomorphic, we can determine the set T according to

(3.5) (remember that forf(z) In (1 z) and H C\[ 1, o), we get T 7 if 0 and
7 is starlike with respect to 0). Then we have to determine an optimal Euler method
with respect to T, or, at least, find an Euler method such that T Sr(p) for some r > 1.
Here, it is advantageous to consider the special class of Euler methods generated by

SoZ kq, So + Sl + + Sk(4.1) p(z)=
1-slz s,zk’

For k 1, the sets Sr(p) are disks, for k 2, ellipses and intervals (as degenerated ellipses)
(see [8] or [9]). Thus, if T is a disk, an ellipse, or an interval, optimal Euler methods are
known. In the general case, it may be easier to enclose T by a disk, etc., rather than to

seek the optimal Euler method, because an Euler method of type (4.1) is well suited for
computations.

Given p as a power series or in the form (4.1), we have to compute the partial sums

m j

(4.2) qm(A) _, v.i(A) where v(A) "n,tutA,
j=0 1=0

of the transformed series for some suitably chosen m. In the general case, the elements

r,t of the summability matrix P have to be computed row-wise from the identity
pm= p.pm 1. This can be avoided in the special case of the Neumann series, i.e., if

Um (m 0, 1, ...); here, recursive formulas for the polynomials qm can be directly
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derived from the coefficients of the power series, respectively, from the parameters
So, Sk of (4.1). For general fand for a p of the form (4.1), a triangular scheme for
the computation of qm(Z) is given in [8].

An important point in connection with the computation of matrix functions via
(4.2) is that the coefficients of qm can be calculated by scalar computations. Then, in the
last step, qm(A) has to be evaluated by Horner’s scheme. Since no transformation or
inversion of a matrix is necessary, this computation can be easily done in a parallel way.
By a suitable rearrangement to the operations of the Horner scheme, the number of
matrix multiplications needed can be decreased from m to m (see [12]).

Remark. For a given matrix A, the information used by the algorithm is that the
eigenvalues of A are contained in the set T. Thus the same polynomial qm(A) results,
regardless of the multiplicities of the eigenvalues. Since it is well known that numerical
difficulties sometimes appear in evaluating matrix polynomials in case of multiple ei-
genvalues (see [6, p. 387]), similar problems have to be expected here.

5. An application to the matrix logarithm. We consider a stationary Markov chain
{Xt" >= 0 } with continuous time and n states. This chain is represented by the semigroup
of stochastic matrices P(t) (pid(t))ind= , >= O, of the transition probabilities (see [4])

pid(t)=p(X,+t=jlX,=i), i,j l,... ,n, t,->=O.

The semigroup is called standard if

lim P(t) P(O) I.
t-0

It is well known that, in this case, there exists a matrix Q (qd)7,= with

O P’(0)

(where the fight-hand derivative at 0 is taken elementwise), and we have
n

(5.1) qi,i<-_O, qi,j>=O, i#j, i,j= l,... ,n, q,j=0, =l,...,n.
j=l

Any matrix Q with property (5.1) is the (fight-hand) derivative of a standard stochastic
semigroup {P(t)} at 0. Q determines P(t) by the differential equation

(5.2) P’(t) QP(t), P(O) I,

or

(5.3) P(t) exp (Qt).

We consider the so-called identification problem ofMarkov chains, i.e., the reconstruction
of Q from given data P(to) for some to > 0 (see [10]). From (5.3), this can be done by
evaluating the matrix logarithm

(5.4) Q
1

In P(to).
to

in P(to) exists if P(to) is nonsingular. There appear two questions.
(a) Can P(to) be embedded in some Markov chain?
(b) Is this chain (or the stochastic semigroup) uniquely determined? If this is the

case, we say the semigroup has a unique logarithm at to.
There is a positive answer to (a) if Q has property (5.1). The second question is

answered by the following theorem.
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THEOREM 5 (see [2]). Let {P(t): >= 0} be a standard stochastic semigroup. If

{ n.
(5.5) t06"’= t>O:g(t)=mi)nPii(t)>
then P(to) has a unique logarithm at to. Furthermore, - (0, t) for some > O.

In the following, we consider the case (5.5). Thus, existence and uniqueness are
guaranteed. We remark that our methods work not only in this restricted case but also
in a more general setting. But if (5.5) is violated, we are not sure--due to possible non-
uniquenesswhether we have found the correct answer Q. This reflects the fact that the
problem itself might be ill-posed.

To evaluate

we write

with

Q _1 In P(t0),
to

In P(to)= In (I-B)

B= I- P(to).

We need some information about tr(B). Let # be an eigenvalue ofB. Then by Gershgorin’s
Theorem (see [6]), we have

t.t U Ki
i=1

with

Ki’= [zeC: lz-(1-pi’i(t))l <= Pi’j(t)= -pi’i(t)}
j4=i

Thus by (5.5), it follows that

Ki co_ O(1 g(t), g(t)), 1,..., n,

and

(5.6) a(B)_cD(1-g(t), 1-g(t))c_D(O, 1).

We see that o(B) < 1, and thus the series

(5.7) In P(to) In (I- B) _1Bm
m_-i m

is convergent to to Q.
The problem can be solved approximately by the evaluation of (5.7) but the con-

vergence may be rather slow. The convergence factor is given by

n

ka:= max I#i[, #i ki, ki a(P(to)), 1,... n
i=1

(compare the straight line in Fig. 1).
For accelerating the convergence, we want to apply Euler methods of the type (4.1)

with k and k 2. For k 1, the Euler function of (4.1) is usually written in the
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form p(z) az/(1 (1 a)z); S(p) is a disk with center 1/a and radius 1/lal, Sr(p)
is a disk with the same center and radius 1/rlal, r > 1.

For k 2 the set S(p) is the interior of an ellipse with foci determined by the
parameters So, sl, s2; S,.(p) is a confocal ellipse where the interval between the foci can
be seen as a degenerated ellipse (see [8]). The optimal Euler method for the interval
T [0, Zo] belongs to this class of methods; the corresponding parameters are

(5.8) So=40/Zo, s=-20, $2----02 with O=(1-/1-Zo)2/Zo;

the asymptotic convergence factor is
Thus, we know the regions where the geometric series is summed. But, as long as

0 is contained in the disk, respectively, ellipses, according to our remark at the beginning
of 4 the function In (1 z) is summed in these regions, too.

Thus with respect to the information (5.6), namely that (r(B) is contained in
T D(#, ), 0 < 2/ < 1, the optimal a for the Euler method with k is given by
a 1/(1 u)with the convergence factor K u/(1 -/).

If P(to) has real eigenvalues (e.g., in the symmetric case) and the information is
a(B)

_
[0, b ], b < 1, we apply the Euler method with k 2 and parameters (5.8) for the

interval T [0, b], and we obtain the convergence factor Kc
In Fig. we have plotted the error curves

Illn (I- B)
for the different approximants fN(B) which we announced (straight line defines series;
dotted line defines Euler method for k with disc information; dashed line defines
Euler method for k 2 with interval information).

As an example consider

P(t) -x + 2x -x x e-l’St.
-x -x + 2x

0

6

7

0

FIG.
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Then P(t) has eigenvalues 1, x, x, and P(t) exp (Qt) with

Q= 0.5 -1 0.5
0.5 0.5 -1

Perform the computation for to 0.9, so that g(to) min3_-lPi,i(to) 0.5062 > 1/2. The
resulting convergence factors are

ka kb kc

0.74 0.58 0.32

The decay of the error curves shows the acceleration of convergence by using the Euler-
Knopp method enclosing the spectrum {0, x} ofB in a circle and the further accel-
eration by enclosing the spectrum by [0, x]. We remark that the method works also
in the case where the original series is divergent, i.e., if we have a problem of analytic
continuation rather than a problem of convergence acceleration.
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AN ALGORITHM FOR SUBSPACE COMPUTATION, WITH
APPLICATIONS IN SIGNAL PROCESSING*
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Abstract. An algorithm for computing the eigenvectors corresponding to the m algebraically smallest or
largest eigenvalues ofan n n symmetric matrix A is described. The algorithm consists ofrepeated applications
of the Rayleigh-Ritz procedure to a sequence of subspaces of dimension rn + which converges to the desired
subspace. The method is closely related to the Lanczos method, but requires a constant amount ofcomputation
at each iteration. Applications of the algorithm include the adaptive covariance eigenstructure computation, in
which the matrix A can change while the algorithm is in progress.

Key words, subspace, eigenvectors, eigenvalues, Lanczos algorithm, Rayleigh-Ritz procedure, signal
processing
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1. Introduction. An area of much recent activity in signal processing is the use of
eigenvector and singular value decompositions (SVDs) in extracting information from
time series or sensor array data. Figuring prominently in this work are Pisarenko Harmonic
Retrieval 13] and the Tufts-Kumaresan SVD method 16] for line spectrum estimation,
Schmidt’s MUSIC algorithm for beating estimation 14], and other applications of the
"signal subspace" concept in beamforming [15].

In all of the above problems, the dominant computational requirement is the cal-
culation of a set of eigenvectors corresponding to the m algebraically smallest (or largest)
eigenvalues of an n n symmetric matrix A, where m (( n. For applications in which n
is large and A is structured, the algorithm of choice is the Lanczos algorithm [7], [12].
A variant of the Lanczos method which exhibits faster convergence in certain applications
has also been proposed by Davidson [3]. Both the Lanczos and Davidson methods have
the property that the computation and storage requirements grow at each iteration. Vari-
ations of the Lanczos method that require constant computation and storage have also
been proposed; these are the s-step method of Karush 11 and the block s-step method
of Cullum and Donath [2]. The distinguishing characteristic of all of these algorithms is
that they are based on the forward matrix-vector multiplication Ax, which poses no
numerical difficulties, and which can often be implemented with far less than n2 multi-
plications.

In this paper we propose a Lanczos-like algorithm which is similar in spirit to the
s-step methods. The algorithm consists of repeated applications of the Rayleigh-Ritz
(RR) procedure [9], [12] to a sequence of subspaces which converges to the desired
invariant subspace. The advantages of the new method are that the RR portion of the
algorithm is highly structured in a way that may lead to significant computational savings,
and that it requires little storage beyond that of A and the vectors that span the desired
subspace. In addition, all of the computations lend themselves well to parallel imple-
mentation.

The application of an algorithm such as this in signal processing goes beyond the
use of the algorithm’s final output. The method for going from one iterate to the next

Received by the editors March 12, 1987; accepted for publication October 1, 1987. This paper was
presented at the SIAM Conference on Linear Algebra in Signals, Systems, and Control, which was held in
Boston, Massachusetts on August 12-14, 1986.

Electronic Systems and Signals Research Laboratory, Department of Electrical Engineering, Washington
University, St. Louis, Missouri 63130.

213



214 DANIEL R. FUHRMANN

can in fact form a stochastic approximation method when the data itself is time-varying.
A well-known example ofthis is Widrow’s least-mean-squares (LMS) algorithm, in which
the gradient search technique, an optimization method for deterministic problems, is
modified for a statistical estimation problem. Recent research [6], 17] has indicated that
the same concept can be applied to eigenvector decomposition of sample covariance
matrices.

The paper is organized as follows. Section 2 contains the basic algorithm description,
along with a brief discussion of its convergence properties. Section 3 discusses the rela-
tionship ofthis method to the Lanczos and other methods. Sections 4 and 5 discuss some
ofthe computational issues associated with the algorithm. Section 6 describes an example,
and 7 discusses the applications of the method in signal processing and in computing
the SVD.

2. Algorithm description. The following notation shall hold throughout. A is an
n n symmetric matrix, with eigenvalues kl, k2, "’", kn in ascending order, and cor-
responding eigenvectors vl, v2, vn. x Xm are m orthonormal vectors which
satisfy xAx diSi, D diag (d dm), X [x Xm], and X span {x Xm}.
Z is an (m + l) (m + 1) orthonormal matrix to be described shortly; Z- is Z with the
last column removed. The superscript (k) refers to the value of the base quantity at the
kth iteration of the algorithm.

Formally, the method is as follows:

For k 1, 2, to convergence, do:
1. GivenX, D
2. Compute Axm
3. y AXm- dmxm
4. y Y/lYl
5. x/= [xly]
6. H (X+)rAX+
7. Eigenvector decomposition of H: H ZrDZ
8. X X+Z

At iteration k the subspace Xtk is augmented by the vector y. y is orthogonal to Xtk

by the condition on the xi given above. The augmented subspace is termed X+.
Steps 6-8 define the RR procedure applied to X+. The returned vectors xk+ are

vectors in X/ closest to eigenvectors of A, in the sense that they are stationary points of
the Rayleigh quotient evaluated over this subspace. The m vectors xtk+ 1 Xtmk / cor-
responding to the smaller Ritz values d dm form the basis for Xk/ .

The (m + l) (m + l) matrix H has a form that makes it simple to compute. Since
xrAxj ditSij, by the previous RR step, it follows that only the terms yrAxi need be
computed. H then has the form

(2.1) H

where bi yTAxi.

d2 b2

bm
b b2 bm dm +

This form of H lends insight into the convergence properties of the algorithm. By
the Cauchy Interlace Theorem, dk+ <= dk with equality if and only if bk 0, or
equivalently, if and only if xi is an eigenvector. Furthermore, dl is bounded below by
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TABLE 2.1

No. of multiplications

Computation of Ax p
Computation of normalized y 3n
Computation of H p + mn
Eigendecomposition of H O(m3)
Backtransformation nm
Total 2p + (m + m + 3)n / O(m3)

)k by the Courant-Fischer minimax characterization ofthe eigenvalues. Since di is strictly
decreasing and bounded below, it must converge; we hypothesize that it does indeed
converge to hi. (This has been proven true for m in [6].) It follows that xi must
converge directionally to the eigenvector associated with ,i. In our initial simulations it
is observed that each of the vectors x2 Xm converge in turn to eigenvectors as they
become deficient in the eigenvectors that preceded them.

The number of multiplications required by the algorithm as described are given in
Table 2.1. The number of multiplications in the computation of Ax, p, depends on the
structure of A and the nature of the multiplication algorithm. In the worst case, p n2,
but in many practical situations, say where A is sparse, p (( n 2. Typically the computation
of Ax is thought of as a single subroutine call.

3. Relationship to other methods. As indicated in 1, our method is closely related
to the Lanczos method and its variants.

The Lanczos method generates a sequence of subspaces, termed Krylov subspaces,
defined by

(3.1) span {Xo, Axo, Aj lxo)
where x0 is some initial vector. For everyj, an orthogonal basis for K(j) is generated such
that the H matrix for the RR procedure is a tridiagonal matrix; furthermore, H is computed
recursively so that only two new elements are added to this tridiagonal matrix at each
iteration. Note that the K(j) form a sequence of subspaces of increasing size.

The s-step method of Karush [11], discussed in Faddeev and Faddeeva [5], starts
with an initial vector Xo and performs s iterations of the Lanczos algorithm. Then the
RR procedure is implemented on the Krylov subspace K(S)(x0). The smallest (or largest)
Ritz vector is used as the new initial vector, and this process is repeated. The block
s-step method of Cullum and Donath [2] takes an orthogonal set of rn vectors
X [xl Xm] and computes the subspace (X AX A(s- l)x), then chooses the best
m Ritz vectors to form the next X. Both methods require a constant amount of stor-
age and computation at each iteration.

The present method generates only one new vector at each iteration, and the best
m Ritz vectors from the m + 1-dimensional subspace are saved. This leads to a smaller
requirement in storage (although this is probably not an important issue) and to the
structured H matrix whose eigendecomposition forms the heart of the RR procedure. If
the dimension of X(k) were allowed to grow with each k, then our method would be
equivalent to the Lanczos method in terms of the sequence of subspaces generated.

The present method can be thought ofas a generalization ofour "rotational methods"
[6] which are equivalent to the present method for rn and rn 2. The rn case
is also equivalent to s-step Lanczos with s 1, first considered by Hestenes and
Karush 10].



216 DANIEL R. FUHRMANN

4. Eigendecomposition of H. The form of H leads to an eigendecomposition al-
gorithm based on the iterative solution ofthe characteristic equation. It is straightforward
to show that

det (H- M)- (di- k) (dm + i- k)-j= i,,dj
b- X)

Solution of the characteristic equation can be accomplished by solving for the roots of
the second factor. The function

(4.2)
m

f(k) (din +, k) b-= (E.- x)

offers a simple proof of the Cauchy Interlace property, f(k) has a negative derivative
everywhere except the singularities at k d. As can be seen in Fig. 4.1, the roots off(h)
are separated by the d;.

Equation (4.2) is similar to Golub’s "secular equation" [8] which arises in the solution
ofthe eigensystem ofa diagonal-plus-rank-1 matrix. The solution ofthe secular equation
plays a central role in Dongarra and Sorenson’s parallel algorithm for the complete
symmetric eigenvalue problem [4]. In our method, H is diagonal-plus-rank-2. A straight-
forward approach to solving for the roots off(h) such as bisection or Newton’s method
exhibits difficulties when there are repeated dis or very small bis. Unfortunately, these
are the exact conditions one expects in our signal processing applications or as the al-
gorithm converges. Cheng has reported an algorithm for computing this eigendecom-
position which overcomes these difficulties and exhibits quadratic convergence to each
of the Ritz values. Since each of the Ritz values is well localized, it is conceivable that
their computation could be carried out independently and in parallel.

SECULAR EQUATION

FIG. 4.1
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5. Loss of orthogonality. The basic algorithm described in 2 suffers from the same
difficulty as the unmodified Lanczos algorithm, namely the loss of orthogonality of the
basis vectors x Xm. This loss of orthogonality comes about through roundoff errors
in either the computation of y or the back-transformation Xtk / 1) X+Z-, and worsens
as the algorithm progresses.

A remedy for this problem would be to replace steps 3-4 of the algorithm with a
complete Gram-Schmidt (GS) orthogonalization of the set of vectors

(Xl, ,xm,Axm-dmxm}
at every iteration. Although this solution is inelegant, it does not drastically alter the
computational requirements, since one GS orthogonalization requires the same order of
magnitude of computation as the backtransformation step (2nm2) and m (( n. This
approach is unsatisfactory for the Lanczos algorithm, since m is increasing at each iteration,
and (assuming no RR step) there are no other O(m2) operations in the algorithm.

6. Example. The convergence properties ofthe algorithm are invariant to orthogonal
similarity transformations of the matrix A. As a result, the convergence properties can
be studied through analysis or simulations applied to diagonal matrices. In this case the
eigenvalues and eigenvectors are known a priori and one can observe the progress of di
and xi toward their known limit points.

For an initial simulation we choose a 100 100 diagonal matrix A with diagonal
elements 0, l, 2, 3, ..., 99. m was chosen to be 10.

The algorithm is "primed" by starting with an initial x0 and letting the dimension
ofX(k grow from to l0 in the first l0 iterations. This is equivalent to performing l0
iterations of the Lanczos algorithm, or choosing the Krylov subspace K(m(x0) as the
initial subspace X(. We took

x0=]-[lll 1] T.

x0 has equal components in all the eigenvectors of A.
Three quantities were measured at each iteration: (1) the inner product of xi with

the true eigenvector ei, and (2) the norm of the projection of xi onto the minimum
invariant subspace span (el em), and (3) the Ritz values d;. These quantities were
plotted against the iteration number; the results are shown in Figs. 6.1-6.3. Figure 6.1
shows how each xi converges in turn to the true eigenvector ei. Figure 6.2 demonstrates
that while x; may not be close to el, the error lies primarily in the desired invariant
subspace. Figure 6.3 is in agreement with Fig. 6. l, showing that the smaller Ritz values
converge to the true small eigenvalues quickly, with each ofthe larger Ritz values following
in turn.

7. Application to signal processing. The present method was conceived as an in-
termediate step in the problem of adaptively computing invariant subspaces of sample
covariance matrices. The goal is an adaptive formulation ofSchmidt’s MUSIC algorithm
14] or, alternatively, an adaptive eigenvector beamformer, in which the weight vector

for an array of antennas or sensors is determined from the eigendecomposition of the
received signal covariance matrix. A preliminary report ofthe application of our method
to the MUSIC algorithm can be found in [7].

Two aspects of the present method make it attractive for this problem: (1) the
computation is constant at each iteration, and (2) Xtk+ 1) depends only on A and Xtk).
The first point is important for the design of hardware that must work in parallel with
the real-time acquisition of uniformly sampled data. The second point implies that it
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may be possible to change A while the algorithm is in progress. If A(k) is a converging
sequence of covariance estimates, then X(k) should converge to the minimum invariant
subspace of A(oo). This concept has been successfully applied to Pisarenko Harmonic
Retrieval [5], [17], in which the minimum eigenvector of the covariance matrix of a
stationary time series is computed.
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A preferable alternative to computing the eigenstructure of a sample covariance
matrix is computing the SVD of the data matrix. The present method, and in fact any
eigenvector algorithm, can be applied to this problem. This results from the fact that

[0 A](7.1) C=
Ar 0

has eigenvalues -+ri and 0, and eigenvectors [,], where the tri are singular values, and ui
and vi are left and right singular vectors, respectively, ofA. The application ofthe standard
Lanczos algorithm to SVD computation is discussed in [9].

The complete SVD of a rectangular data matrix A could be computed using the
present method on the matrix C, with the dimension m of the desired subspace equal to
the short dimension of A. Each multiplication of the form Cx could be partitioned into
two multiplications Av and Aru, each ofwhich requires mn real multiplications. If fewer
singular vectors are desired, one could choose a smaller value of m. IfA were composed
of overlapping samples from a time series, such as in the Tufts-Kumaresan method of
spectrum estimation, Av and Aru could be computed via fast convolutions.

8. Summary. We have proposed a numerical method for computing the minimum
or maximum invariant subspace of dimension m from a symmetric matrix of order n.
It is closely related to the Lanczos method, but requires a constant amount ofcomputation
(O(nm2) + O(m3)) at each iteration. Initial simulations indicate that the small eigenvectors
converge rapidly, with each successive vector following in turn. Convergence properties
and modification to enhance computational speed are still being studied. Finally, the
application ofthis method to adaptive covariance eigenstructure computation, eigenvector
beamforming, and SVD computation is anticipated.
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Abstract. A new, numerically stable, structure preserving method for the discrete linear quadratic control
problem with single input or single output is introduced, which is similar to Byers’ method in the continuous
case and faster than the general QZ-algorithm approach of Pappas, Laub, and Sandell.
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(0.1)

(0.2)

0. Introduction. Consider the following discrete optimal control problem:

Minimize

J(Xk, Uk) ., (Y QYk + U, Rug + x, SUk + u, S*Xk)
k=0

subject to the difference equation

EXk+l AXk + Bug, k O, 1, 2, "", Xo x,
(0.3) Yk CXk,

where A, E e Cn’n, Q e Cp’p, C Cp’n, R Cm’m, B, S Cn’m, and Q Q*, R R* positive
semidefinite. Extensive literature has been published in recent years on this subject, in
particular concerning numerical algorithms for this problem. See, for example, Arnold
[1 ], Bender and Laub [3], Pappas, Laub, and Sandell [18], Van Dooren [24], Byers [5].

It is well known (e.g., Sage 19]) that this problem has a unique solution ifthe matrix

(0.4)
S* R

is positive semidefinite and the system of difference equations

(0.5) C*QC -E* S #k 0 -A* 0 #k+l lim k-ml.tk--OS* 0 R Uk 0 --B* 0 Uk +

has a unique solution. The system (0.5) has a unique solution if and only if the corre-
sponding matrix pencil

(0.6) -:= C*QC -E* S X 0 -A* 0
S* 0 R 0 -B* 0

is a regular pencil, i.e., det (s ),3) 0. (See Campbell 12].) The regularity of
), is guaranteed under the usual system theoretic assumptions, (E, A, B) stabilizable
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and (E, A, C*QC) detectable. (The triple (E, A, B) is called stabilizable if the following
holds: ifx C’\{0), X C and Ixl such that x*[-XE + A] 0, then x*B 4: O. The
triple (E, A, C*QC) is detectable ifthe triple (E*, A*, C*QC) is stabilizable.) The condition
that . is positive semidefinite is also a typical assumption. In many practical problems
we even have that Q, R are positive definite and S is zero, so that is positive definite.

In the following we assume that R is positive definite, which means that no costfree
controls uk exist. Then we may reduce system (0.5) and obtain the pencil

(0.7)
-X’=

E*
-X

0

._[ A BR-1S*

C*QC- SR-IS* E* 0

-BR-IB* ]A* SR-1B*

by using

(0.8) Uk --R-I(S*Xk q- B*#k + 1).

If X is regular, then so is s X/. Furthermore, since R, Q are positive semi-
definite, it follows that H, G are positive semidefinite. It has been shown by Bender and
Laub [3] that ifE is singular and a solution to the problem (0.1), (0.2), (0.3) exists, which
is the case under certain further assumptions (e.g., Bender and Laub [3]), then the pencil
(0.7) can be reduced further to a smaller, similar-looking pencil with E nonsingular,
using a singular value decomposition of E. Thus, we may assume that E is nonsingular
and since it simplifies the description of our algorithm significantly we transform the
system such that E =/.

Under the assumptions (E, A, B) stabilizable, (E, A, C*QC) detectable, E I, it is
well known (e.g., Pappas, Laub, and Sandell [18]) that the optimal feedback control is

(0.9) Uk -(R + B*XB)-I(A*XB + S)*xk,

where X is the symmetric positive semidefinite solution of the discrete algebraic Riccati
equation

X F*(I+XG)-IXF+ H.

(See also Arnold ].)
The positive semidefinite solution of (0.10), however, can be obtained via the

computation of the deflating subspace, corresponding to the eigenvalues of modulus
less than one, of the pencil s X. Let [zr] be an n-dimensional deflating subspace of

XN, i.e.,

where U e C"" has only eigenvalues of modulus less than one. Let Ybe invertible, then
X -ZY-1 is the positive definite solution of (0.10). Keeping this reduction in mind
we now restrict ourselves to the problem of computing the required deflating subspace
of XN. (Existence is guaranteed under the above assumptions (e.g., Arnold [1 ].)

A typical approach to the numerical solution to this problem is the use of the QZ-
algorithm of Moler and Stewart [16] as proposed by Pappas, Laub, and Sandell [18].
Unfortunately the QZ-algorithm does not make any use of the symmetries in X.
So it is natural to ask whether a stable QZ-type algorithm can be constructed that takes
advantage of the symmetries in
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In the continuous time optimal control problem (e.g., Laub [15]), which leads to
the pencil

(0.12) -X
H -F* I

this question was posed in a paper by Paige and van Loan [17], and answered in the
special case of single output problems, i.e., the matrix H is of rank and S 0, by Byers
[4], [5], who also proposed the transfer of his method to the discrete case as a research
problem. In this paper we will show that it is possible to construct a similar type algorithm
in the discrete case for single input or single output systems (i.e., where rank H 1,
S 0 or rank G 1). Considering the pencil X3, it is clear that we may re-
strict ourselves, without loss of generality, to rank H 1, since if rank G- and
rank H :/: 1, we may permute the pencil and replace by 1/# and have a new pencil

’- #’ of the same form, which has a rank matrix in the position of H.

1. Notation. By cn’m( n’m) we denote the complex (real) n m matrices. C n’ =:
C n n,1 n Let

J=-In 0

where In is the n n identity matrix. (The index n is usually omitted.) By a(A) (a(A, B))
we denote the spectrum ofA(A XB); ei denotes the ith unit vector.

DEFINITION 1.1. A matrix S C 2n,2n is called symplectic ifSJS* J(here denotes
the transpose and conjugate). A pencil A XB, A, B C2n’2n is called symplectic pencil
ifAJA* BJB*.

Remark 1.2. The usual definition of a symplectic matrix S is SJST j, even in the
complex case. A matrix S satisfying SJS* J is usually called conjugate symplectic. But
for simplification, and in order to avoid a permanent distinction between the real and
complex case, we use the chosen definition.

DEFINITION 1.3. A matrix U C n,n is called unitary if UU* I.
The set of all symplectic matrices in C 2n,2n is denoted by S2n, the set of all unitary

matrices in C n,n by Un and we set US2n U2n N S2n. Observe that U2n, S2n, US2n form
multiplicative subgroups ofthe general linear group. US2n can be characterized as follows
(e.g., Paige and van Loan [17]):

US2n-- {[_Q2Q1 Q2],Q1,Q26C,,n, Q1Q{ +Q2Q=I, Q1Q=Q2Q{}
In order to perform QR-type algorithms, we need to eliminate certain elements in

a matrix using transformations with elementary matrices. Except for the usual House-
holder transformations and Givens rotations in U2, (e.g., Golub and van Loan 13]), we
use the following two types of matrices in USzn"

(i) Let v C" and P I- 2vv*/v*v. Then H [’ e] 6 USzn is called a Householder
symplectic matrix.

(ii) Let s, c C, Isl 2 / Icl = 1, s ,
C diag (1, .., 1, c, 1, ..., 1), S-- diag (0, , 0, s, 0, .., 0);

k-1 k-1

then J(k, c, s) [_Cs sc] US2, is called a Jacobi symplectic matrix.
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As in the usual QR-algorithm we need something like a Hessenberg form and an
upper triangular form. For an analysis of useful invariant forms see Bunse-Gerstner [7],
[8]. Here we use the following definition.

DEFINITION 1.4. (i) A pencil

A- XB Ail A12] ,[Bll O12]A21 A22 J [B21 922

with All, B’2 upper Hessenberg matrices and A22, BI lower triangular, 921 -0,
A21 ce, en*, is called S-Hessenberg pencil. Furthermore if Bll A22-/, then it
is called normalized S-Hessenberg pencil. IfA, B’2, A’2, Bll are upper triangular and
Bzl, A21 0, then A XB is called S-triangular pencil.

(ii) IfA (or B) is invertible, then we say that A-IB (B-1A) is an S-Hessenberg matrix
ifA XB is an S-Hessenberg pencil and A-IB (B-IA) is an S-triangular matrix if A
XB is an S-triangular pencil.

The structure of these pencils (matrices) can be easily described by the following
diagrams:

S-Hessenberg pencil,

normalized S-Hessenberg pencil,

S-triangular pencil,

S-Hessenberg matrix,

S-triangular matrix.

Let

(1.5)

I 0

K:= t ( 2n,2n K K* K-1 J TKJ.

Then ifA e C 2n,2n is S-triangular, then KAK is upper triangular.
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Observe that ifA ,B is a symplectic normalized S-Hessenberg pencil

H 0 F*

then it follows that GH O.. Preliminaries. We now come back to our special pencil (0.6) arising in the dis-
crete optimal control problem. Note that we assume from now on that E I and that
rank H 1; thus (0.6) is

(2.1)
H I

We have the following impoant observation.
PROPOSITION 2.2 (Cayley transformation). Let k be a symplectic pencil.

Then for all k Cka(, ),

(2.3) s=(d- x)-(Xd )s:..

Proof

(2.4) XI2CJ * XCJ * hBJA* + lJl *

lJl * + h3Jl * + XAJB* -IXl2Je0* 0,

since z ,3 is a symplectic pencil.
As in the usual QR- or QZ-algorithm, the algorithm that we will describe is based

on a type of QR-decomposition. Here we consider the following factorization.
THEOREM 2.5. Let S Sn; then there exists a uniquefactorization S QT, with

Q US2 and T Szn is S-triangular, with positive diagonal elements.
Proof See Bunse-Gerstner [7] or Byers [4, p. 85] for the proof ofthis theorem.
In the following we will denote this factorization as QT-factorization.
In order to motivate the algorithm that we will describe in a similar way as the QR-

or QZ-algorithm (e.g., [13]), consider the following theorem.
THEOREM 2.6. Let z 1 as in (0.6) be an S-Hessenberg pencil with 1 nonsin-

gular. Let Xs C\r(, ) and (1 Xsl)-l(Xsl 1). Let Q USzn such that
Q* T S2n is S-triangular. Then Q*1-IQ is an S-Hessenberg matrix.

THEOREM 2.7 (Generalized symplectic Schur form). Let -1 be a regular
symplectic pencil having no eigenvalues ofmodulus 1. Then there exists Q U2n and a
matrix Z US2, such that

(2.8) Qz?IZ [T Tl] =:T,
0 T22

[Rll Rl](2.9) QIZ=
0 R22

=:R,

and T- XR is an S-triangularpencil. T XR has only eigenvalues with IX[ < and
T22 XR22 has only eigenvalues with [hi > (including infinite eigenvalues). Furthermore

(2) (1) (2)letting tJ) ), tj r) r) j , n be the diagonal elements of T, T22, R, R22,
respectively, we have that

.(1). (1) (2)..(2)(2.10) tjj /r)j =rjj /tjj j= 1,... ,n.
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Proof By the generalized Schur theorem of Stewart, e.g., [11, p. 269], there exist
matrices Ql, Z1 e U2n such that

QI(A- ,B)Xl
O12

k
O22 0 xlt22 J

with Oll, 022, XI/I1, XI/22 upper triangular, and we may assume that the eigenvalues are
ordered such that O1 kll contains all the eigenvalues k with Ikl < 1. The eigenvalues
of k3, under the given assumptions, occur in pairs k, 1/k (Pappas, Laub, and
Sandell [18]) and there are exactly n eigenvalues of modulus Ik[ < 1. Now we play the
"Laub-trick," e.g., instead of

Z [Zll Zl]
Z21 Z22J

we consider

Zll --Z21]Z
221 Zll

It has been shown by Pappas, Laub, and Sandell 18] that if [zZl] is the deflating subspace
to corresponding to the eigenvalues of modulus less than one, then under the
given assumptions, (/, A, B) stabilizable, (/, A, 0) detectable, it follows that Zi- exists
and -Z21Z]- is the Hermitian positive semidefinite solution of(0.9) (with E I). Hence
it follows that

(2.11)
Z21 Zll Z21 Zll 0 I

and

(2.12) [ ZllZ21 -Z21zll
Here we use that Z is unitary and Z21Zi-11 is Hermitian. We thus have

(2.13) (/- k)Z=
0 )22 k

0 X22
but 22, ff22 are no longer triangular. Let 22 be unitaff such that 2222 is lower
triangular; then we get that

=’T-XR.
0 02 022 0 22 0 T22J- x

0 R22

Observe that we still have that T- kR is a symplectic pencil, i.e., TJT* RJR* and
this implies Tll T’2 RI1R2. Tl kRl Ol 2 has only eigenvalues with
I1 < 1; thus R11 is invertible. This implies that R2 is upper triangular. T22 is also in-
vertible, since T22 R22 has only eigenvalues k satisfying Ik[ > 1; thus it follows that
Ri- Tl R2 T2*.

This then implies (2.10).
COROLLARY 2.14. Under the assumptions of Theorem 2.7, there exist Q Uzn,

Z US2n, S1 $2, Q1 C 2n,Zn such that S1 is S-triangular, Ql is lower triangular and

(2.15) Q1Q(zl- x3)zs Tll T12
_)k

0 I TI
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Proof Following the proof of Theorem 2.7, we choose

SI=[R-? 0 ] and Q=[I 0 ]Rl 0 (r22Rl)-1

Both matrices exist by the proofofTheorem 2.7 and, since ZSI S2n, (2.15) follows.
COROLLARY 2.16. Let S Szn having no eigenvalue of modulus one. Then there

exists Z USzn, such that

Z,Sz=[Tll T12]0 Ti-I*

where Tll is upper triangular and has only eigenvalues X with Xl < 1.
Proof Apply Theorem 2.7 to S M to obtain the proof. []

Remark 2.17. In general there do not exist matrices Q U2n, z USzn such that

0 I 0 Ttl
It is not even possible to achieve a form

[rll0 T22T12]- ,[ r20 R12]TI
in this way. To see this, consider the following example. Let

sO- X/= -X
21 0

let

Cl S1 ] GU2,Ql
-gl 1

Q2 [c2-s2] US2
$2 C2

(2.18)

(2.19)

(2.20)

(2.21)

(2.20) and (2.21) imply

(2.22)

i.e., Icll 2 + ISll2 1, Ic212 + Is2l 2 1, c22 e N. Suppose we have that

QI(’f-h’)Q2=[ allO aal2] k[i220 lllb12]"
Then it follows that c2, s2, cl, Sl 4:0 and

(Cl - 2S1)C2 + SI $2 S1 ’2 -- 2(S1 -Cl C2 -I- $2S $2Cl Cl ?2 2Cl ’2 -- S1

(--’1 -- 2(1)C2 + (1 $2 0,

--$5C2 -t- (-1 -t-/1)$2 0,

21 c + glS 0.

Multiplying (2.22) by g2cl and using cY 6 N, we obtain that Cl-l N, tOO. Multiplying
(2.18) by 71 and ordering yields

(2.23) ICllZ(c- 2) -- 1 S1($2 -2) -t- 1 sl(2c2 ?2) 0.
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The first two terms are purely imaginary; hence 2c2 t2 ia, a e , but this implies
that c2 e i and hence also s2 e i. Combining (2.19), (2.22) we obtain

(2.24) c c2 + $2s1 $2Cl -1 2 2c2

and this implies

(2.25) s2s c(-22 + s2).

Since s2, c2 e i it follows that

(2.26) sz(3c-s) 0.

If s2 0, then c2 +i, c 0, s +i and by (2.18) + +2, which is impossible. So
if 3Cl s, then by (2.20) we obtain

(2.27) -c- c + 1 s2 0.

Thus, ? 0 or c2 s2. If 0, then 0, which is impossible since [sl2 + Icl2 1.
If c2 s2, then by (2.21) we have - c2 + c2 + c2 0, which again leads to a
contradiction. [3

In the real case, we have to replace triangular by quasitriangular forms in these
Schur forms if we want a real Schur form.

THEOREM 2.28 (Generalized symplectic real Schur form). Let A )B be a real
regular symplectic pencil having no eigenvalues ofmodulus 1. Then there exists Q U2n
and Z US2n, Q, Z real, such that

(2.29) QIz=[T T2]0 T22
:’r,

(2.30) QIZ [R RI2] -.’R
0 R22

and T- )R is a real quasitriangular pencil, i.e., T )kRll, T’2 )R’2 are quasitrian-
gular matrices (i.e., block triangular matrices with or 2 2 diagonal blocks). Tll
)RI has only eigenvalues ) with I)1 < and T22 )R22 has only eigenvalues )

with I)[ > (including infinite eigenvalues) andfurther (), (2) 0)) (2)ifz)j ) ,j= l, k
are the or 2 2 diagonal blocks of Tii )Riii l, 2, respectively, then

(1) (1))- (2) (2)_1),(2.31) r .(&j. Oj. .(rjj j 1,... ,k.

Proof The proof is analogous to that of Theorem 2.7.
Clearly, results analogous to Corollaries 2.14 and 2.16 for the corresponding real

Schur form hold too.
In order to perform a double shift algorithm in the case of real d, 3 and complex

shifts, we need the following result.
PROPOSITION 2.32. Let A B be a real symplectic pencil with B invertible. Let

s C\r(A, B) and let Q T be the QT-factorization of(A sB)-l(sA B). Let A
B := (A B)Q. Let Q2 T2 be the QT-factorization of(A YB)-I(yA B), then

(2.33) QT:= Q Q2 T2 T (A YB)-IB(A sB)-I(yA B)B-(sA B)

is a real QT-factorization.
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Proof
Q Q2 T2 TI Ql(A1 Bl)-l(-A B1)Tl (A B)-l(-A B)Q Tl

(A B)-(A B)(A sB)-l(sA B)

(A ffB)-I(gAB -1 I)(AB -l sI)-l(sA B)

(A B)-’B(A sB)-l(A B)(sA B)

[(B-1A sI)(B-1A I)]-l(B-1A I)(sB-IA I)

which is real since the two indicated factors are real. Consequently the uniqueness ofthe
QT-factorization yields that Q1, Q2, T2 T are real factors.

We immediately then have the following.
COROLLARY 2.34. Let M be a real symplectic matrix. Let s C and let Q T be

the QT-factorization of
(M- sI)-(sM I).

Let MI QM1 Q1 and let Q T2 be the QT-factorization of(M- ffI)-l(ffM- I); then

(2.35) QT= QI Q2 T2 TI (M- gI)-(M sI)-l(gM I)(sM- I)

is a real QT-factorization.
Another important tool in the study of symplectic pencils/matrices is the following.
PROPOSITION 2.36. Let

[Sll S12]S=
$21 $22

eS2n’

and suppose that S exists. Then S can be factored into the following product of three
symplecticfactors"

(2.37) S
0 I 0 822 S’J $21

Proof We only have to show that

S 21-- S12S $21 SII.
But S is symplectic; thus

821S2 822S1, SIISS-SI2SI=I
which implies

S -- S12S $21- S- 2t- S12S S S -t- S S2S S S [-]

Note, that if SI is invertible, then we obtain the analogous factorization

[ I 0][l 0 ][I Si-ll S12 ](2.38) S=
$2S1 I Si-l* 0 I

(3.1)

3. The algorithms. Given a symplectic pencil

F 0
_X s-X=:[a0]-X[b0]H I F*
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or a symplectic matrix

(3.2) ///= [MI M2]M21 M22
[mO]

where F, G, H C n’n, H H*, G G*, rank (H) 1, rank (M21) 1, and H, G positive
semidefinite. (See the Introduction.) We now describe algorithms for the computation
of the deflating (invariant) subspaces of 3(/) corresponding to the eigenvalues,, with Ikl < 1. We begin with the description of the preliminary reduction step to
S-Hessenberg form.

ALGORITHM 3.3 (Reduction to S-Hessenberg form).
Step 1. Simplification of H(M21). Let u e C" such that H uu*(u* e*M21). Let

U e U, such that

Let Qo [ov v], then

U*u ozen

(3.4)

U*FU
Q(- X3)Qo

[al2ee, I 0 ,U’F*U J
I -Go =: Ao ,Bo.

(3.5) QSgQ=[M(2l) 1w11()22 =’Mo and M2 0

Set Q := Qo.
U can be obtained in the usual way using a Householder transformation, e.g., 13].
Step 2. Reduction of Fo(M])). Let V Un such that F := V*Fo V(V*M] V) is

upper Hessenberg and

This is achieved by the usual transformation to Hessenberg form, e.g., 13], here with
the last column of V fixed to be e,. Set G V’Go V and Q [ff v]. Then

F 0
k =’AI- kBl(3.6) Q’ (Ao- XBo)Q1

Hi I 0 F
is an S-Hessenberg pencil and

(3.7) Q {MQ1 M(21) .tv.11 ,(122
is an S-Hessenberg matrix.
Set Q := Q. Q.
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Observe that with these initial reductions we have produced the following structures:

(3.9) MI

where in the following we denote by ,,_a_,, that the matrix is of that given form.
By Theorem 2.6 we have that the form ofM stays invariant if we perform the

following QR-type iteration which is similar to the Hamiltonian QR-iteration of Byers
[5]. It is known that for general symplectic matrices, i.e., if they do not arise from a single
input optimal control problem as above, the simplest Hessenberg type form that we can
obtain with unitary symplectic transformation is

which is not an invariant form, under the symplectic QR-type iteration, e.g., Bunse-
Gerstner [7]. The iterative part can be carried out by the following algorithms.

THE DSQR ALGORITHM 3.10 (Discrete Symplectic QR-algorithm). (Single or dou-
ble shift step). Given Mi an S-Hessenberg matrix as in (3.7), (3.9), and Q US2,,.

FOR

(3.11)

(3.12)

(3.13)

(3.14)
END

i= 1,2,3,...
Choose a shift ki e C
For a single shift step let
Si (Mi- XiI)-(,iMi- I)
and for a double shift step let
Si (Mi- XiI)-l(Mi- XiI)-(XiMi- I)()kiMi- I).
Compute a QT-factorization of Si, S UT as in Theorem 2.5 and set
M+ U’Mi Ui
Set
Q:= QUi.

It is also possible to perform a QZ-type algorithm, but as we have seen in Remark
2.17, it is not possible to produce the Schur form using unitary transformations from
the left. This is also the case in this algorithm.

THE DSSZ ALGORITHM 3.15 (Discrete Symplectic SZ-algorithm). (Single or double
shift version). Given A XBI an S-Hessenberg pencil as in (3.6), (3.8), and Q US2n.

FOR 1,2,3,
Choose a shift k t Co

(R) For a single shift step let
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(3.16)

(3.17)

(3.18)

(3.19)
END

Si (Ai- ,Bi)-l(XiAi- Bi)
and for a double shift step let
Si (Ai- )ni)-ln(Ai- XBi)-I(XiAi- ni)B-l(,iAi- ni).
Compute a QT-factorization of Si, Si Ui Ti as in Theorem 2.5, and let
Z E C n,n nonsingular, such that
Ai + Bi + ZiAi Ui )kZiBi Ui
is again a normalized S-Hessenberg pencil. If such a Zi does not exist, choose
a different shift i and GOTO (R). Set
Q=Q’Ui

In general we may not assume that F (and thus B) is invertible, so the matrix B-may not exist. But it is possible to deflate zero and infinite eigenvalues ofA ,B so that
during the iteration, we may assume that the iterates Ai, Bi are nonsingular and also that
in general we are able to form the matrix M B-A.

Let

A-XB= -X
0 F*

with F upper Hessenberg, H ae,,e*,, G G*, G, H positive semidefinite, and F un
reduced, i.e., all subdiagonal elements of F are nonzero. (This can be achieved by the
deflation procedure described later.) Then we consider the following.

ALGORITHM 3.20 Deflation of eigenvalues 0, . Let

T= I T2=
0

T3=
0 Z*

where Z E Un, such that FZ R is upper triangular. Then,

(3.21) 0 -F*H F* 0

0 I [ -R*HZ Z*F*Z

Now H, G are positive semidefinite; thus (I + GH)- exists. Let

0 I Ts=
R*HZ I

Then

(3.22)

A hB’= T5 T4 T3(A XB)T-( T

[ Z*(I+ GH)-R 0

[R*H(I+ GH)-’R I] h[ -Z*(I+GH)-1GZ ]
R*Z- R*H(I+ GH)-GZJ
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IfF is singular then R has first column identically zero and then

(3.23) J- ,/
0

0
ooooo

Delete rows and columns 1, n + and obtain a symplectic pencil of dimension 2 less

Since it is symplectic it follows that /3en-le*- and/2 =/ and now/ is non-
singular.

Remark 3.25. Observe that the matrices T, T5 can also be obtained if instead
of a symplectic pencil a symplectic S-Hessenberg matrix M is given. Using Proposition
2.36, M can be written as

=[Ml MI2 I F- GF-*H GF-* ](3.26) M=[mij]
[M2 MzzJ F-*H F-*’

where F, G, H are as above.
It is immediate to obtain H otene*n by comparing the last columns of M2, M22.

Then

(3.27) a m2n,n/m2n,2n,

(3.28) F=M Mzaene*n

and

(3.29) GH=M2F*H.

4. Detailed description of the algorithm. In this section we describe in detail the
QT-factorizations used in the DSQR-algorithm, the implicit computation of the next
iterate, the choice of shifts, deflation, the ordering of eigenvalues, and the determination
of the deflating or invariant subspace.

The QT-factorization of (M- sl)-(YM- I). We now describe the procedure to
obtain the QT-factorization of S (A sB)-(YA B) (M- sI)-(YM- I), where A,
B, S, M are iterates of the DSQR-algorithms and s is a shift parameter.

Let

(4.1) A B C
I .0 Y*.’ .0 F*
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Assume further that F is unreduced, i.e., all subdiagonal elements are nonzero, and that
H 4 0. Then,

Clearly

(4.3)

S (A sB)-I(M B) (M- sI)-(gM I) (217I- sC)-(sh7l C),

./(I_ Sc= [F- sI+ GF-*H GF-* ]H I- sF*
[rhi’j]-s[c]"

Let ZIR be a QR-factorization ofYF- I (e.g., Golub and van Loan [13] or Bunse and
Bunse-Gerstner 11 ]).

Observe that

for some u e C n. Thus, Zt((F + GF-*H) I) R2 is also upper triangular, and also
we have that Z is upper Hessenberg. Then

,,2/= Zt 0 (-sC) Z(4.4) W1 --[wij ]’-- W(211 W(217] 0 I 0

and

(1), [Z(4.5) Yl [Yi,jl
0

and

Zt 0 IS- Wi-1 Y1.
0 Zt

Observe that the structures of W, Y1 follow, since

W]’) Zt(F- sI- GF-*H)Z1

GF-*H)Z1 I) + s I -:R2 ZI + s I
s s

(1)is upper Hessenberg, W2 HZ and W22 (I- sF*)Z (Zt(1- YF))* -Rt is
lower triangular. Now let J J(n, c, s) be Jacobi symplectic, such that

(4.6)
cl Sl ] y,,, *

,,(1)--Sl Cl y2n,n 0
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Then

(4.7)

and

(4.8) W2"= [wi,jl Jl WI

(2) vanishes automatically, since with R := [ro], Z [zo] we haveThe element w.,._
(1) (1)

n,n Fn,n, Y2n,n l’12n,n, Wn,n- Fn,nZn,n- 1,
S(4.9)

,z()
2n,n- l12n,nZn,n- 1.

() ()Thus, the choice of c, s as in (4.6) simultaneously eliminates Y2n,n, W2n,n-1.
Now let J2 J(n, c2, s2) US2n such that

Then

(2) (2) 1[ C2 $2]W2n,n W2n,nj [0 * ].
--$2 C2

221

Choose Z2 e Un such that W3)Z2 R3 is upper triangular and set

Then

Let

g’=
0 Z1

J2
0 Z2 0 I"

U*(A sB)-(YA B) U*(C-1A sC-1B)-Iz*z(gC-1A C-IB)

TII[Z(C-IA sC-1B)U]-I[z(ffC-IA C-1B)] =: T
Tl

has the structure
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But since U e q/S2n, it follows that T e S2n and thus T22 T?I*, i.e., we have produced
the unique QT-factorization of (A sB)-(A B).

In a similar way, we now obtain the QT-factorization in the double shift procedure.

The QT-factorization of S (M- gl)-l(M- sl)-l(M- I)(sM- I). Let

[I-G]-I[F ] iA"M=
0 F* H

=B-

Then

(A B)B-I(A sB) B(M- YI)(M- sI)

H I- F* F-* I- sF*

0 F-* F*H I-F* H I-sF*

(4.10) _-[I0

and

(4.11)

Observe that

I

F-* F*HF- YF*H+ F*HGF-*H+H- sF*H

FGF-* -[s[2G ]
F*HGF-* + (I- YF*)(I- sF*)

o]F-*
Ll,

(A-B)-I(sA-B)=[ 0 ][ (YF-I)(sF-I)+[s[2FGF-*H
F-* [s[2(F*HF+ F*HGF-*H+ H)- 2 Re (s)F*H

[slZFGF-* G
[s[ZF*HGF-* + (sI- F*)(sI- F*) J

o]F-*
L2.

(4.-12)

(4.13)

Let

Let (F- I)(sF- I) Z1RI be a QR-factorization, then

Cl SI
--Sl Cl
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such that

(4.14)

and let

Cl S1 I Y2n-l, -1 *
() 0--S1 1 [ Y2n,n-

(2)1Y2 [Yi,j J1 YI.
Let J2 J(n 1, c2, s2) USzn such that

and let
(3)1(4.16) Y3 [Y i,j J2 Y2.

Let

such that

J3- U2n
C3 $3

--$3 C3

(4.17)
6’ $3 Y2n 1,n 0

(3)
$3 C3 Y2n,n *

and let

(4.18)

Let J4 J(n, c4, s4) USn such that

(4.19) [ c4

--$4

Then

(4.20)

(4)Y4 J3 Y3 tY i,j 1.

$4 ] Yn,n *
(4)

C4 Y2n,n 0

Let

Z 0 Z 0 W21
(4.21) W J4J3J2J1

0 I LI 0 Zl W(21]

Observe that

[F*HGF-* + (I- sF*)(I- F*)]ZI
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and thus

Furthermore,

F*HF- 2 Re (s)F*H+ F*HGF-*H a=

Thus

(4.22)

Now W-Y5 is symplectic. Thus, it follows that

(l)* l,l,r(l) W(211),(4.23) W(27 W2_ 22

and since L1 was assumed invertible, the diagonal elements w n +
2n 2 are nonzero. Thus, we obtain that

(4.24)

Let

such that

(4.25)

and let

(4.26)

C5 $5

--$5 C5

C5
--$5

(l) () 1C5W2n- l,n- 1, W2n- 1,hi
I $5

s5 ] [0
C5

w := [w))1 Wl J.

$5

,]

E US2n
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Let J6 J(n, (76, $6) E US2n such that

(4.27) (2) (2) [ 6’6
[Wzn 1,n, W2n 1,2n]

[

and let

$6]-6 [0

(3)1(4.28) W3 --[wij W2J6.
Let

such that

(3) (3) / ?7(4.29) [’z.-1,2.-l, VV2n-1,2.]
--$7

,]

(77 $7

--$7 C7

e US2,,

Then,

(4.30)
1,1"2"(4) I

22J

WlY5 is still symplectic; thus it follows that W241 I’12"(4)*vv22 I]’2"(4)’’22 W(241)* and I12"(4)*,v22 has
(4) (4)nonzero diagonal elements w,.,, n + l, 2n 1. Thus, it follows that ,2,,,-1

0. Let J8 J(n, Ca, s8) e USE, such that

(4) (4) IF C8 $8](4.31) [W2n,n VV2n,2nl [0 * ].
l J--$8 C8

Then,

(4.32) w,.= u-(5) W4Js
22

Now let W]] RE Z2 be an RQ-factorization of W]]); then

(4.33) W6--W5[z 0 ] I0]o z=
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and

(4.34)
-1

is symplectic and therefore has the structure

and thus for

0 Z JtJJ’J’
0 Z’

we have that

S=QT

is a QT-factorization as required.

Implicit single shift DSQR-step. Given a symplectic iterate M;, we have to compute
the factors Z, J_, Z2 from the QT-factorization and then produce the next iterate

(4.36) Mi+= 0 Z2 0 Z mi 0 ZI
J2

0 Z2

Using Remark 3.25, we can easily obtain F, H ae,,e*n and also C, M from the given

M M2]Mi=[M21 M2z

Zl is then obtained by computing the QR-factorization of-F I (or Mll --/, since they
differ only in the last column). Then

0 Z’ Mi
0 Z

=: M2-(1)1 .zv.tlff(l)22

since Z is upper Hessenberg by construction. J is obtained from

YI =[Z0 0] [g3r-C]I
as described above. We use

(1)(4.38) .vzn,n Smzn,n SOt,

and

(4.39) (l) I)e,,.y,,,,, e*n Z’(ffMl
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(2) (2)_J2 is obtained from w2,,,, Wz,,,.n, where

W2=J1 W1 Jl [ z
Z(]Ifl sI)Zl

=J 2, Z
ZTI2Z1 ](M22- sF)Z

=j[M]) -sI M] ]ce,e*n Z (I- sF*)Z

Thus

(4.40)

and

(4.41)

(2) M()
2n,2n --Sl e. 12 e. + c e*.(I- sF*)z e.

/V
(2) (1)
2, -Sl e*(Ml sI)en + Cl e* Z e,,

and J2 is obtained by (4.15). Then

(4.42) M(2). jM()J2 M(22) 22

since J2 does not change the structure ofM(1). Using Algorithm 3.3 we compute Z2 Un
such that

(4.43) Mi + 0 Z{
m(2)

0 Z2

is again an S-Hessenberg matrix.
Observe that due to the structure ofM(2), we can perform Algorithm 3.3 with very

thin Householder symplectic matrices

where Pi is a usual Givens rotation in Un, chasing only one subdiagonal element along
the diagonal of M]2).

Implicit double shift DSQR-step for real Mi. Obtain again F, H from the iterate

[M M12]mi=
M21 M22

as in Remark 3.25. Z is obtained by performing an implicit double shift QR-step on
(YF- I)(sF- I) using the usual Francis procedure, e.g., [13].

Let

 4.44, 0] 0] ::/ ,l, (1)/ FI ZFZI
0 Z Mi ZI [M22 M22 ’
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Now by (4.13) we have

(4.45)

Y
Z? 0]L20 I

ZV[(F- I)(sg- I) / IxI=FGF-*H] IsI=z? FGF-* ZG

IslE(F’HE+ F*ItGF-*H+ H) 2 Re (s)F*H IsI-F*HGF-* + (I- F*)(sI- F*)
(1) (l) (1)Thus the elements of Y needed to compute Jl, J2, J3, J4 are Y2n-,n-1, Y2n,n--1, Y2n,n,

Y2n l,n Y 1,n-l, Yn,n Y 1,n

Letting F [fij], Mi [m0], we then obtain the following formulae:

(1)(4.46) Y2n-,,--[s]2afZn,n- ,,
(4.47) () Is[Y2n,n-1 20lL,nL,n-1,

(4.48) Y2n,n
(’) [slZa(fn,, + 1) + Isl2aZfn,nm,,zn 2 Re (s)af,,,
(1) "--[S[2Otfn,n 1L,n + [S[20t2fn,n-1 mn,2n- 24 Re (S)L,n_(4.49) Y2n-,n

(1)(4.50) Yn- 1,n- e*_ Zt(gF- I)(sF- I)en- ,
(4.51) ynl,)n=e*nZt(gF-l)(sF-I)en+isl2ae*ZtFM2en,

(4.52) Y(n’)-- l,n en*- ,(Z(YF- I)(sF- I) + Isl2aZ FM2)en.

From these values we can then completely determine Jl, J2, J3, J4 via the above described
process. Then we have to determine J5, J6, JT, J8 from W given by (4.21). We only need
the 4 trailing 2 2 submatrices ofthe blocks ofL, together with J, J2, J3, J4 to compute
those elements which are necessary to determine Js, "’", Js. Now let

(4.53)

L3" [L(231> r(3) L
-’22 0 I 0 Z1

[lij
.,r(l) i/(1) (1) 2- (1)(F1 sI)(FI YI) + Flw 12 21 FMI2 --IS[ m12F

MzI(F-2 Re(s)I+M2H)Z1 +HZI [M21MI2+(I-sF*)(I-YF*)]ZI

Clearly the necessary submatrices

gn- In- en- n gn- 2n-

gn,2’n g2n,n I. g2n,2n g2n,2n

are easily obtained. We omit the exact formulas here. Knowing these values of L3 we
produce the necessary submatrices of W1

W2n,n-1 W2n,n W2n,n_ m2n,2

by multiplying J4J3J2Jl L3. The matrices Js, J6, JT, J8 are then obtained via (4.25), (4.27),
(4.29), and (4.31).
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Let

(4.54)

Now let

such that

M5)= jg jC jgjM’)j5j6JTJ8 [M25) ,t(5)
22

Z 0 ] - US2n
0 Z2

(4.55) M + ’= 0 Z’
M(5)

0 Z2

is again an S-Hessenberg matrix. Observe that by construction as in the QR-algorithm
(e.g., [13])

F Z{FZ &

thus

(4.56) M]) Zf(F+ Mzaene*n )Z F, + Z{M,zaene*n
but since Z is obtained from the QR-step applied to (gF- I)(sF- I) it follows that

(4.57) Zl & I II
Thus

is upper Hessenberg plus an extra entry in the last row

Mtzl, Z{ F-*HZI F-{* ZfHZ, & [(4.58)

has only entries in the last three columns. M), M(2 are full in general. Thus

(4.59) Ml) I*lll[1
The transformations with Js, J6, JT, J8 do not change this structure. Thus, in the last
step we transform M) to S-Hessenberg form using Algorithm 3.3.
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Observe that after the first step of Algorithm 3.3, we have to transform the matrix
in the (1, 1) block position, which is of the form

to upper Hessenberg form, which we do by chasing the bulge up along the diagonal, so
we only need Householder reflections of length 4 for each row (e.g., [13]).

In both the single and the double shift algorithm, we monitor the effect of rounding
errors on the rank property of the (2, 1) block by computing the elements that have to
be zero since it is rank 1, i.e., in the single shift algorithm the (n 1)th column and in
the double shift algorithm columns n 1, n 2.

We do not give detailed descriptions of the implicit procedure for the DSSZ algo-
rithm, first since they are more complicated and second since they involve unstable
manipulations from the left. Since the DSQR-algorithm can be carried out stably even
if B-l does not exist, the DSSZ-algorithm is also always implicitly available by using the
formulas in Remark 3.25.

Choice ofshifts. For the iterates Ai, B;, the matrix K(Ai XBi)K is upper Hessenberg.
Thus, the Wilkinson shift [25] for K(Ai XBi)K would be to take eigenvalues from the
2 2 matrix in the top left corner of I Fi*, which are just the reciprocals of the
eigenvalues of the 2 2 matrix in the top left corner of Ai- XB; or Mi. If X is a
good estimate for an eigenvalue, then also 1/X is a good estimate and since we want the
subspace corresponding to the eigenvalues of modulus ]X[ < 1, we take shifts X (or
X, in the double shift case) such that ]Xl > 1. Using these shifts and our matrices
Si (Mi M)-l(Mi XI), we essentially do steps of inverse iteration (e.g., [13] or [11 ]),
and therefore have convergence in the top left corner of the two diagonal blocks.

Deflation. Ifduring the iteration a subdiagonal element of(Mi)ll becomes neglectably
small compared to [[F[[ + []G[] + ]IHI], we set it to zero. If

(4.60) Mi

M11 M12

0 M32
0 M42

M13 M14
M23 M24

M33 M34
M42 M44

then by (3.28) also M34 0. Thus, we may then also set the corresponding whole block
of (Mi)22 to zero, and split the problem into the two subproblems of computing sub-
spaces of

(4.61) [Mll M13]0 M33

which is just a usual eigenvalue problem for Mll and M33 and can be treated by the QR
algorithm for Ml and

(4.62) [M22 M24]M42 M44

which is of the same type as before.
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Ordering of eigenvalues. For the optimal control problem we want to obtain all
eigenvalues with modulus [Xl < in the upper left corner of Ai- XBi or Mi. Thus,
possibly we have to exchange eigenvalues which, using Stewart’s method [22], is essentially
a QR-step with the eigenvalue (or pair of conjugate eigenvalues) as shifts applied to a
2 2 or 4 4 submatrix ofAi- XBi or Mi.

Let Q, Z be chosen such that

or

Rl
:= [r0]

where Tll, R are upper triangular (or quasi-upper triangular in the real Schur form
with complex eigenvalues). If a diagonal element r. of Rl is such that Ir.I > l, then let
D J(i, c, s) such that

(4.65)
-s c ri + ,,.i + r, 0

then in

(4.66) D*Z*MZD

the diagonal elements r,, rn / i,n +i have been exchanged.
In the case of complex eigenvalues in the real Schur form, if the eigenvalues X, X of

the 2 2 diagonal block

[ ri, ri,i+l ]ri+ l,i ri+ 1,i+

in Rl have IXl > l, we perform a real double shift QR-step with the exact eigenvalues
X, X, to the submatrix

ri, Pi, + ri, + ri, + +

’i+ 1,i Fi+ 1,i+ Fi+ 1,i+n Fi+n,i+n+
0 0 Pi+n,i+n Fi+n,i+n+
0 0 ri+n+ 1,i+n ri+n+ 1,i+ n+

Computation of the deflating (invariant) subspace. In order to solve the optimal
control problem we have to compute the deflating (invariant) subspace corresponding
to the eigenvalues X with IX] < of X(’). There are essentially two ways to do
this, which are exactly the same as in the continuous time (Hamiltonian) case (e.g., Byers
[4]). Either we accumulate all the transformation matrices and then compute the deflating
subspaces from the 1. l) and (2.1) blocks ofthe transformation, or we use the symmetric
updating procedure of Byers and Mehrmann [6] to compute the solution X directly. For
a comparison of these two procedures see [6].

5. Conclusions. Comparing the work needed for the reduction to S-Hessenberg
form and per iteration step, we get the following approximate flop counts. (A flop is
defined to be the work of evaluating the FORTRAN statement A[I, J] A[I, J]
S*A[I, K]; see Table 5.1.)
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TABLE 5.1
Approximateflop counts.

Algorithm 3.3 for full symplectic pencil

Algorithm 3.3 for full symplectic matrix

Accumulating UV

One implicit single shift DSQR-step
Accumulating transformations
One implicit double shift DSQR-step
Accumulating transformations

Reduction to Hessenberg form for arbitrary 2n 2n matrix

Accumulating transformations

Reduction to invariant form in QZ-algorithm
Accumulating transformations in Z
One implicit double shift QR-step
Accumulating transformations
One implicit QZ-step
Accumulating transformations

Numbers for QR and QZ are taken from [13].

Flops

10n

15
n

3

n

40n
16n
62n
24n

40
--n
3

16
En
3

40n
12n
24n
24n
52n
32n

Due to the special eigenstructure, which is preserved by the algorithm, we have (and may
force) convergence of always at least two or even four eigenvalues at a time. Due to the
loss in structure this is not quite the case in the QR- or QZ-algorithm. The work required
by the described DSQR-algorithm is, between that of the QZ- and the QR-algorithm,
since the S-Hessenberg form is not as thin as the Hessenberg form. In many cases we
cannot explicitly produce -1 without causing large roundoff errors; thus the direct
application of the QR-algorithm is not advisable. The described algorithm is faster than
the general QZ and in any case is, since it has the symplectic structure, more advisable
from the point of view that any internal structure should be (if possible) preserved for
stability reasons.

We have shown that it is possible to produce a numerically stable algorithm for the
single input/output discrete linear quadratic control problem. The principle of Byers
method for the continuous case can therefore also be applied in the discrete case.

Acknowledgments. We thank A. Bunse-Gerstner and L. Eisner for many helpful
discussions.
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A DETERMINANT IDENTITY AND ITS APPLICATION IN EVALUATING
FREQUENCY RESPONSE MATRICES*

P. MISRAf AND R. V. PATELf

Abstract. This paper is concerned with the computation of frequency response matrices of linear multi-
variable systems described by their state-space equations. A determinant identity is used to evaluate these
matrices that play an important role in frequency domain analysis and design of linear multivariable systems.
The algorithm proposed here is believed to be considerably faster and at least as accurate as other existing ones.
This is illustrated by means of operations counts and numerical examples. It is also shown that the proposed
method can be easily adapted for implementation in a parallel processing environment.
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1. Introduction. Many so-called classical and modern control system design methods
for linear time-invariant systems (e.g., see ]-[6]) use the frequency response character-
istics of a system to design controllers which achieve desired stability and robustness
properties for the resulting closed-loop systems. Hence, an efficient and accurate com-
putation of frequency response matrices is of considerable importance. In this paper, we
consider the linear time-invariant, multivariable system described by

(1. a) 2_c(t) Ax_(t) + Bu_(t),

(1. b) y(t) Cx_(t) + Du_(t)

where _x(t) , u(t) m, and y(t) . The frequency response matrix W(jw) of the
system (A, B, C, D) is given by

(1.2) W(jw) C(joI,-A)-’B + D.

Computation offrequency response usually requires evaluation of W(jok) at a large
number of frequencies w, k 1, N. If the system description is given in terms of
the transfer function matrix W(s), then the computation of frequency response is a rel-
atively simple matter. However, if the state-space description (A, B, C, D) is given, then
the problem is not so straightforward computationally. Obtaining the frequency response
by first converting the state-space description to a transfer function description is justifiable
only when the initial cost of computing the transfer function matrix is offset by the
number of frequencies at which the frequency response is desired. From the operations
count in 4, it is possible to determine approximately when a direct determination of
frequency response would be more economical than computing a transfer function matrix
followed by evaluating this matrix at various frequencies. In [8], a method for computing
frequency response was proposed which, starting from a given state-space description,
determines the frequency response matrix by first reducing the state matrix to an upper
Hessenberg matrix and then solving a system of n simultaneous linear equations. De-
pending on the number of frequencies at which the frequency response matrix is desired,

Received by the editors May 12, 1987; accepted for publication October 1, 1987. This research was
supported by the Natural Sciences and Engineering Research Council ofCanada under grant A 1345. This paper
was presented at the SIAM Conference on Linear Algebra in Signals, Systems, and Control, which was held in
Boston, Massachusefts on August 12-14, 1986.

f Department of Electrical Engineering, Concordia University, Montreal, Canada H3G 1M8.

248



FREQUENCY RESPONSE MATRIX EVALUATION 249

the methods described in subsequent sections are comparable to or more efficient than
this or other existing methods.

The layout ofthis paper is as follows. In 2, we introduce some background material
from linear algebra and control theory that forms the basis of the algorithms. Section 3
describes an algorithm for the computation of frequency response matrices of a given
system and discusses its properties. Section 4 discusses computational requirements using
various existing methods for evaluating the frequency response matrices and illustrates
the numerical performance of the algorithm by means of some examples.

2. Preliminary considerations. We shall use the following facts from linear algebra
and control theory for the development of the algorithms.

FACT 1. A single-input system (A, b) can always be reduced to an upper Hessenberg
form (UHF) [7], [9], by means ofan orthogonal similarity transformation matrix T such
that F TrATis an upper Hessenberg matrix and g Tr__b [go 0] r. The element
g 4:0 and F is an unreduced upper Hessenberg matrix if and only if (A, b) is a
controllable pair.

Further, if the system is not completely controllable, then the above transformation
will reduce (A, b) to (F, g) such that

[F F_](2.1a) F=
0 F22

and

where F e Enc nc is an unreduced upper Hessenberg matrix, F22 (3. 2(n nc) (n nc) and
g (eE") [g0 0]. Note that (F, g) is a controllable pair and the eigenvalues
of F22 correspond to the uncontrollable modes of (A, b).

FACT 2. Similar results can be stated for a single-output system (A, cr), except that
the results apply to the observability properties of the system with F T’AT in UHF
and c_.rT [0... 0c,]. The unobservable modes of the system are then defined in a
similar manner.

FACT 3. For a single-input, single-output system (A, b, cr), we may write [5],

Further,

det (jWIn A + bcr) det (jod A) + cr adj (jwIn A)b_.

cT(jwi,_A)_b
Cr adj (jwI,-A)b

(2.2)
det (jwI,, -A)

det (jOIn A + bc)
det (jod,, A)

Now, in (1.2), the (i, l)th element of W(jo) is given by

(2.3) wit(joo) c_Ti (jOIn A)-l__bl-t dil
which may be written, using (2.2) as

det (joI-A + btcri(2.4) wit(jw) + dit.det (jwI,, A)
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FACT 4. The determinant of a matrix whose kth column can be expressed as a sum
of column vectors + , may be written as 11

(2.5) det (ala2... ak-F k’’" an)-det (ala2’’’ ak""" an)-F det (aa2.’’ _dk’’’ an).

FACT 5. An upper Hessenberg matrix A e nn can be factored into the product
of a unit lower bidiagonal matrix L and an upper triangular matrix U [10]-[ 11 ]. This
decomposition is called an LU decomposition of A. The determinant of A is given by
1-I= uii, where Uii denotes the ith diagonal element of U.

3. Computation of frequency response matrices. The method for computing the
frequency response matrices outlined in this section determines one row of the matrix
at a time, i.e., we evaluate the frequency response ofthe multi-input, single output systems

ci ), 1, ..., p. Note that for the sake of clarity, we have dropped the matrix(A,B, r

D from the system description. It can be easily incorporated in the final frequency response
matrices by a simple addition. In evaluating the frequency response, each triple described
above is first reduced to the condensed form described in Fact 2. This reduction is done
only once for a given set of frequencies o, k 1, ..., N.

Equation (2.4) can be rewritten as

det (jod A + btc) det (jo)I A)
(3.1) wit(rio)-

det jooI A)

det (, a 1, _a’n + b_ICin) det (A)
(3.2)

det ()
where A (floln A), is the kth column ofA, and Cin is the nth element of cg and is
the only nonzero element of the ith row of the output matrix C. Then, using the deter-
minant identity in Fact 4, (3.2) may be simplified to

(3.3) wil(jo)) det (A-)/det ()
where (l, a_ l, blCin). Note that . differs from . in its last column only. From
the LU decomposition of , we have

n

(3.4) det ()= det ([7)= II lrr"
r=l

Moreover, changing the last column of./i affects only the last column of [7. Therefore
(3.4) gives

nSt_ U-nn Hr=n arrWil(jO)) 7 nn I-I r=n(3.5)
Unn

Unn

In (3.5) above, nn is the (n, n)th element of the matrix and finn is the (n, n)th element
of the matrix t2 in the LU decomposition of . Therefore, instead of computing the
determinants in (3.3),.we only need to find the ratio in (3.5). A small saving in computation
can be achieved by noting that t7 anci, where n is the (n, n)th element of the
matrix in the LU decomposition of the matrix J [gl, "’", -l, bt]. The (i, l)th
element of the frequency response matrix is, therefore, given by

(3.6) Wil(j(.o lnn
Cin

Unn
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3.1. An algorithm for computing the frequency response matrices. Assume that the
triples in their condensed form described by Fact 2 are denoted by (Ati), B(i), c’f). Then,
the algorithm based on the above discussion may be formally given as follows.

ALGORITHM 3.1.
for :p,

reduce the ith triple to the condensed form (F(i), G(i), h/T) :=
T’A Ti, T ]’B,

set the observable subsystem to (A(i), B(i), c) := O(F(i), G, h’)
set n dimension of the obseable subsystem;
fork= I’N,

evaluate ( (n, n)th element of ()in the LU decomposition of
(jwI- A(i));
for/= l:m,

i) (jwI- Ai)) with last column replaced by i)
evaluate at).= (n, n)th element of O’t) in the LU decompo-
sition ofi)

ng(jw) Cin;
nn

end;
end;

end;

At the end of the algorithm, we get the required frequency response matrix W(jw) at N
desired values of

3.2. Remarks about the algorithm. (1) The triples (A(i), B(i), C/T) are in the special
condensed form described in 2. As shown in that section, only the last element of c/r
is nonzero. As a result, forming (jwkln A(i) + b__ti)c) retains the upper Hessenberg
structure of A(i). Also, the matrix O(,t) differs from () in only its last column. This
enables us to compute the frequency response matrix without actually calculating the
determinants in (3.3), thereby reducing the number of operations.

(2) The LU decomposition of the upper Hessenberg matrix . requires only 1/2n2
floating point operations. Once the lower subdiagonal of is known, subsequent eval-
uations of ,(k’l)nn for all _bt, 1, m, require only nm extra operations.

(3) An error analysis of the LU decomposition of a matrix A with L being a unit
lower bidiagonal matrix yields

LU=A+E

where L and U are exact matrices for a slightly perturbed matrix A. The elements of the
error matrix E satisfy 10], 11

IE0.1 -< mrfl3’ 10-t

where n is the order of the matrix, r is some constant of order unity,/3 is the largest
element of the matrix A, and -y -< 2n- i. Although 2n- appears to be a rapidly growing
function, in practice for upper Hessenberg matrices, large growth factors , are almost
never encountered. Moreover, if the inner products in the LU decomposition are accu-
mulated in double precision, the factor n also disappears. The discussion above does not
permit us to make a strong statement about the stability of the algorithm, but for all
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practical purposes, the results obtained from using the proposed algorithm will, in general,
be very reliable.

(4) The problem of evaluating the frequency response matrix can be divided into
p (= the number of outputs) independent subproblems. Therefore, p processors may be
employed to compute the frequency response. This will reduce the actual time of com-
putation significantly. If, however, only one processor is used and ifthe number ofinputs
is smaller than the number of outputs, then computing the frequency response of the
dual system would enable further reduction in the computational effort. This will become
clear from the operations count given later.

(5) Several excellent techniques for solution ofsparse simultaneous linear equations
exist in the literature. Therefore, if the state matrix of the given system is sparse, it may
be advantageous to consider the original system instead ofits condensed form. Moreover,
if a multiprocessor or an array processor is used, we can employ techniques for parallel
solution of simultaneous linear equations [12].

(6) It is worth mentioning that any technique for efficient evaluation of the deter-
minants of Hessenberg matrices may be used to determine the frequency response, e.g.,
Hyman’s method and its variations [10], [13]. But such methods may run into floating
point overflow/underflow as the value of 0 increases. The proposed method (as well as
the method in [8]) do not suffer from this drawback.

(7) The algorithm proposed above uses complex arithmetic. The use of complex
arithmetic can be avoided by making minor modifications to the algorithm. The real
and imaginary parts can be computed independently as described below.

Consider the given triple (A, B, C); its frequency response matrix can be obtained
by solving

(3.7) (jwI- A)Z B

for Z and then computing

(3.8) G(jw) CZ.

Let Z Z -- jZ2; then equating the real and imaginary parts on both sides of (3.7), we
get

It is easy to see that in (3.9)

(3.10) ZI
1
AZ2

and

(3.11) Z2 -00I((.02I + A2)-IB.

The term (o92) --(o2Iq A2)-IB can be evaluated by applying Algorithm 3.1 to
the system (-A2, B, I). Then, Z1 -A(w2) and Z2 -w((02). Note that only real arith-
metic is used in computing both ZI and Z2. The frequency response is then given by
CZI + jCZ2. Although the above approach uses only real arithmetic, it is important to
note that in forming the matrix A2, a significant amount of information may be lost
for ill-conditioned systems.

(8) In the transformed triples (Ai), Bi), c/r), the matrix A;) is an unreduced upper
Hessenberg matrix and cin 4:0 if and only if A is completely observable from the ith
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output. However, if that is not the case, then A(i) will have a block upper triangular
structure and the system equations may be rewritten as

X2 B2]’
yi=[0 -c/T][ xlIx2

where A22 is an unreduced upper Hessenberg matrix and c/r [0 0 ci,]. The observable
subsystem is (A22, B2, _ciT) and the frequency response is given by

w(j,o) ei j,d A)-.
Since the system being considered now has an order equal to the dimension ofA22, the
computational effort is accordingly reduced.

4. Computational considerations and numerical examples. In this section, we will
first compare the computational requirements for various existing methods for evaluating
frequency response matrices and then illustrate the accuracy of the proposed method by
applying it to determine several frequency response matrices for an ill-conditioned system.

4.1. Operations count. Here we compare the operations count for various efficient
methods for computing frequency response matrices. We consider three methods: (1)
the method in [8], (2) the method proposed in the previous section, and (3) the method
of first computing the transfer function matrix and then evaluating it at various desired
frequencies.

Method in [8]. In this method, matrix A is transformed to an upper Hessenberg
matrix while matrices B and C have no specific structure. An LU decomposition of
(jwI A) is carried out and Z is obtained from UZ L-B, where U and L are, respec-
tively, upper triangular and unit lower bidiagonal matrices. The frequency response
for one value of w is then given by W(jo) CZ. When efficiently implemented, the
above steps together with an initial reduction of A to an upper Hessenberg form and
corresponding transformations on B and C require approximately (5/3)n + (m + p)n2

(real) and (1/2)[(p + 1)n2 + 2nmp]N (complex) operations for N values of w.
Proposed method. The proposed method requires an initial reduction of several

multi-input, single-output systems to a condensed form. This reduction requires ap-
proximately (5/3)(n + rn + 1)n2p (real) operations. For each value of frequency, evalua-
tion of u=(inn in Algorithm 3.1 requires (1/2)rt2 operations and subsequent rn values of .’7(i)nn
for all inputs require a total of nm operations. This is done for each triple (A, B, ci ).
Therefore, W(jo) can be evaluated in approximately (5/3)(m + n + 1)nZp (real) and
(p/2)(n + 2nm) N (complex) floating point operations. Further saving can be achieved
by considering the dual system if p > m, as can be easily seen from the expres-
sion above.

Considering remark (7), we note that the operations count given for Algorithm 3.1
above corresponds to the case when the system is observable from each of the outputs.
However, this is usually not the case when very high order systems are considered. If a
system is not observable from the ith output, the frequency response calculations are
carried out on a lower order subsystem and a significant saving in the computational
effort can be achieved. To illustrate the above point, consider a 40th order system with
5 inputs and 5 outputs and 100 values of frequency. If each of the outputs can observe
only 20 states, the method in [8] requires approximately 2,440,000 "flops" (floating point
operations) compared to 1,213,000 flops required by the proposed method.
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Evaluating the transferfunction matrix. Evaluating a transfer function matrix using
the method proposed in [14] requires approximately (5/3)(n3 + n3)m + 8(n2 + n)mp +
((1/6)n3o + n2o)mp flops. The scalars nc and nco correspond to the dimensions ofcontrollable
and controllable as well as observable subsystems, respectively. Assume that in the example
being considered above, only 20 states are controllable from each ofthe inputs. Further,
let only 15 states be observable from each output. Then, evaluating the transfer function
matrix will require approximately 560,000 flops. Evaluation of frequency response ma-
trices for 100 different values of o will require approximately n2ompN more flops. For
the example under consideration, this is approximately 540,000 flops, giving a total of
1,100,000 flops. Note that this approach becomes extremely efficient if the number N is
very large, because once the transfer function is known, it requires a very small number
of computations for evaluating the frequency response matrix for different values of o.

The above operations counts are approximate figures given for comparison. In prac-
tice, frequency responses may be computed with slightly less or more computational
effort, depending on the controllability and observability properties of the system under
consideration.

4.2. Numerical example. For the purpose ofillustrating the accuracy ofthe proposed
method, we will consider an extremely ill-conditioned, 9th order boiler model [15]. The
frequency response was first calculated in double precision using the proposed method
as well as the method in [8]. The results agreed up to the 15th significant digit. For the
sake of comparison, we shall call the frequency response calculated in double precision
as the "actual" response. Next, the frequency response matrix was obtained in single
precision, using (1) the proposed method, (2) by first evaluating the transfer function
matrix, and (3) using the method in [8], for a selected number of frequencies. The results
for the three methods are shown in Tables 4.1-4.4 for the l, l) element ofthe frequency
response matrix. The underlined digits indicate the accuracy of results for the specified
frequencies using the three methods.

Actual
Proposed
Method [8]
Method [14]

TABLE 4.1
(1,1) element offrequency response matrixfor to 1.

-1.764752693176270d + 02 + 7.363956117630005d + 01i
-1.764752702713013d + 02 + 7.363956117330102d + 01i
-1.764752664566040d + 02 + 7.363956403732300d + 01i
-1.764752655029297d + 02 + 7.363956165313721d + 01i

Actual
Proposed
Method [8]
Method 14]

TABLE 4.2
(1,1) element offrequency response matrixfor to 10.

-2.125151613822383d + 00 + 6.456438212270109d- 02i
-2.125151604413986d + 00 + 6.456437520682812d-02i
-2.125151515007019d + 00 + 6.456438917666674d- 02i
-2.125151574611664d + 00 + 6.456438358873129d-02i

Actual
Proposed
Method [8]
Method 14]

TABLE 4.3
(1,1) element offrequency response matrixfor to 100.

-2.097382268402725d- 02 + 4.376591209620528d- 05i
-2.097382280044258d- 02 + 4.376592733024154d- 05i
-2.097382198553532d- 02 + 4.376593096822035d- 05i
-2.097382233478129d- 02 + 4.376591778054717d- 05i
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TABLE 4.4
(1,1) element offrequency response matrixfor o 1000.

Actual
Proposed
Method [8]
Method 14]

-2.096995310680062d 04 + 4.350784624412990d 08i
-2.096995312967920d- 04 + 4.350783444628803d- 08i
-2.096995267493185d 04 + 4.349920956769893d 08i
-2.096995276588132d 04 + 4.350785731688234d 08i

5. Conclusions. Using a determinant identity, a computationally efficient method
for determining the frequency response matrices of linear multivariable systems given
in state space form was presented. The properties and performance of the proposed
method were compared with those of existing methods.
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ON MINIMIZING THE MAXIMUM EIGENVALUE
OF A SYMMETRIC MATRIX*
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Abstract. An important optimization problem that arises in control is to minimize o(x), the largest eigenvalue
(in magnitude) of a symmetric matrix function of x. If the matrix function is affine, 9(x) is convex. However,
9(x) is not differentiable, since the eigenvalues are not differentiable at points where they coalesce. In this paper
an algorithm that converges to the minimum of 9(x) at a quadratic rate is outlined. Second derivatives are not
required to obtain quadratic convergence in cases where the solution is strongly unique. An important feature
of the algorithm is the ability to split a multiple eigenvalue, if necessary, to obtain a descent direction. In these
respects the new algorithm represents a significant improvement on the first-order methods ofPolak and Wardi
and ofDoyle. The new method has much in common with the recent work ofFletcher on semidefinite constraints
and Friedland, Nocedal, and Overton on inverse eigenvalue problems. Numerical examples are presented.

Key words, nonsmooth optimization, nondifferentiable optimization, convex programming, semidefinite
constraints, minimizing maximum singular value

AMS(MOS) subject classifications. 65F99, 65K10, 90C25

1. Introduction. Many important optimization problems involve eigenvalue con-
straints. For example, in structural engineering we may wish to minimize the cost of
some structure subject to constraints on its natural frequencies. A particularly common
problem, which arises in control engineering, is

(1.1) min qg(x)
XEm

where

(1.2) o(x) max [Xi(A(x))l,
l_i_n

A(x) is a real symmetric n n matrix-valued affine function of x, and

?i(A(x)), 1, n)
are its eigenvalues. Since A(x) is an affine function, it may be written

A(x) Ao + , x,A,.
k=l

The function o(x) is convex, since the largest eigenvalue of a matrix is a convex function
of the matrix elements. An important special case is

(1.3) A ee
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where ek is the kth column of the identity matrix so that

(1.4) A(x) Ao + Diag (x).

Note that the problem of minimizing the maximum singular value of a nonsymmetric
matrix-valued affine function G(x) may be written in the form (1.1) since the eigen-
values of

0 G(x)]G(x)T 0

are (plus and minus) the singular values of G(x). (Undoubtedly savings could be gained
by treating the singular value problem more directly.)

The difficulty in minimizing o(x) is that the function is not differentiable, since the
eigenvalues are not differentiable quantities at points where they coalesce. Furthermore,
we can usually expect the solution to be at a nondifferentiable point, since the minimi-
zation of o(x) will generally drive several eigenvalues to the same minimum value.

In this paper we outline an algorithm that solves (1.1) with an asymptotic quadratic
rate of convergence genetically. Furthermore, second derivatives are not always required
to obtain the quadratic convergence. In order to keep the paper fairly short we will not
give proofs of convergence and we will omit some details of the algorithm, but the main
ideas should be very clear. We believe this is the first time a quadratically convergent
algorithm, or indeed any practical high-accuracy algorithm, has been described for min-
imizing (x). An important feature of the algorithm is the ability to obtain a descent
direction from any point that is not optimal, even if this requires splitting eigenvalues
that are currently equal. (There are exceptions in degenerate cases.) This is also appar-
ently new.

In these respects the algorithm given here represents a significant improvement on
the first-order methods for the same problem described by Polak and Wardi (1982) and
Doyle (1982). The present paper is heavily influenced by two works, Fletcher (1985) and
Friedland, Nocedal, and Overton (1987), to which full acknowledgment is given. Personal
communication with Doyle was also very helpful. Another important early reference is
Cullum, Donath, and Wolfe (1975), who give a first-order method for a related problem.
Undoubtedly a variant of the algorithm given here could be derived for that problem.
Finally, we should not overlook the related structural engineering literature (see Olhoff
and Taylor (1983, p. 1146) for a useful survey).

2. Connections with the work of Fletcher and Friedland, Nocedal, and Overton. The
problem (1.1) may be rewritten as the nondifferentiable constrained optimization problem

(2.1) min w
g,X m

(2.2) s.t. --09 <. ki(A(x)) <. od, 1, n,

or equivalently

(2.3) min
[]q,X m

(2.5) wI + A(x) >= 0
(2.4) s.t. wI- A(x) >= 0,
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where ">=" in (2.4), (2.5) indicates a matrix positive semidefinite constraint. The second
formulation immediately suggests that the work ofFletcher (1985) is applicable. Fletcher
gives a quadratically convergent algorithm to solve

(2.6) max xk
i=

(2.7) s.t. A0- Diag (x) >= 0, x >= 0
and many of the components of his algorithm are therefore applicable to solving
(2.3)-(2.5). However, the algorithm is not directly applicable and there are several reasons
why it is possible to improve on Fletcher’s method in this case. One reason is that Fletcher’s
method solves a sequence of subproblems, each defined by a guess of the nullity of
A0 + Diag (x), until the correct nullity is identified. Such a strategy cannot easily be
extended to the case oftwo (or more) semidefinite constraints. One goal ofour algorithm
is to be able to adjust multiplicity estimates while always obtaining a reduction of o(x)
at each iteration. We are able to do this by computing an eigenvalue-eigenvector factor-
ization of A(x) at each iteration. By contrast, Fletcher’s method uses a block Choleski
factorization ofA0 + Diag (x), together with an exact penalty function to impose (2.7).

Also, because of the special form of (2.6), (2.7), Fletcher’s method does not require
a technique for splitting eigenvalues. In other words, given a matrix A0 + Diag (x),
satisfying (2.7), with nullity t, it cannot be advantageous, in the sense of increasing (2.6),
to reduce the multiplicity t. On the other hand it may be necessary to split a multiple
eigenvalue in our case, and the ability to recognize this situation and obtain an appropriate
descent direction is an important part of our algorithm.

Because we use an eigenvalue factorization of the matrix A(x) at each iterate x, our
method has much in common with the methods described by Friedland, Nocedal, and
Overton (1987). In the latter paper several quadratically convergent methods are given
to solve

(2.8) X(A(x)) 0, 1, t,

(2.9) Xi(A(x)) ti, i= + 1, ..., [

where (o, {ui}) are given distinct values and t, t" (and m, the number of variables) are
appropriately chosen. One of the contributions of that paper was to explain that the
condition (2.8), although apparently only conditions, actually genetically imposes
t(t + 1)/2 linearly independent constraints on the parameter space, and that effective
numerical methods must be based on this consideration. The present paper may be
viewed as generalizing the methods of Friedland, Nocedal, and Overton to solve

(2.10) min
,X [m

(2.11) s.t. X(A(x)) w, 1, ..., t,

(2.12) Xi(A(x)) -oo, n s + 1, n

where, as a product ofthe minimization process, it is established that 0 max (Xl,
with

(2.13) oa= h Xt> kt+ kn-s> kn-s+ kn
We shall subsequently refer to and s as the upper and lower (eigenvalue) multiplicities
of A(x). Note that it is possible that either or s is zero. The following notation will be
useful subsequently: let {ql(x), qn(X)} be any orthonormal set of eigenvectors of
A(x) corresponding to {,i}, and let Q [q, qt], Q2 [qn-s+, qn].
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3. Optimality conditions. As Fletcher points out, it is convenient to initially consider
the variable space to be the set of all n n symmetric matrices {A } and to consider the
positive semidefinite cone

(3.1) K={A]A>-O}.
Define an inner product on the set of symmetric matrices by

(3.2) A:B tr AB aobi.
i,j

The normal cone (Rockafellar (1970)) is defined by

(3.3) OK(A’) {BIA’:B sup A:B}.

Fletcher shows that a very useful expression for OK is

(3.4) OK(A’) {BIB -ZUZr, U Ur, U>= 0}
where the columns of Z span the null space of A’.

Now consider the restricted variable spaces

I;2 (o,x)loI- A(x) >-_ 0;

Iz {(w,x)looI+ A(x) >= O; oo;xm}.
(3.5)

(3.6)

By definition,

(3.7) OI(w’,x’) {(5,d)l(co’,x’)T(O,d) sup (w,x)T(O,d)}.
(,o,x) R

THEOREM 3.1.

(3.8) O/(w’, x’) {0, d)16 B:I; d -B:A,, k 1, m,

B e OK(oo’I- A(x’))}.
Proof The proof is omitted because it is almost identical to the proof of Fletcher’s

Theorem 4.1. Fletcher’s proof essentially covers the special case (1.3). One important
point worth mentioning is that Fletcher’s construction of a feasible arc may require an
augmenting term ae2I in the arc parameterization; in our case this may be absorbed by
the wI term in ooi A(x). V1

We can now state the optimality condition for x to solve (1.1).
THEOREM 3.2. A necessary and sufficient conditionfor x to solve (1.1) is that there

exist matrices U and V of dimension and s s, respectively, with U Ur >_- 0,
V Vr >_- 0, such that

(3.9) tr U+ tr V= 1,

(3.10) (QAQ1):U-(QfAQg_):v=o, k= 1, ,m.

Here t, s, Ql, Q2 are defined by (2.13) and the following remarks.

Proof Because of the equivalence of (1.1) with the convex problem (2.3)-(2.5), the
necessary and sufficient condition for optimality is

+gl+g2=O
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where gl E 0/1 and g2 E 0/(’_ (Rockafellar (1981, Chap. 5)). By Theorem 3.1 we therefore
require

+ tr B1 + tr B2 0,

-B1 :Ak + B2 :Ak 0, k 1, rn

where B - OK(wI A(x)), B2 c: OK(wI + A(x)), w max (Xl(A(x)), -Xn(A(x))). By (3.4)
we have

B -Q1UQ, B2 -Qz VQf

for some U >= 0 and V >_- 0, since Q is a basis for the null space of wI- A(x) and Q2
for wI + A(x). Now as Fletcher points out, U:(ZT;AZ) A:(ZUZ T) for any A
U tt, and Z E nt. (A proof is as follows: U:ZTAZ tr UZrAZ tr Z(UZrA)
(ZUZr):A, where the middle equality holds because tr ZP tr PZ, where Z nt,
p t n.) The theorem is therefore proved.

The matrices U and V in (3.9) and (3.10) play the role of Lagrange multipliers, as
will become clear in the next section. Because the optimality conditions U >_- 0, V >_- 0
are conditions on the matrices as a whole, rather than componentwise conditions, we
call U and V Lagrange matrices (cf. "Lagrange vectors" in Overton (1983)).

4. An algorithm based on successive quadratic programming. As explained by
Friedland, Nocedal, and Overton, a quadratically convergent method for solving the
nondifferentiable system (2.8), (2.9) may be obtained by applying a variant of Newton’s
method to the nonlinear but essentially differentiable system

(4.1) Q(x)rA(x)Q(x) wit,

(4.2) qi(x)TA(x)qi(x) #i, t + 1, {

where the columns of Q(x) are an orthonormal set ofeigenvectors ofA(x) corresponding
to w. Here/t denotes the identity matrix of order t. Let x* satisfy (4.1), (4.2). Note that
(4.1) is independent of the choice of basis for Q(x*). Also note that for points in a
neighbourhood ofx*, A(x) will generally have distinct eigenvalues (with small separation)
and hence Q(x), the matrix of eigenvectors corresponding to the multiple eigenvalue at
x*, will be a well-defined but ill-conditioned function of x which does not converge as
x -- x*. This does not cause any difficulties for the Newton method (see Friedland,
Nocedal, and Overton (1987) for details). In order to obtain quadratic convergence we
need the number of equations, t(t + 1)/2 + (t"- t), to equal the number of variables
(together with a nonsingularity condition). When we differentiate (4.1), (4.2), we find
that the appropriate system of equations to solve at each step of the Newton method is

Q(x)rA(x + d)Q(x) wit,

qi(x)rA(x + d)qi(x) #i, + 1, [

where x is the current iterate and x + d becomes the new iterate. (Although this may
look counterintuitive, note that the left-hand side of (4.2) is simply Xi(x), and hence the
latter equation is consistent with the well-known fact that the derivative of Xi(x) (with
respect to x) is qi(x)rAqi(x). Again, see Friedland, Nocedal, and Overton (1987) for
details.) Since A(x + d) is affine, these equations form a linear system in d. Once x + d
is obtained, an eigenvalue-eigenvector factorization ofA at the new point is required to
be able to start the next iteration.



ON MINIMIZING THE MAXIMUM EIGENVALUE 261

Now consider generalizing this method to solve (2.10)-(2.12), where we assume for
the moment that and s are known. We see that the Newton method should be applied
to the nonlinear problem

(4.3) min w

(4.4) s.t. wi O(x)7A(x)Q(x) o,

(4.5) wls + Qz(x)rA(x)Qz(x) o.

The appropriate subproblem to solve at each step ofthe Newton method is the quadratic
program (QP)

(4.6) min w + 1/2dWd
,d m

(4.7) s.t. wit- Ql(X)rA(x + d)Q(x) O,

(4.8) wls + Qz(x)VA(x + d)Qz(x) 0

where W is a matrix to be specified shortly.
Now define a Lagrangian function for (4.3)-(4.5) by

(4.9) L(w, X, U, V) w- U:(wlt- Q(x)A(x)Q(x)) v:(wI + Q:z(x)A(x)Qz(x))

where U Uv, V Vv. Since (4.7)-(4.8) represent a linearization of (4.4)-(4.5), we see
that the first-order necessary condition for x to solve (4.3)-(4.5), namely Vo,xL 0, is
that there exist symmetric matrices U and V such that (3.9)-(3.10) holdthe same op-
timality condition given in the previous section. (Similarly, if a sequence of QPs (4.6)-
(4.8) has been solved, converging to a solution of(4.3)-(4.5) and hence with d converging
to zero,, the optimality condition of the limiting QP is that there exist U and V such that
(3.9)-(3.10) hold.) The equivalence with the optimality conditions (3.9)-(3.10) is very
important, since it means that the Lagrange matrices required to check the optimality
conditions (3.9), (3.10) may be obtained by solving (4.3)-(4.5), or more specifically, by
solving a sequence ofQPs (4.6)-(4.8). This observation is the same as the one emphasized
by Fletcher and is the essential justification for an algorithm based on successive quadratic
programming (SQP). The key point is that (4.3)-(4.5) is much more tractable than the
original problem. A related point to note is that U and V are not required to be positive
semidefinite for an optimal solution to (4.3)-(4.5), since the constraints are equalities. If
U or V is indefinite, this is an indication that or s is too large and that it is necessary
to split a multiple eigenvalue, as will be explained in 5.

The number of constraints in (4.4), (4.5) is

s(s+ 1)
(4.10)

t(t + 1) .
2 2

If this quantity is equal to rn + (the number of variables in (4.3)), then, genetically,
the constraints themselves are enough to define a unique solution to (4.3)-(4.5) and the
SQP method will have local quadratic convergence regardless of the value of W. In this
case the solution of(1.1) is "strongly unique." If (4.10) is greater than rn + 1, then, except
in degenerate cases, (4.3)-(4.5) will be infeasible. In general we expect (4.10) to be less
than or equal to rn + 1, but we cannot expect equalityfor example, if rn 4, equality
is not possible. If (4.10) is less than rn + the proper choice of the matrix Wis necessary
for the SQP method to converge quadratically. It is clear that W should be set to the
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Hessian, with respect to x, of the Lagrangian function (4.9). It can be shown that this
matrix is given by

(4.11) W= U:G’- V:G
where

(4.12) G’= 2Qt(x)7"A,O__.t(x)(wJt ;kt(x))-’t(x)rAQt(x), 1,2,

and where the columns of Ql(X) consist of all eigenvectors in {q, qn} except those
in Qt(x) (l 1, 2), At(x) is a diagonal matrix whose entries consist of all eigenvalues in
{ k, k,} except those corresponding to Qt(x), and J In-t, J_ -In-s.

Some caution is required in the choice of U and V in (4.11). Since the values of U
and V at the minimum of (4.3)-(4.5) are not known, it is necessary to use Lagrange
matrix estimates. The obvious choice is to use the values obtained from the previous
QP. Unfortunately these are useless, because the eigenvector bases Q(x) and Q2(x) at
the current point will generally have no relation to those at the previous point (although
the range spaces of Q(x) and Q2(x) will converge as x converges to a minimizing point).
Therefore, after Q(x), Q2(x) have been computed, but before solving the QP, it is necessary
to obtain first-order Lagrange matrix estimates by minimizing the 2-norm ofthe residual
of (3.9), (3.10). This does not require a significant amount of extra work since the QR
factorization of the relevant coefficient matrix is needed anyway to solve the QP. (See
Murray and Overton (1980) for some comments on Lagrange multiplier estimates for
minimax problems and Nocedal and Overton (1985) for comments on first- and second-
order Lagrange multiplier estimates.) Alternatively, we could use the Cayley transform
method ("Method III") of Friedland, Nocedal, and Overton, which updates estimates of
the eigenvectors without recomputing them in such a way that even the eigenvector
estimates corresponding to multiple eigenvalues converge. This technique does not impede
quadratic convergence. It would be essential ifwe wanted to use a quasi-Newton method
to approximate the matrix W without computing (4.11), which might be necessary for
large problems. Note again, however, that W is not needed at all if (4.10) equals m + 1,
which may quite often be the case.

We now turn to the important question of how the upper and lower multiplicities
and s are to be determined. These can be effectively obtained dynamically. Suppose

that 1, s 0 initially. If the QP (4.6)-(4.8) were now to be solved, the solution would
very likely reduce the initially largest eigenvalue far below the others. It is therefore
sensible to incorporate into the QP inequality constraints on the other eigenvalues, namely

(4.13) -w <= q]’(x)A(x / d)qi(x) <= w, / <= <= n s.

We may now obtain updated estimates of and s by seeing which constraints are active
at the solution of the QP (4.6)-(4.8), (4.13). A reasonable strategy is to increase by the
number of constraints which are at their upper bound and to increase s by the number
at their lower bound. However, some caution should be used, since if and s become
too large, (4.3)-(4.5) will become infeasible. We therefore also keep more conservative
estimates and which are defined at the beginning of each iteration by

(4.14) o ki(x) <- TOL, 1, t,

(4.15) w + k(x) =< TOL, n + 1, n

assuming that t(t + 1)/2 + (+ 1)/2 -< rn + 1, where 0 o(x) and TOL is a reasonably
small number, e.g., 10-2. If necessary and s are reset to these more conservative values,
as will be explained shortly. However, if and s are always set to/and ginstead ofmaking
use of the active constraint information from the solution of the previous QP, the al-
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gorithm, though reliable, converges much more slowly, since quadratic convergence can-
not take place until the eigenvalue separation is reduced to TOL (unless the solution has
distinct eigenvalues). (A possible alternative approach to accelerating the selection ofthe
correct multiplicity estimates would be to use a special line search as is done in Over-
ton (1983).)

At each iteration we insist that a reduction in w is obtained. Even if t and s have
the correct values defined by (2.13), there is no guarantee that the solution d of (4.6)-
(4.8), (4.13) will give (x + d) < (x). Following Fletcher, we therefore use a "trust
region" strategy, incorporating into the QP bound constraints

(4.16) Idkl <= O, k 1, ..., m
where o is dynamically adjusted. It is clear that if o and TOL are sufficiently small,
then the solution d of the QP (4.6)-(4.8), (4.13), (4.16), with s , will give
(x + d) < p(x) unless d 0.

If TOL 0, t, s and the solution d of the QP is zero, the point x is a
minimum of (4.3)-(4.5). It therefore also solves (1.1) if the Lagrange matrices U and V
are positive semidefinite. If U or V is indefinite then it is both necessary and feasible to
split a multiple eigenvalue to make further progress, as will be explained in 5.

We conclude this section with a summary ofthe algorithm. It requires initial values
for TOL and o and a convergence tolerance e.

ALGORITHM.
0. Given x, evaluate Xi(x) }, qi(x) }. Define/-, by (4.14), (4.15). Set s 5.
1. Solve the QP (4.6)-(4.8), (4.13), (4.16), using first-order Lagrange matrix estimates

to define W. If the QP is infeasible, go to Step 2.2. If Ildll --< e, go to
Step 3.

2. Evaluate { hi(X + d)}. If ,(x + d) < ,(x), then
2.1 Increase and s, respectively, by the number of upper and lower bounds

which are active in (4.13), provided the new values give (4.10) less than or
equal to m + 1. Set x to x + d, evaluate {qi(x)}, and define {, by (4.14),
(4.15). Double O, and go to Step 1.

else
2.2 Reset t, s to . Divide o by two and go to Step 1.

3. If U >= 0 and V >- 0 then
3.1 STOP x is optimal.

else
3.2 Split a multiple eigenvalue and obtain reduction as described in the next

section. Adjust t, k-, t, s accordingly and go to Step 1.

This algorithm has worked well in practice (see the results in 6). Clearly it can be
defeated; in particular, if TOL is not small enough, the QP may be infeasible, and at
present there is no facility for reducing TOL. However, it seems likely that it will form
the basis of a more elaborate algorithm for which global convergence can be guaranteed.
Because (x) is convex, obtaining aglobally convergent algorithm is not difficult; what
is wanted is a globally convergent algorithm for which final quadratic convergence is
guaranteed (given nonsingularity assumptions).

5. Splitting multiple eigenvalues. Consider a simple example. Let m n 2, with

0
A A2(5.1) A= 0 0 -1 K 4
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for some value K. Since A(x) Ao + xlA + x2A2, the only point where A(x) has multiple
eigenvalues is x (0, 0)T, which is therefore a solution of (4.3)-(4.5) with 2, s 0.
If K is large enough, clearly x (0, 0)r is a minimum of (x), since xA + x2A2 is
indefinite for any nonzero x. On the other hand, if K is small enough, A2 is positive
definite, and d (0, 1)r is a descent direction from x (0, 0)r. It is therefore essential
to be able to distinguish between these situations and to find a descent direction if one
exists. It appears that an inability to do this has been one of the major deficiencies of

algorithms previously developed for (1.1) (Doyle (1986)).
In order to check optimality, we introduce the Lagrange matrix U(V is empty since

s 0). The system (3.9), (3.10) is

-1 0 U22 0
-4 - 2U2 0

where we arbitrarily choose Q1 L The solution is

(5.2) U

The optimality condition is U >= 0, i.e.,

5

We now show how to obtain a descent direction if I1 < . The solution is to solve
2

61- dkAk=--#uu r
k=l

where ta is the negative eigenvalue ofU and u is the corresponding eigenvector. This gives,
in the case of K 2.25,

-1

0 0
-4 dl 2.78 10-2

--a: d2

i.e., 6 -3.09 10-3, d (-1.85 10-2, -1.23 10-2)T. Now MA(x + d)) (0.941,
0.997)T so that o(x + d) < o(x) as required. Note that d (0, -1)T is not a descent
direction from x 0 in this case.

More generally, we have the following.
THEOREM 5.1. Let and s be defined by (2.13). Assume x is a minimum of(4.3)-

(4.5), so that (3.9), (3.10) hold for some symmetric matrices U qtt and V ,s.
Suppose that U is indefinite with a negative eigenvalue la and corresponding eigenvector
u. Then if(, d) solves

m

(5.3) Mt- , &QT AeQ, =-iuu T,
k=l

m

(5.4) 6Is + dkQAkQ2 O,
k=l
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we have that d is a descent direction for p(x). Furthermore, tofirst order the multiplicity
is reduced by exactly one along d, and the new set of eigenvectors for i o can be

taken, to first order, as

where the columns of t] are the eigenvectors of U, excluding u.
Remark. Equations (5.3)-(5.4) are genetically solvable if (4.10) is less than or equal

to m + 1. Other cases are degenerate situations for which obtaining a descent direction
is more difficult.

Proof Taking an inner product of U with (5.3) and V with (5.4) and adding them
together we obtain

m

6(tr U+ tr V)+ ] dk(-U:QAkQI + V:QAkQ2) _#2.
k=l

It therefore follows from (3.9), (3.10) that

(5.5) -u2.

Furthermore, for the same reason that (4.7) is a valid linearization of (4.4), (5.3), and
(5.4) show that the constraints (2.4), (2.5) hold to first order along the direction x + ad,
c >- 0 (since the fight-hand sides of (5.3), (5.4) are positive semidefinite). It follows from
(5.5) that d is a descent direction. Finally, the last statement is justified by multiplying
(5.3) by (u,/])T on the left and (u,/]) on the fight, obtaining

bit- , d,(u, r)TQA,Q(u, IQ)= -#

k=l 0

In other words, all eigenvalues but one are reduced by #2 (to first order) while the
other eigenvalue is reduced by #2 #.

More generally still, if U has more than one negative eigenvalue (or U and V both
have negative eigenvalues), we can reduce by more than one (or reduce both and s)
by replacing the fight-hand side of (5.3) (and (5.4)) by a sum of outer products corre-
sponding to the negative eigenvalues. This has an obvious analogy in nonlinear pro-
gramming, where if several Lagrange multipliers are negative at a stationary point we
can move offjust a single constraint (as does the simplex method for linear programming)
or move off several constraints at once. Also, in nonlinear programming we may move
off a constraint before minimizing on the corresponding manifold if the appropriate
Lagrange multiplier estimate is negative. Similarly, we should be able to use Lagrange
matrix estimates to avoid minimizing on the manifold defined by (4.4), (4.5).

6. Numerical examples. The algorithm has been implemented in Fortran and run
on a Pyramid Unix system at Australian National University. Double precision arithmetic
(about 15 decimal digits ofaccuracy) was used. The eigensystems ofA(x) were computed
using EISPACK (Smith et al. (1967)). The QPs were solved using the Stanford package
QPSOL (Gill et al. (1984)).

We give three examples that illustrate the effectiveness ofthe method. The parameters
e and TOL were given the values 10-7 and 10-2, respectively, and the initial trust region
radius 0 was set to 1. The tables shown below have the following meaning. There is one
row in the table for each time a reduction in o(x + d) is obtained, i.e., Step 2.1 is executed.
The values t , t, and s are those holding at the beginning of the iteration, i.e., following
the previous execution of Step 0 or 2.1. The quantity #QPs is the number of QPs that
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had to be solved before obtaining a reduction, i.e., the number of times Step was
executed. Step 3.2 was not executed in any of these examples.

Example 1. This is defined by (5.1) with K 3.
Initial x (1.0, 2.0)r with p(x) 12.32.

Iteration /- g s #QPs o(x + d)

0 0 6.541381
2 0 0 4.817767
3 0 2 0 1.000000

Final x (0.0, 2.0 10-5)T with X(x) (1.0, 1.0)T and

0.8716 -0.1884]U=
-0.1884 0.1284

Comments. Once the correct multiplicities are identified this particular problem is
solved in one step. The reason that U is different from (5.2) is that EISPACK chose a
basis Q 4: L Of course this does not affect the optimality condition.

Example 2. n 3, m 3,

Ao 1.0 0 1.2, A 2 0 A2 0 2, A3 0 0 0
1.1 1.2 0 0 0 0 0 2 2 0

Initial x (1.0, 0.9, 0.8)T with o(x) 7.605.

Iteration /- g s #QPs o(x + d)

0 0 1.616283
2 0 0 1.464941
3 0 2 1.145090
4 2 1.102385
5 2 2 1.101521
6 2 2 1.101520

Final x (-0.1163679, -0.2497934, 1.845989)T with

(x) (1.101520, 1.101520, 1.101520)r

and

U= [6.95 10-4] V=[0.4861 0.0229]0.0229 0.5132

Comments. Note that U is only barely positive definite, so that a small perturbation
to the problem would give an optimal point with ,l < w. As in Example 1, (4.10) equals
m + at the solution, so W is not needed for quadratic convergence, although it may
help to identify and s during the early iterations. Note also that following the first
iteration where the correct multiplicities were used to define the QP, the solution is
correct to two figures.
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Example 3. n= 10, m= 10, Ak=ekeff, k= 1,..., 10, and

0
1.1 0

2.1 0
2 3.1 0
2 3 4.1
2 3 4
2 3 4
2 3 4
2 3 4
2 3 4

0
5.1 0
5 6.1
5 6
5 6
5 6

(transpose)

0
7.1 0
7 8.1
7 8

0
9.1

Initial x (1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1)r with o(x) 38.09.

Iteration /- g s #QPs o(x + d)

0 0 37.08646
2 0 0 35.08646
3 0 0 31.08646
4 0 0 23.30168
5 23.06948
6 0 7 22.57218
7 3 22.55570
8 0 2 2 22.43732
9 0 3 3 22.39628
10 0 3 2 22.37459
11 2 2 22.37020
12 2 2 22.36642
13 2 2 22.36613
14 2 2 22.36612

Final x (-21.25583, -20.58868, -19.24580, -18.60455, -17.22383, -16.63475,
15.18517, 14.74159, 13.05307, 13.46085)r with

X(x) (22.36612, 17.32323, -20.48036, -21.34962, -21.69938,

-22.17358, -22.26831, -22.33351, -22.36612, -22.36612)r

and

0.3445 -5.017 X 10-3]U=[0.5], V=
0-3-5.017 0.1555

Comments. This problem is quite difficult to solve, since at the solution the interior
eigenvalues are nearly equal to n. Indeed, if a larger value of TOL had been used, the
QP probably would have become infeasible making it necessary to reduce TOL. During
the first few iterations, larger improvements were inhibited by the trust region radius,
which was successively doubled. At iteration 5 the QP solution indicated that t, s should
be set to 1, 9, but since this would have made (4.10) greater than m + 1, t and s were
not increased. As a result, seven QPs were required during iteration 6 until the trust
radius was small enough to make progress. Eventually quadratic convergence was obtained
once the correct multiplicities were identified. In this case the second derivative matrix
Wwas essential for quadratic convergence.
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In general we would not expect Step 3.2 to be required. The reason for this is that
when or s is increased to a value >_-2, the iterate x is essentially moving onto a manifold
which has dimension at least two lower than the current constraining manifold. This is
unlikely to happen by accident, but only likely to occur in the course ofmaking progress
towards optimality. However, the ability to split multiple eigenvalues is still important
in case it is needed because of starting at an unfortunate point or in the course of solving
ill-conditioned problems.

7. Final comments. A number of problems in addition to (1.1) may be solved by
related techniques. Clearly it is trivial to extend the algorithm given here to solve

min max max I,/(At)(x))l,
x _l_pl _i_n

where A)(x), AP)(x) are each affine matrix-valued functions, by simply introducing
additional constraints to the QP and corresponding Lagrange matrices. The algorithm
could also be extended to solve more general optimization problems involving constraints
on eigenvalues of various matrix functions. It would be necessary to introduce a penalty
function to measure progress towards the solution. Constraints on interior eigenvalues
could also be included (although these would not be convex).

Finally, it is possible to extend the algorithm to handle nonlinear matrix functions
A(x), although the resulting optimization problem is no longer necessarily convex. The
necessary changes are mainly to replace Ak by OA(x)/Oxk in the derivative formulas, and
to be aware of the need to verify second-order optimality conditions.
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Abstract. A class of transformation matrices, analogous to the Householder matrices, is developed with a
nonorthogonal property designed to permit the efficient deletion of data from least-squares problems. These
matrices, which we term hyperbolic Householder, are shown to effect deletion, or simultaneous addition and
deletion, of data with much less sensitivity to rounding errors than for techniques based on normal equations.
When the addition/deletion sets are large, this numerical robustness is obtained at the expense of only a modest
increase in computations, and when only a relatively small fraction ofthe data set is modified, there is a decrease
in required computations. Two applications to signal processing problems are considered. First, these transfor-
mations are used to obtain a square root algorithm for windowed recursive least-squares filtering. Second, the
transformations are employed to implement the rejection of spurious data from the weight vector estimation
process in an adaptive array.

Key words, hyperbolic transformations, Householder matrices, QR decompositions, Robust Least Squares
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1. Introduction. In this paper, we will present a method by which we can solve a
succession of least-squares problems, where the data sets ofthe successive problems have
some data in common and other data that is different. Our application area is in the
field of adaptive antennas. The solution to an adaptive antenna problem is a vector of
weights such that the energy of interference in a certain weighted sum is minimum. We
must solve this problem in real-time and then solve it again, and again, with newly
observed interference, because the interference is not expected to be stationary. However,
we expect the statistics of the interference to change slowly with time, so each time we
update the solution of the weight vector we reuse a large fraction of the old observations
of interference, bringing in only a few new observations and discarding only a few old
observations. This is an example of an application in which we must solve a succession
of least-squares problems, each involving the deletion of some old data and the insertion
of some new data.

Another type of problem is one in which we solve a certain least-squares problem
with a given data set, then discover that some of the data is, in some way, spurious. We
would like to then resolve the problem with a smaller data set, some of the data deleted,
but making as much use as possible of our earlier work.

The classical method of solving least-squares problems, dating back at least to the
time of Gauss, is the method of normal equations. The coefficients of the normal equa-
tions, called a correlation matrix, are found by averaging certain products of the raw
data, after which the correlation matrix must be inverted. One way to invert the correlation
matrix is to first factor it into the matrix product of two triangular matrices which are
conjugate transposes of one another. The inverses of triangular matrices are easy to
compute. We shall refer to this type of method as the Cholesky/power method. (There
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are many least-squares problems in digital signal processing whose special structure permits
more efficient means of solution. For example, when the normal equations are Toeplitz,
we may solve them by Levinson recursion. In this paper we do not assume any special
structure in the normal equations, but we must alert the reader that when such structure
is present, the methods presented in this paper may be relatively much less valuable,
although they are still applicable.) There are numerical problems associated with the
Cholesky/power method, or with any method which forms the correlation matrix; the
elements of the correlation matrix have twice as much dynamic range as the original
data. The large dynamic range to be expected in the raw data of an adaptive antenna
interference cancellation system is such that it is numerically untenable to work with the
dynamic range of the squared data required in the coefficients of the normal equations.
Instead of forming the normal equations, we prefer to transform the raw problem data
by a series of linear transformations, each of which gives a new data set with the same
normal equations as the original data set. Because the normal equations are unchanged
by the linear transformations, the solution of the least-squares problem is also unchanged.
We ultimately find a data set in the form of a triangular matrix, from which the least-
squares solution can be found by simple methods. This triangular matrix is the same as
the triangular factor of the correlation matrix, found by the Cholesky/power method,
but the numerical problems caused by doubling of dynamic range are avoided.

The allowed linear transformations of raw data may be expressed as the postmul-
tiplication of a raw data matrix by any orthonormal matrix. The Householder matrices
are one class oforthonormal matrices. For any given raw data matrix it is easy to construct
a Householder matrix which transforms the raw data so that the resulting matrix has
zeros in certain positions. Householder transformations are well known in the literature
and have been used extensively for the solution of the least-squares problem [1 ]. The
section of this paper devoted to the definition and application of Householder transfor-
mations ( 2) is therefore essentially review. We show, by simulation, that when we apply
Householder transformations we can get solutions to our realistic antenna problem using
a shorter computer wordlength than we need when we use the conventional approach
via the normal equations. In fact, there is nearly a halving in wordlength with the House-
holder approach. The reduction in wordlength obtained is well worth the associated
doubling (or lesser increase) in computations for many applications.

But if we have already invested computational effort in the solution of a least-
squares problem involving tens or hundreds ofdata vectors, we can appreciate any method
that allows us to reuse old computations to solve a new problem, when we introduce
only a few new data vectors and/or delete only a few old (or unrepresentative) vectors
from the data set. Although it is simple to make the changes in a correlation matrix
equivalent to incorporating new vectors or deleting old vectors, it is not as simple to
make the equivalent changes in the triangular factors described above. Previous workers
have described methods of "updating" triangular factors to reflect the incorporation of
new data vectors, but have only described "downdating" methods which remove the
effect of one vector at a time. It would be convenient to be able to compute a new
triangular factor corresponding to simultaneously bringing in many new data vectors
and deleting many old data vectors. For this purpose, we introduce a class of matrices
which we call hyperbolic Householder matrices.

Consider a composite data matrix which consists ofan "old" (triangular) data matrix
(derived from an earlier problem) to which is appended a matrix of "new" data and
another matrix of "obsolete" data. A hyperbolic Householder matrix describes a linear
transformation which, when applied to this composite data matrix, will give us another
composite data matrix ofthe same type, but with more zero-valued elements. Specifically,
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the new composite matrix, while containing more zeros, preserves unchanged the sum
of the correlation matrix of the initial "old" data matrix and the correlation matrix of
the "new" data matrix minus the correlation matrix ofthe "obsolete" data matrix. After
a series ofsuch transformations, we will have a new composite matrix whose transformed
"new" and "obsolete" data matrices are all zero, and whose nonzero entries are lower
triangular. Therefore, the lower triangular matrix is the desired Cholesky factor for the
updated problem. In the third section of the paper, we explain the mathematics of this
updating, we count up the computations required to implement it, and we study, via
analysis and simulations, its numerical stability. We find that the hyperbolic Householder
approach offers a substantial reduction in wordlength (in comparison to updating the
normal equations directly). Furthermore, in some important cases, the hyperbolic
Householder method offers a reduction in computations as well.

The methods in this paper are all "voltage-domain" methods, in that the doubling
of dynamic range associated with the normal equations is avoided. Such methods are
frequently referred to as "square root" methods since the triangular factor which we
work with is (in some sense) the square root of the original correlation matrix.

Householder matrices are orthonormal matrices. This allows us to put tight bounds
on the amount of error introduced into the original problem by the transformation
matrices. But the hyperbolic Householder matrices are not orthonormal. A numerical
effect analogous to the classical difference-of-large-numbers problem is always a potential
hazard when we attempt to account for the deletion ofdata from a data set. The hyperbolic
Householder approach to data deletion does not necessarily avoid this potentially haz-
ardous numerical effect. However, in the course of constructing the hyperbolic House-
holder matrices, we shall compute intermediate quantities which easily indicate when
these effects are present. We show how to compute the ratio of the largest and smallest
eigenvalues of a hyperbolic Householder matrix from these intermediate quantities. In
turn from these eigenvalues, we develop bounds on the amount of rounding errors in-
troduced into the least-squares solution. These bounds are seldom tight, but simulations
indicate that the bounds are useful in predicting when noticeable quantization error
arises. We present simulations that demonstrate that significantly lower wordlengths give
adequate results when the hyperbolic Householder method is employed in place of up-
dating and downdating the normal equations, even when ill-conditioning arises.

2. Householder transformation matrices and least-squares problems.
2.1. Definition and properties of Householder matrices. Let B be any complex col-

umn vector (with N elements) and let )t denote conjugate transpose. Then BtB is a
real scalar and BB is a square (N N) matrix. Let I be the identity matrix of the same
dimensions. Then

BB
(1) Q:I-2Bt---
is called a Householder (reflection) matrix. Q is Hermitian and orthonormal. If a House-
holder matrix is used to multiply a vector or another matrix, its effect on that vector or
matrix is called a Householder transformation. When any orthonormal matrix premul-
tiplies a column vector, it leaves the energy in the resulting column vector the same as
the energy ofthe original vector. For any given vector U, we can construct a Householder
matrix so that all this energy is compacted into a selected component. We can do this
as follows: Let E be the column vector whose jth component (the component into

A complex matrix which satisfies QtQ I is sometimes referred to as unitary rather than orthonormal.
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which the energy is to be compressed) is unity and whose other components are all zeros.
Then set

(a) =u+E
where

(3)

Then we can show that

(4) QU U- (U + o-Ej)= -o-Ej

as desired. We will (somewhat arbitrarily) choose the plus sign when forming a. Equation
(3) tells us that the complex number a has the angle (argument) of uj and the magnitude
of U.

Taking the conjugate transpose ofboth sides of (4), and noting that Q is Hermitian,
we find that

,(5) UtQ=-o Ej.

We have thus far shown how to construct an orthonormal matrix which, by post-
multiplication, compresses all the energy in a particular row vector into its jth entry. We
now show how such matrices can be employed in the stable solution of least-squares
problems.

2.2. The solution of least-squares problems using Householder transformations.
Suppose we are given raw data in the form of an N Mmatrix X, of complex numbers,
and are then asked to find an "optimum" N-element vector W. The optimization criterion
involves the "outputs" Yn, arranged into a vector Y with M elements, related to W and
Xby

(6) Y’= W’X.

The quantity to be minimized is the sum of the squared magnitudes of the components
of Y

M

(7) o yty YnY*n W’XX’W.
n=l

Generally, there will be some other linear constraints on the choice of W; otherwise we
would clearly choose W (0, 0, 0)t. These linear constraints will take the form

(8) AW=C

for a given matrix A and a given vector C. But we will concentrate on the special case
with only a single constraintmthen A is a single row, Vt, and C becomes a scalar which
we can set to with no loss in generality. The straightforward method of solving this
minimization problem is to introduce a Lagrange variable p and the new function to be
minimized is

(9) d Wt(XXt)W + p(VtW- 1).

The correlation matrix is XXt, which we abbreviate by R. It is the only way in which
the raw dataXenters into the problem. We take derivatives with respect to the components
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ofW and with respect to the Lagrange variable o and we set them to zero, giving us the
set of linear equations

(10) RW + pV 0,

(11) V/W 1.

We solve these equations by setting

(12) W -pR-V

where the unknown p can initially be set to -1 and the resulting solution then can be
scaled using (11).

The above discussion shows that W is the solution (to within a scale factor) of the
equation

( 3) (xx)w v.
If we can find an equivalent set of data, ’, in the sense that its correlation matrix

is the same,

(14) XXt )pt R,

then the same solution vector W would apply; in particular, if has the form of a
triangular matrix, it is then fairly easy to solve (13) because triangular matrices and
)t are fairly easy to invert. Equation (14) also tells us that it is valid to apply certain
linear transformations to the given data X as long as the transformed data, X XQ, has
the same correlation matrix as the original data X,

(15) (XQ)(XQ)t= XQQtXt=XXt= R.

We see that the allowed transformations are the postmultiplication of the raw data
array by any orthonormal matrix. We can build Q as a product ofHouseholder matrices.
To begin, let Q be formed via (1) and (2), withj and U set to the Hermitian transpose
of the first row ofX. Then X XQ has a first row with only one nonzero entry, which
is in the first column.

Note that it is much less expensive to postmultiply X by a Householder matrix Q
than it would be to postmultiply it by a general M M matrix. Consider the following
procedure:

(16) G --XB,

2B
(17) S--

BtB

Then from (1)

(18) X -X-GSt.

The computation ofthe temporary vector G costs only MNcomplex multiplications and
additions (CMADs) plus a square root (see (3)), while the computation of S takes only
aboutMCMADs, plus a single division. The outer product GS costs NMmore complex
multiplications, which are then subtracted from X (except that the M elements of the
first row come for free, which approximately cancels the effort needed to compute S).
Thus, the total CMAD count is about 2NM. By comparison, to multiply X by a general
M M matrix would have required NM2 CMADs (plus whatever other CMADs were
needed to form the M M matrix).
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We next construct a Householder matrix that zeros out all but the first two elements
of the second row ofX1, while leaving the first row intact.

By a series of orthogonal transformations following this pattern, we ultimately find
that the array Xu has the form of an N M lower triangular matrix. In such a matrix,
the last M Ncolumns are, of course, entirely zero. Since any column which is entirely
zero makes no contribution to the correlation matrix, it may be dropped, giving , an
N N lower triangular matrix with the same correlation matrix as the original data
matrix X. A detailed description of this Householder triangulation algorithm is found in
[1, pp. 40, 41, 148]. The solution of the least-squares problem using (12) is now very
easy (without ever finding R), using the fact that

R 22’
and that is easy to invert (or that systems involving ) are easy to solve).

The ith stage of the Householder algorithm, which involves an (N + i)
(M / i) matrix (see (16)-(18)), requires about 2(N + i)(M + i) CMADs,
and thus the full triangulation process requires about N2M- N3/3 CMADs. Solving for
the weight vector W then requires an additional N2 CMADs. This final step, common
to all the methods discussed in this paper, normally represents only a small percentage
of the total CMAD count and is ignored in subsequent cost comparisons.

2.3. Numerical issues in solving linear equations. When we speak of inverting a
matrix, like or R, there are considerations of an algorithmic nature--the order of
multiplication, addition, division, and data movement, and the count of elementary op-
erations needed. But there is a second kind of consideration, the necessary numerical
accuracy, which is related to the wordlength we should use on the processor that performs
the inversion. Ofcourse, on a general purpose computer, it is possible to provide multiple-
precision subroutines and therefore there is no fundamental limitation to the accuracy
with which it is possible to solve a given problem. But in practice, multiple-precision
subroutines are necessarily slow in comparison with the machine instructions for add,
subtract, multiply, and divide, usually slow by a factor much in excess of the ratio in
wordlengths. Thus, double precision will usually take more than twice as long as single
precision. If we were to design a special purpose processor for a specific problem, we
would prefer to design the arithmetic unit with the shortest wordlength consistent with
the fundamental nature of the problem.

What is the minimum wordlength requirement for a specific algorithm? It is well
documented that the minimum wordlength required to invert a square matrix is closely
linked to its eigenvalue spread (see, for instance, [1] and the references therein). We will
not attempt to establish this link rigorously here but will rather motivate it heuristically
by means of a simple example. Suppose we wish to numerically invert the correlation
matrix

(19) I1
The eigenvalues of R are e and 1. If the available precision is insufficient to distinguish
between e and 0 then the stored matrix will be singular and hence noninvertible. We
thus have the bound

(20)
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where max and kmi are, respectively, the largest and smallest eigenvalues of R, and the
notation wordlengthx means the wordlength required to accurately perform task X. We
cannot hope to succeed in solving our least-squares problem with a wordlength violating
(20) if we elect to proceed by explicitly forming R. It would be desirable to have a
wordlength bound directly involving the original data matrix X. Such a bound would be
a fundamental limit in that no algorithm could solve the given least-squares problem
with less precision than this bound dictates. However, X is more likely to be rectangular
than square. Therefore, we may not talk about eigenvalues. For rectangular matrices the
singular values play a role similar to the eigenvalues ofsquare matrices. The representation

(21 X USV

is called the singular value decomposition ofX, where Uand Vare orthonormal matrices
and S is of the form

(22)

s1

$2 Ol forM>=N

with real positive elements s >= $2 SN - O. The s are called singular values. The
singular values ofX are simply related to the eigenvalues of R. R can be expressed as

(23)

But let

R XXt= USVtVStUt= USStUt.

(24) SSt= s A.

s

A is a diagonal matrix with nonnegative elements. Thus

R UAU

is the eigenvalue-eigenvector expansion ofR. This demonstrates that the singular values
of the rectangular data matrix X are simply the positive square roots of the eigenvalues
of the Hermitian positive definite matrix

R XXt.

The concept of "rank" of a rectangular matrix is normally hard to explain, but, given
the singular value decomposition of a matrix, its rank is the same as the number of
nonzero singular values. Now, suppose the largest singular value is (we can always
guarantee this by an appropriate scaling of the matrix). Then, if the smallest singular
value is less than 2-B, where B is the wordlength used to store X, then the matrix X can
appear rank deficient and hence the least-squares equations will generally be unsolvable
([1, p. 19]).

The bound we seek is, therefore, given by

(25) wordlengthnna (XXt)-l given X --- log2

which suggests that a possible factor oftwo savings is available by avoiding the formation
of R.
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Because we will be working with rectangular matrices of data, there should be no
confusion between singular values ofX and eigenvalues of R, because X does not have
eigenvalues. Parenthetically, ifXis square, it has eigenvalues but they are generally different
from its singular values. For a square matrix which is Hermitian and positive definite,
singular values and eigenvalues coincide. We give the example of

-4 6]X=
-6 4

which is square but not Hermitian. The eigenvalues ofX are +_j2 and they have no
significance to our work. The singular values ofX are 2 and 10 and their 5:1 ratio is an
indication of the precision needed to invert X. The correlation matrix ofX is

52 48]R=
48 52

and its eigenvalues are the same as its singular values, namely 4 and 100. The ratio
25:1 is an indication of the precision needed to invert R.

We now consider some numerical examples from an adaptive antenna array problem.

2.4. Adaptive array processing via Householder transformations. The antenna array
structure to which we have applied the Householder method is that ofa sidelobe canceller
(SLC) [2]. We would anticipate similar numerical behavior for other types ofarrays (such
as fully adaptive arrays). An SLC adaptively suppresses interference by forming a weighted
linear combination of the signal from the array’s main beam and signals from a set of
auxiliary beams as shown in Fig. 1. The weights are chosen to minimize the output
power, subject to the constraint that the main beam weight be unity so that the desired
signal (which has negligible power in the auxiliaries) remains intact, while as much of
the interference as possible is eliminated. For this least-squares problem, the constraint
in (11) becomes simply the scalar constraint w 1, and the vector V in (12) becomes
(1,0,0,0, ,0)t.

DESIRED INTERFERENCE SIGNALS
SIGNAL

MAIN IX.,_
CHANNEL "ln

Yn

FIG. 1. A sidelobe canceller adaptive array.
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FIG. 2. Finite wordlength effects ofvarious least-squares algorithms.

We have chosen for illustration a data matrix of dimension N 14 by M 70.
This corresponds to observing interference at 70 sampling instants, on 14 antenna ports
simultaneously. The eigenvalue spread for the correlation matrix R for the simulated
data which we generated was about 73dB (this spread varies with the interference to
receiver-noise ratio).

The loss in output SNR2 as a function of wordlength (in fixed point arithmetic),
averaged over 10 runs, is shown in Fig. 2. We see that the direct inversion ofR (by means
ofthe Cholesky method ]) exhibits a definite threshold phenomenon, with the threshold
located near 25 bits (including the sign bit), as predicted by the bound in (24). Since the
Cholesky method threshold is close to the wordlength bound specified in (20), we could
hope to do no better with any alternate "power domain" method, i.e., one employing
the matrix R directly. The Householder method, in contrast, exhibits a much lower
threshold, around 13 bits, as predicted by the bound in (25). This algorithm thus has
near optimal numerical accuracy, in that no other algorithm can "invert" the data matrix
X using less numerical precision. Also shown in Fig. 2 are two other voltage domain
algorithms with similar numerical performance, the Givens rotation and the modified
Gram-Schmidt [1 ]. The latter of these has been advocated for use in adaptive arrays in
applications where massive computational parallelism is required [3]. Ofthe three voltage
domain methods, the Householder method is the least expensive computationally.

We would like to carry out the Householder transformations using fixed-point arith-
metic. We first give a simple argument which shows that this should not be practical,
then present a way around the problem by means of a simple, fixed, scaling rule.

The essence of the first Householder transformation is to fold all the energy of the
first row ofX into its first element. Therefore, in the worst case, when all elements xln
of the first row ofX are as large (in energy) as possible, IxI,I will be /M times larger. In
any case, Ix ll is /M times as large as the root mean square average of the elements in
the first row of X. Therefore, we certainly cannot avoid the need to provide for some

The loss is referenced to the signal to noise ratio (SNR) obtained when all calculations are performed
with infinite precision. This SNR may be computed by a formula (e.g., [2, (6.8), p. 295]).
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scaling for [x ll. A very similar argument can be made for Ixz221, Ix]3l, etc. of course, two
rows might be very similar to one another, so we should allow for energy concentration
anywhere in the ith column during the ith Householder transformation. However, these
are "final" quantities in the sense that once computed they do not change. Therefore,
we scale by the fixed factor f- prior to storing them. But the columns of the X matrix
to the fight of the ith column are not expected to be magnified by the ith or earlier
Householder transformation. These can be retained as fixed point numbers with the
original scaling. This argument is not rigorous, but there is the support ofthe experimental
results.

We close this section with an operation count comparison for the Householder
and Cholesky approaches. As shown in 2.2, the Householder method requires MN2

N3/3 CMADs. The Cholesky method, in contrast, requires N2M/2 CMADs to com-
pute R from X, and N3/6 CMADs to form the triangular factor of R, for a total of
MN2/2 + N3/6 CMADs. The cost ratio is unity whenM Nand increases monotonically,
gradually approaching 2:1 in favor of the Cholesky method as M gets large. This rise in
computations must be balanced against the attractive factor oftwo savings in wordlength
offered by the Householder approach.

3. Hyperbolic Householder matrices and the updating of least-squares problems.
3.1. Definition and properties of hyperbolic Householder transforms. Let b be a

diagonal matrix with diagonal entries + and -I. Let x be a complex column vector.
We shall call the quantity

(26) xt4x- IxilZckii

the "hyperbolic norm" of x, because hyperbolic functions are often characterized by the
presence of differences of sums of squares.

We shall call any matrix that satisfies

(27) 4nPt= 4
a hypernormal matrix. The justification for this nomenclature is that such matrices pre-
serve the hyperbolic norm of a vector. That is, if yt xt, then Yt4Y xt4x. Generally,
a matrix hypernormal with respect to one 4 matrix will not be hypernormal with respect
to another 4 matrix. Thus, when discussing hypernormality, we must specify the 4 matrix
with respect to which hypernormality has been defined.

We shall call the matrix

2BB
(28) Q=4-

BtbB
a hyperbolic Householder matrix.

LEMMA 1. Q is Hermitian and hypernormal, e.g.,

(29) QckQt=

Proof

QckQt= ck Blab } b b BtbB
BBt 4B(BtckB)Bt= (3th 4 BtqB + (BtbB)2 b.

Matrices of this type have been previously studied by Bunse-Gerstner in connection with computing
eigenvalues 13].
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Notice that if $ /, then Q is an ordinary Householder matrix. Hypernormal
matrices, like their simple counterparts, display a great deal of eigenvalue/eigenvector
structure. We will discuss this structure in Appendix A, and will make use of our results
to establish error bounds. We now show how to construct hyperbolic Householder matrices
that zero all but thejth element ofa given vector U. In 3.2, we see how this construction
immediately allows us to efficiently insert and delete data from least-squares problems.

We seek to find Q satisfying (28), (29) so that

(30) QU aEj.

The construction follows closely that of the ordinary Householder transform as
described in 2.1.

LEMMA 2. a must satisfy the limitation

(31) UtCU 112jj,

Proof Premultiply each side of (30) on the left by , and then on the left again by
the transpose

UtQtckQU a*E)E
and replace QtdpQ by 4, using (29).

In the following, we assume for simplicity that jj 1. This is always the case for
the data deletion/insertion problems that we shall consider. Selecting B U + aE, we
obtain

(32) Q=4-
2($U + aE)(U’4) + a*E)
(Ut(])-- ff*E)(])((])U + o-Ej)"

The denominator equals 2Ut4U + a*uj + ufa, which, again, can be made real by
a suitable choice of phase for a, yielding

(u+ E)(U + *E)
(33) Q=4-

(utu + *u)
with a (+_u/lual)/u*u. Again we elect to use +uj when forming a. Hence,

(34) UtQ -a*E
and we have indeed succeeded in compressing all the hyperbolic energy ofU into its jth
entry by means of a transform satisfying the invariance in (29). Again, the formation
and application of Q requires about 2NM CMADs.

Observe that the structure of this algorithm is identical to that of the conventional
Householder algorithm discussed in 2.1. Consequently, any specialized computer ar-
chitecture that is well suited to the prior algorithm is well suited to the new algorithm.

There is an interesting connection here with the mathematics of relativity theory.
The hyperbolic Householder transforms are a generalization to higher-dimensional com-
plex spaces ofthe four-dimensional real transform known as the Lorentz transform which
arises in the description of spacetime events [5], [6]. The connection derives from the
fact that the Lorentz transformation preserves the Minkowski "norm" of two vectors in
four-dimensional spacetime. Distance in spacetime is defined in terms of differences of
squares, as is the hyperbolic energy which hypernormal matrices preserve.

3.2. Inserting/deleting data with hyperbolic Householder transforms. Suppose we
have transformed a given (N by M) matrix X into a correlation equivalent N Nlower
triangular matrix (whether by Householder transformations or by other means). Then
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suppose we are given additional data, in the form of an N L matrix Y and another
N P matrix Z formed from some of the columns of the original data matrix X. Y is
new data that is added to the problem, and Z is old data which we are deleting from the
problem. The correlation matrix, S, for the restated problem, can be computed from the
three matrices ’, Y, Z

(35) S’-t-4- ryt- ZZt.
Note that if we have formed XXt, the partial sum ZZ was available at some point

and could have been saved. Thus S XX + yyt ZZ and we see some opportunity
to reuse old computations. But since we prefer to use an algorithm that avoids the cor-
relation matrices, it is not so obvious how to make use of the fact that J? is a triangular
factor ofXXt.

Our goal is to find a triangular factor of S. We cannot use Householder matrices
here because they are orthogonal and hence preserve only positive sums, while (35)
contains a difference term. Hyperbolic matrices are, however, well suited for this task.
Let 4 be an (N + L + P) (N + L + P) diagonal matrix, with

1, i<=N+L,
(36) ii--

-1, N+L<i<=N+L+P.

Now form the concatenated matrix C [2IYIZ]. Then

(37) C4)Ct= S.

Furthermore, we may replace C by Cff, where ff is any hypernormal matrix, and we will
leave S invariant

(38) ck)4(k’c) c4c s.
Now, if a p could be found such that Cff was lower triangular, then our goal would

be attained. Such a ff can be built as a product ofN hyperbolic Householder matrices,
each, in succession, used to postmultiply C, introducing zeros into row after row of the
successive products. This results in the following triangulation algorithm.

HYPERBOLIC HOUSEHOLDER TRIANGULATION ALGORITHM. Given , , and Z,
ofdimension N N, N L, and N P, with "lower triangular, the following algorithm
computes the lower triangular factor of S f;f;t + yyt ZZt:

BEGIN: Set C [J?ILIZ], set b as in (36).
For to N

set U (0, ..., O, Cii, O, ..., O, Ci,N/I, Ci,N/2, Ci,N/i+e)
set B U + oEti where a ui/lui[]/UtU
set O 4- 2(BBt/BtB)
set C CQ

Next
END

Then will be the first N columns of C; the remaining M N columns of C will
be 0.

In writing computer code for this algorithm care can and should be taken to avoid
extraneous multiplications and additions by zero. Notice also that multiplication by Q
can be performed economically using a method analogous to (16)-(18).

The th stage in this algorithm requires around 2(L + P + 1)(N- i) CMADs, and
the entire process (L + P + 1)N2 CMADs. In comparison, the direct formation of S via
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(35), and subsequent Cholesky factoring requires about LN2/2 + N3/6 CMADs if ZZt,
the correlation matrix of the set to be deleted, is already available (as in sliding window
updating for array processing) and (L + P)N2/2 + N3/6 CMADs ifZZ must be computed
(as in outlier suppression for robust statistics). For the case (L + P) )) N, the new method
is the more costly in CMADs (by a factor of two). In this case the new method may still
be attractive because of its nice numerical properties (to be discussed in 3.3, 3.4).

For relatively small update/delete sets such as arise in outlier suppression, the hy-
perbolic Householder approach simultaneously offers reduced wordlength needs and less
computation. Specifically the new method is the less costly when

(39) (L + P) < N/3 (for N)) 1).

For small (L + P), a well-known power domain approach employing Woodbury’s
identity (see [1 ], [2]) is more efficient than Cholesky’s method. We show in Appendix B
that hyperbolic Householder transformation is less costly computationally than this ap-
proach whenever L + P > 2. It appears that the hyperbolic Householder approach is
currently the fastest known method for appending/deleting data in least-squares problems
for which (39) is satisfied.

There is a computational savings available if we are continually removing
and adding data to S in a systematic fashion, so that the current Y matrix becomes a Z
matrix at a later time. Such structured updating occurs, for instance, in the sliding rectan-
gular window application described in 3.4. Prior to forming C, form Y, the correla-
tion equivalent lower triangular version of Y. Y can now be replaced by I? in (35) since
they have the same correlation, and Z can be replaced by its triangular version 2,
formed from an earlier Y. For L > N the ith stage in the algorithm now requires only
(4i + 2)(N + i) CMADs and the total cost is LN + N3/3, double that of the
Cholesky approach. When L < N, the savings of the pretriangulation approach is even
greaterif L < N/6, the hyperbolic Householder approach with pretriangulation uses
fewer operations than the Cholesky method. Detailed comparisons are found in 3.4.

There are at least two published algorithms for deleting (or appending and deleting)
data from least-squares problems which are related, albeit remotely, to the hyperbolic
Householder transformation method described here. These methods can delete only one
element at a time, rather than an entire row.

The first of these, found in [4], employs Givens rotations to remove a single column
of real data. The trick is to replace a real column vector x by y jx, so that yy’ -xx’
where denotes the ordinary transpose without conjugation. We can then employ the
complex version of the Givens rotations to rotate ’]y into a triangular matrix, which
effectively rotates x out. If the data is already complex, the clever trick no longer works,
since in this case, the correlation matrix is formed by conjugate transposition and mul-
tiplication of x by j no longer has any effect on the outer product xxt. Furthermore,
because Givens rotations are employed rather than Householder reflections, the cost of
this approach is higher (by about a factor of two) when more than one column needs to
be added or removed.

The second algorithm is described in [1 ]. This algorithm works on a single column
basis as well. The entire set of orthonormal matrices employed to construct the initial
triangular factor X is required for this method and the computational cost is high. It
does, however, extend to the Complex case without significant difficulty.

The above techniques proceed by restructuring the deletion problem so that con-
ventional orthonormal matrices can be employed. But orthonormality is not the mean-
ingful invariant for the deletion problem. By introducing matrices that preserve a mean-
ingful invariant, we are able to significantly reduce the computational cost of "voltage
domain" data append/delete operations.
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3.3. Numerical issues in data deletion. The numerical precision required in solving
the least-squares problem in (10), (11) is accurately predicted by the eigenvalue spread
of the correlation matrix R. The precision requirement for the data deletion task is not
as easily ascertained. We must be concerned, of course, about the condition of the cor-
relation matrix before updating and about the condition of the correlation matrix after
updating, but we must also be concerned about the numerical stability of the transfor-
mation from one correlation matrix to the other, even if both correlation matrices are
well conditioned. The difference term in (35) can lead to ill-conditioning if, for example,
two relatively large nearly equal numbers are encountered.4 This differencing problem
is not eliminated by the voltage domain route. However, the lack of dynamic range
doubling does lessen the severity of the ill-conditioning. By monitoring the hyperbolic
Householder matrices, we can be alerted to potential numerical problems. Matrix norms
are useful for bounding numerical errors. The (L2) norm of a matrix is defined as

llAx[I)(40) IIAll max
I[xll Ilxll 0

where I[" is the standard (Euclidean) norm of a vector. We wish to compute

(41) =ca.
Instead we obtain

(42) t+ eout (C+ ein)Q

where out is the output error matrix and ein is the effective equivalent input error matrix.
The computation in (42) is unstable if [leinll/lleoutll is large since this would mean the
effective input matrix changes significantly even for a small output error. Likewise (41)
is unstable if ]leoutll/lleinll is large since this implies a large change in the output for small
perturbations on the input. Thus we obtain the following index of numerical stability:

[[t:inl[ II$outl[ )max
I[eoutll’ IIt:inll

Note that K >= 1. The L2 norm of a matrix equals the eigenvalue of maximum absolute
value ], i.e.,

(44) IIA max

This norm also satisfies the inequality

(45) [IABII IIAII Ilnll
for any square matrix pair A, B [1 ]. From (41), (42) we have

Hence from (45)

(46) ou, Q in II, t:in ou Q-all.

From (43), (44), (46) we find

(47) max (11 Q-Ill, Q[1) >- .
The small difference of large numbers syndrome can be generalized to the case of a nearly rank-deficient

matrix difference of large matrices.
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For conventional Householder matrices, kma )kmin and so - K 1. Since the
stability index K can never be less than unity (as can be seen from (43)), Householder
matrices possess maximum numerical stability. We find, in Appendix A, that for any
hyperbolic Householder matrix,

BtB
(48) z [kmax] ]l/kmin] ’-I- ]/-2_ where ’- BtbB"

The quantity B/bB is automatically computed while constructing Q. We can obtain
BtB alongside BtbB by means of one extra addition. Thus " is found using a single
division, and r with an additional square root and two additions. Observe that 7- is
monotonically related to ’. We can thus simply monitor ’, and deem Q as ill-conditioned
if a specified threshold is exceeded. The parameter " is the ratio of the conventional
energy to the hyperbolic "energy" in B. In practice we have found the bound to be a
loose one, although it does reveal ill-conditioning when it arises. This is illustrated by
the numerical example considered later.

Numerical issues ofdata deletion for the related problem ofimplementing hyperbolic
Givens transformations are discussed in [14].

3.4. Square root recursive updating of the adaptive array problem. The weight vector
in the adaptive array problem described in 2.4 needs to be updated regularly to accom-
modate temporal variations in the interference. This involves solving a new least-squares
problem at each update. However, there is a computational savings available by making
use of prior work on each update. Algorithms that exploit this potential savings are
collectively referred to as recursive least-squares (RLS) algorithms [2], [7]-[9].

The adaptive SLC array considered here consists of auxiliary elements whose outputs
are weighted and summed together. As such it is a multichannel system, but of zero
order. If tapped delay lines are employed in lieu of simple weights, then we would have
a multichannel transversal filter. Fast RLS algorithms exist for these structures [7]-[9],
but they all explicitly form a correlation matrix update and hence suffer from dynamic
range doubling. The authors are currently investigating the applicability ofthe hyperbolic
Householder transformation to multichannel RLS.

Any updating scheme implies a window on the effective correlation matrix. A natural
window choice is a sliding rectangular window. This and other window types are discussed
in [9]. In this section a voltage domain algorithm (or square root algorithm) for imple-
menting a sliding rectangular window RLS is developed and its application to a SLC
adaptive array is demonstrated.

If data is appended but never deleted from the RLS problem (such as when an
exponential or growing rectangular window is employed [7], [8]) then traditional House-
holder techniques can be employed to construct a square root RLS algorithm. Details of
this approach can be found in [4, Chap. 27].

The difficulty with constructing a square root implementation ofRLS with a sliding
rectangular window lies in the need to subtract as well as add data in the square root
domain. Once this has been accomplished it is a simple matter to implement any desired
window in the square root domain.

The RLS problem we wish to study is described as follows. Suppose we have a
sequence ofcolumn vectors Xi. From these Xi we seek to construct the following sequence
of weight vectors:

(49) Wi R-V, 1,2,

(50) Ri=Cor ([XilX/-11 [X/-N+ 1])
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where Cor (.) is the matrix correlation function, i.e., Cor (.) (.)(.)t. The vector V
depends on the constraints imposed on the array. For an SLC, V E. This yields,
within a scale factor, the weight vector for the adaptive array described in 2.4. The
weight vector sequence in (49) can be readily modified, if necessary, to accommodate
least-squares problems with multiple constraints as described by (7), (8).

Equation (50) establishes a sliding rectangular window of length N. Other window
types are similarly derived by selecting a different definition for R. For example, a growing
exponential window with gain a is defined by

(51) R;- for ([X/IrgXi_ II Oi- 2X2]0i- IXl]), 1,2, ....
We are interested in the general case of updating a rectangular windowed R after

every Kth sample. Updating less often than on a sample by sample basis reduces com-
putations and is generally permissible in many interference suppression applications
[9]. If only every Kth weight vector is needed, the correlation matrix updating is then
given by

(52) Re-- R K -- Yi Y Yi N YI N,

where Yi [Xi IXi- ]Xi_ K+I].
Let the triangular factorization of Ri be LL. The square root algorithm bypasses

the formation of the Ri by recursing on the triangular factors L, using

(53) /= n([xilxi-

(54) Li H4,(Li_ I,:I iI i_ N)

where H(. denotes ordinary Householder triangulation, and Ho(. denotes the hyperbolic
Householder triangulation .process as described by the algorithm in 3.2. The above
recursion remains effective if pretriangulation, as effected by the H(. operation in (53),
is omitted. The purpose of this operation is that it saves computations.

Let us consider the computational cost of implementing (53), (54). Two distinct
cases arise, depending on which of K and N is largest. When K > N, the cost of pretri-
angulation (53) in CMADs is KN2 N3/3. The cost of effecting the ith stage of (54) is
2(2i + 1)(N- i), giving 2(N3/3) for all stages. The total cost is then N2 + N3/3. This is
double the cost of a direct Cholesky approach. The Cholesky method benefits from the
fact that the correlation matrix ofthe data to be deleted is already available to be removed
from the previous correlation matrix at a cost of only N2 subtractions.

When K < N, the cost ofpretriangulating is NK2 K3/3. The data matrix in (54)
is taller than it is wide. Consequently, in the resulting lower triangular matrix the last
N- Krows will not contain zeroed elements. The cost of(54) is then 2(K3/3) (for the up-
per K rows of the triangular matrix) plus 2K(N K)2 (for the last lower N K rows).
The net cost is then K3/3 at NK2 + 2K(N- K)2. This is less than the Cholesky method
for (approximately) K < N/6.

The pretriangular approach is also amenable to parallel processing.
A numerical comparison is offered in Fig. 3. The same array described earlier is

used with an update size of K N 14. The numerically well-conditioned case corre-
sponds to a stationary interference environment, with an eigenvalue spread of 73dB. The
hyperbolic Householder method is seen to require slightly more than halfthe wordlength
required by the direct correlation updating method. The ill-conditioned case corresponds
to an abrupt change in interference, resulting from the disappearance ofthe largest source
of interference (other sources remain, however), so the eigenvalue spread of the updated
correlation matrix is now reduced, to 56dB. Parenthetically, abrupt nonstationarity does
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FIG. 3. Finite wordlength effects for the hyperbolic Householder and Cholesky updating algorithms.

not always lead to numerical problems--it does so only if it produces the small-difference-
of-large-numbers syndrome. Ill-conditioning is found to increase the wordlength needs
for both methods, although avoiding the formation ofR still leads to a significant savings
in bits (about 9 bits in the example).

The maximum observed condition number r for the hyperbolic matrices employed
in the stationary case was 7.2, using a 16-bit computation. The condition numbers in
the nonstationary case increased noticeably; the largest one became 1119. Condition
numbers as high as 10 have been found in cases where no significant performance loss,
induced by finite wordlength, was observed. These results suggest that the parameter is
a strong indicator of numerical instability. However the "detection threshold" should be
chosen to be rather high, exceeding at least 10.

Although we can use hyperbolic Householder transformations to effect updates under
a rectangular window, we do not mean to suggest that this process can be carried on
indefinitely. By analogy to the simple recursion y, y_ + Xn Xn-K, we would expect
small computational errors to accumulate from one iteration to the next. For the data
ofFig. 3, showing one iteration’s result, we have also experimented with multiple iterations.
We could see some performance loss after tens of iterations, but with 16 bits this loss
was much less than dB after 40 iterations, the limit of our experiments.

3.5. Rejecting outliers using hyperbolic Householder matrices. There is a broader
class of problems for which we expect hyperbolic Householder transformations to be
ideally suited. In least-squares estimation problems we might encounter samples grossly
unrepresentative ofthe data as a whole, such as data incorrectly measured or transmitted.
Spurious data, although perhaps difficult to detect directly, often manifests itself as an
outlier in the residual. A variety of techniques have been developed for outlier discrim-
ination [10]. Once identified the spurious data can be removed and the least-squares
problem resolved with the reduced data set. This iterative least-squares technique has
been successfully employed in many applications including the construction of robust
all-pole models in spectral estimation [11], [12]. We now see that hyperbolic Householder
transformations greatly streamline the re-solution process.

An SLC adaptive array problem is again chosen to illustrate this approach. The
interference and the array structure are as described in 2.4, except that now there is an
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occasional additional source of interference (a "blinking" source) that is only rarely
present. This blinking source, although present infrequently, can significantly hinder the
ability of the antenna to null the steady state interference. This is particularly true if the
degrees of freedom in the adaptive array are all required in cancelling the steady state
interference so that no further freedom is left to counter the blinking noise source. This
is illustrated by Fig. 4. This curve displays the residual output of the adaptive array. The
interference-to-receiver-noise ratio is 50dB for both the stationary and the blinking in-
terference. Thus we would expect to achieve nearly a 50dB suppression of interference
at the array output under ideal conditions. The sample correlation matrix used to form
the nulling weight vector was formed from 100 sample vectors. Three of these sample
vectors contain the blinking interference source. The residual is formed from applying
the nulling weights to these 100 sample vectors. The three nulled spurious samples are
indicated by arrows. As expected they are not well nulled. More significantly, the non-
spurious steady state samples are likewise poorly nulled. In fact, the average interference
suppression is only 13dB, well below the 47dB suppression obtained with no spurious
samples. This is because the spurious samples corrupt the correlation matrix, and con-
sequently the weight vector used to form the residual.

A simple and effective method for avoiding this effect is to reject from the correlation
estimate samples that produce large residuals. A rejection threshold must be selected.
We chose a threshold of two residual standard deviations. This resulted in all three
spurious samples being correctly removed, along with a fourth, good sample. A new
weight vector was now computed from the modified correlation matrix. The resulting
residual was now much smaller, with a resulting suppression of 47dB. When 100 new
samples are nulled with this same weight vector, the 47dB of noise cancellation is still
observed.

The above outlier removal technique is well known. More sophisticated schemes
are discussed in [10]-[ 12]. Many of these schemes proceed by monitoring the residual
and recomputing a least-squares fit after the undesirable data has been identified and
rejected. Hyperbolic Householder matrices are ideally suited for implementing this pro-
cedure, regardless of the scheme employed to identify the bad data. For the above example
this approach required 16 bits, as opposed to 26 bits for a direct Cholesky factorization

TIME SAMPLE lO0

ROBUST LEAST
SQUARES

DIRECT LEAST
SQUARES

FIG. 4. The effects ofoutlier removal on the least-squares residual. The three arrows indicate spurious data.
Thefour circles indicate rejected samples. The robust least-squares residual is formedfrom resolving the least-
squares equations with the rejected samples removed.
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approach. There is a computational savings as well. In fact (see (39)) there is a compu-
tational savings whenever the number of rejected samples does not exceed N/3.

The above algorithm, including Householder based solution of the initial least-
squares problem, is described as follows.

ROBUST LEAST-SQUARES VIA HYPERBOLIC HOUSEHOLDER TRANSFORMATIONS.
Given an N parameter linear estimation problem with M sample (data) vectors the fol-
lowing algorithm will compute the robust least-squares solution using a rejection rule of
two standard deviations:

L H([Xi, ..., XM])
W (LLt)-V
e’ W[x,I Ix,]

2(/M)
t=O
For to M

If lei[ > r then
t=t+l
Yt Xiz H(L.[IY, I...

(LU)-’
Next

Here e is the vector of residuals, is the threshold, and is the resulting robust
least-squares estimate. This algorithm is extendible to the case of multiple constraints.
Notice that no data is added to L in forming/. Thus the Y in (35) is absent. The 0
matrix, of size (M + t) X (M + t), has diagonal entries

1, i<=M,
4ii=

-1, M<i<=M+ t.

The hyperbolic Householder transforms are applicable to the problem of removing
outliers from any linear least-squares problem. However, if the correlation matrix has
special structure (such as Hankel or Toeplitz) then direct correlation methods, which
can exploit this structure to a computational advantage, may be preferred.

4. Summary. We have defined a class of matrices, the hypernormal matrices, so
named because they leave the hyperbolic "norm" of a vector invariant. A matrix from
this class (hyperbolic Householder) can always be constructed that zeros all but one
element of a specified vector. This construction provides the means for stable and efficient
deletion/addition of data from least-squares problems.

The primary motive behind pursuing this method of updating was its lessened sen-
sitivity to rounding errors compared to conventional techniques. When the addition/
deletion sets are large, this numerical robustness is obtained at the expense of a small
increase in computations. However, when a relatively small fraction of the data set is
modified, this method has the added advantage of reduced computations. Since the hy-
perbolic Householder algorithm has the same structure as its conventional counterpart,
parallel matrix processing schemes, such as systolic arrays, can be readily employed to
implement it.

Two applications to signal processing problems were considered. In both cases sim-
ulations validated the enhanced numerical robustness offered by the new transforms.
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Appendix A. The spectral theory of hypernormal matrices. This Appendix addresses
the eigenvalue/eigenvector structure of hyperbolic Householder and hypernormal ma-
trices. The following lemmas will be required.

LEMMA 1. is always nonsingular.
Proof. Take determinants on both sides of (27):

(A1) det (if) det (b) det (1//t) det ().

Det () is nonzero (in fact, it equals __+ 1). Dividing both sides of (A1) by this quantity
gives det (k) det (fit) 1. Since the determinant is unaltered by matrix transposition, it
follows that Idet (ff)l 1. Hence k has a nonzero determinant and is thus nonsingular.

LEMMA 2. , although generally not symmetric, always satisfies "hyperbolic sym-
metry," i.e.,

(A2) pt4@ p4@ t.

Proofs.
1. :;
2. ff ; 1;
3. (fffft)ff if; fffft by (27);
4. ff(fftff) if; associative law;
5. t ; premultiply 4. by ff-t;
6. fftff fffft; by (27).
THEOREM 1. The eigenvalues ofa hypernormal matrix occur in conjugate reciprocal

pairs, i.e., if h is an eigenvalue, then so is l/X*. Furthermore, the order of equals the
order of 1/*.

Proof Let V be an eigenvector of ft. Then

(A3) (- M)V 0.

Multiply by 6t$. Then from (A3), (27) we have that

or

which upon transposition yields

(4, Xtr)V 0

(v) (v)/x

(A4) (4}V)tp (bV)t/X*.

Hence, l/X* is an eigenvalue of. Notice that (4V) is a row eigenvector of.
Now, suppose that X has multiplicity k. Two cases arise depending on whether or

not its corresponding eigenvectors are linearly independent.
For linearly independent eigenvectors, we can easily establish that 3, and 1/X* have

equal multiplicity. Indeed, let V, Vk be linearly independent eigenvectors with the
eigenvalue X. Then from (A4), (4V)/, ($Vk) are row eigenvectors of l/X*, that
(since b is square and invertible) are all linearly independent. Reversing the roles of
X, Vi, and l/X*, 4Vi, we find that X and l/X* both must have a multiplicity of exactly k.

The degenerate case of dependent eigenvalues easily Follows in a similar fashion. If
X has an order k degeneracy, then there are generalized eigenvectors satisfying

(Q- XI)i- Ivi :# 0,

(Q- XI)iVi 0, i=l,...,k.
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We can make the substitution U (Q hi)i- IV/whereupon the proof for the non-
degenerate case can be applied.

We now consider the eigenvalue structure of the hyperbolic Householder matrices,
defined by (28).

LEMMA 3. Let ch be a diagonal N N matrix, with k diagonal elements that are
-1, and N- k diagonal elements that are unity. Then any matrix Q given by (28) has
at least N- (k + 1) eigenvalues equal to 1, and at least k eigenvalues equal to -1.
(This accountsfor all but possibly 2 eigenvalues.)

Proof Let Z Q I I 2BB//Bt4B. b I is a diagonal matrix of rank k.
Since BW is an outer product of a vector, it has unit rank. Since Z is a sum of a
rank k matrix and a rank one matrix, it has a rank of at most k + 1, producing an
(N-(k + 1))th order root at X in the characteristic polynomial det [Q-XI[.
Hence, is a multiple eigenvalue of Q with the specified multiplicity. By replacing
I by -I in the above argument, we likewise find that at least k eigenvalues of Q
are at 1.

Q is Hermitian, and thus has real eigenvalues [5]. From Theorem 1, the remaining
two eigenvalues are thus reciprocals. The two eigenvalues we seek must solve the
characteristic polynomial det ((Q XI)(Q x-I)) 0. Let r -[X + h-l]. Then
we can rewrite this as det ((Q + rI)Q + I)= 0. The required r is easily seen to be
r 2B/B/BtbB. Upon solving for , we establish the following theorem.

THEOREM 2. Q has (N- (k + 1)) of its eigenvalues at 1, k at -1, and the
remaining two at

X =-+ /2_ with ’=
BtB
B/thB"

Many of the above lemmas and theorems are natural extensions of well-known
properties of orthonormal and Householder matrices. There is, however, one crucial
property that hypernormal matrices do not share with their orthonormal counterparts.
Unlike orthonormal matrices, hypernormal matrices do not always possess a complete
set of linearly independent eigenvectors. Indeed, consider the matrix

which is hypernormal with respect to

The only eigenvector of is, to within a scale factor, (1, exp (j(Tr/4))t.

Appendix B. Woodbury’s identity and least-squares updating. In this Appendix the
computational cost of the Woodbury method of updating is compared to the voltage
domain techniques considered in this paper. Bear in mind that the Woodbury identity
requires explicit evaluation ofthe inverse ofthe correlation matrix R. Hence like Cholesky
factoring it is subject to dynamic range doubling, with the attendant poor numerical
properties.

Woodbury’s identity is a useful tool for finding the inverse ofa matrix that has been
modified in some minor fashion. For our purposes the following version of this identity
will be needed:

R-IVVtR-1

(B 1) (R -+- VVt)-1 g-1

_+ VtR-1V
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The validity of (B 1) is easily established by multiplying both sides by the inverse of
the left-hand side. This gives

V( + VtR-IV)VtR-1
I.I I+ VVtR-1

V/R-1V

It requires about 3N2/2 CMADs to compute (R VVt)-1 given R-l. Thus to update
R- by adding L new vectors and deleting P old vectors requires 3(L + p)N2/2 CMADs.
The hyperbolic Householder approach requires (L + P + 1)Nz CMADs which is less
whenever L + P > 2 (when L + P 2 the methods have equal cost).

Acknowledgment. We wish to thank Robert Plemmons of North Carolina State
University for providing us with reference [13].
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NUMERICAL SOLUTION OF THE EIGENVALUE PROBLEM FOR
SYMMETRIC RATIONALLY GENERATED TOEPLITZ MATRICES*
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Abstract. A numerical method is proposed for finding all eigenvalues of symmetric Toeplitz matrices
Tn (tj-i)i= l, where the tj} are the coefficients in a Laurent expansion of a rational function. Matrices of this
kind occur, for example, as covariance matrices of ARMA processes. The technique rests on a representation
of the characteristic polynomial as det (Mn T) WGoG in which Gon() 0 for the eigenvalues of T
associated with symmetric eigenvectors, Gl(,) 0 for those associated with skew-symmetric eigenvectors, both
functions are free of extreme variations, and both can be computed with cost independent of n. It is proposed
that root finding techniques be used to compute the zeros of Gon and Gt. Numerical experiments indicate that
the method may be useful.

Key words. Toeplitz, rationally generated, eigenvalue, eigenvector
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1. Introduction. Let

A(z) ao + a z + + aqZq

P

C(z): E cz,

where ao, au and c_p, Co, c1 are real, cj c_j(1 <= j <- p), auc, :/: O, and
A(z) has no zeros in [zl --< 1. Then the rational function

C(z)
T(z)

A(z)A(1/z)

has a convergent Laurent expansion

(1) T(z)= Z tjzj

j-----

(with tj t_j) in an open annulus containing Izl 1.
Here we propose a numerical method for determining the eigenvalues of the sym-

metric Toeplitz matrices

Zn--(tj_/)/n
Matrices of this kind occur, for example, as covariance matrices ofwide-sense stationary
autoregressive-moving average time series. (In this setting, C(z) B(z)B(1/z), with
B(z) bo + bl z + + bpzP.) This is a preliminary report in that further numerical
experimentation is required to ascertain whether the method works well for large
values of

(2) m max (p, q);
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however, computations already performed with m 1, 2, and 3 indicate that the method
can be used very successfully to obtain all eigenvalues of Tn at a cost per eigenvalue
which depends essentially only on m and is independent of n.

The asymptotic distribution ofthe eigenvalues of sequences of Toeplitz matrices Tn
associated with a convergent Laurent series has been studied extensively. (See, e.g., [8],
13], 19], [20]; there are many other references.) Recently there have been several papers
on the spectral structure of symmetric Toeplitz matrices (e.g., [2]-[4], [6], [9]-[ 11 ], 15],
[16]); however, little has been published on methods for computing the eigenvalues of
Toeplitz matrices by methods specifically designed to exploit their simple structure (e.g.,
[2], [5], [7], [12], [14]). To the author’s knowledge, nothing ofthis kind has been published
for rationally generated symmetric Toeplitz matrices, except for the papers of Bini and
Capovani [2] and Katai and Rahmy [14], both of which deal only with the case where
A(z) 1, so that Tn is banded if n > q.

Although it is generally agreed that applying root finding techniques to locate the
zeros of its characteristic polynomial is not a good way to find the eigenvalues of a high-
order matrix, we believe that this is a viable method for the matrices that we are consid-
ering. In order to demonstrate this, we need a theorem proved in [18].

Let O_q, Oq be defined by
q

(3) A(z)A(1/z) Oz

and define

cj=0 ifljl >p, 0.=0
Let r0, r, be the Chebyshev polynomials, i.e.,

(4) rn(cos t)= cos nt.

Finally, let

pn(X) det [In- Tn]

be the characteristic polynomial of T,, and define

ifljl>q.

q

(5) Crn("y) aj cos (n + 2r-- 2j-- 1)’y
j=0

and
q

(6) Srn(’y) aj sin (n + 2r- 2j- 1)3’.
j=0

Our approach is based on the following theorem, which is proved in [18].
THEOREM 1. Let be such that Cm kOm 4:0 and the polynomial

m

(7) P(w; X) Co- 0o + 2 (c- XO)-(w)
j=l

has m distinct zeros w, ..., Wm such that

(8) wl or-l, sm,
and let

(9) =cos Ws, 0 < Re (s)<2"
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Then

(10) pn(k)-- gn(C kOm)nFon()Fln(),

where Kn is a constant,

(11) Fon(k
mdet rn("Ys)]r,s

det [cos (2r- 1)’Ys]r,ms
and

(12) Fln(k)--
det [Srn(’s)]r,ms

det [sin (2r- 1)’Ys]mr,s=

Moreover, ifFin(X) 0 (l 0 or 1), then Tn has a X-eigenvector

U=[u,

such that

(13) bln_ + (--1)lzgi, <= <= n.

We will follow Cantoni and Butler [3] and say that U is symmetric if (13) holds
with 0, or skew-symmetric if (13) holds with 1. In [3] it is shown that if Tn is an
n n real symmetric Toeplitz matrix, then R has an orthonormal basis consisting of
n [n/2] symmetric and [n/2] skew-symmetric eigenvectors of Tn. (Here [x] is the integer
part ofx.) For convenience we will say that the even spectrum of T, consists ofeigenvalues
with associated symmetric eigenvectors, while the odd spectrum consists of eigenvalues
with associated skew-symmetric eigenvectors.

Finding the zeros of P(z; ) for a given X is a nontrivial but tractable (particularly
for =< m =< 4) problem. Therefore, (10), (11), and (12) in principle provide a means for
computing p,(X) for a given X, with computational cost independent of n, which enters
into them only as a parameter. Nevertheless, it is clearly impractical to apply root finding
techniques directly to Pn() if n is large, simply because a polynomial of high degree can
assume tremendous values between its zeros. Fortunately, Theorem provides a way to
overcome this difficulty. We will use Theorem to obtain simpler functions which can
be evaluated for a given with computational cost independent of n, have the same
zeros as Fon() and FI,(X), and do not vary wildly between their zeros. Root finding
techniques can be successfully applied to these functions.

Ifm in (2), our approach reduces the eigenvalue problem to routine computations
and solves it completely (in the numerical sense). We will therefore consider this case
separately in 2. However, some general comments are in order first.

Let

C(eit)
(14) f(t)

A(eit)A(e_it
-Tr < < r.

Thenfis real-valued, andf(t) --f(-t); moreover, (3), (4), (7), and (14) imply the identity

(15) P(cos t; f(t)) O, -r <= <= r.

It is easily seen that the { tj} in (1) are the Fourier coefficients off; therefore, if

(16) a min f(t), b max f(t),
0_t_r 0_t_r

then the eigenvalues of T, are all in [a, b] for every n (see [8, p. 64]).
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For convenience, we will say that the values of , which do not satisfy the conditions
ofTheorem are exceptionalpoints ofP( k). All other values ofk will be called ordinary
points. There are at most finitely many exceptional points, and each is of one of the
following types: (i) The point k cm/Om, ifOm :/: O. (ii) A value of k for which the resultant
R(k) of the polynomials P(w; ) and Pw(w; ) vanishes; since R(k) is a polynomial in k,
there are only finitely many of these. (iii) The numbers f(0) and for), since, from (15),
e(1, f(0)) 0, P(- 1, for)) 0, which violates (8).

2. The case m 1. If m 1, then T(z) can be written as

(17) T(z) Co + c(z + 1/z)
Oz)(1 O/z)

with -1 < o < 1. If o 0, then Tn is a tridiagonal Toeplitz matrix, and the eigenvalue
problem can be solved explicitly (e.g., see [17]). Therefore, we assume that 0 4: 0. We
also assume that

(18) pCo + (1 "1-/92)C1 O =/= 0,

which guarantees that T(z) does not reduce to a constant, since

(19) f’(t)
-2a sin

(1 20 cos +/92)2.

Subject to these assumptions, it is straightforward to obtain the expansion (1), with

Cl plJ- 1 + 0/91Jl + C /91j+ 11
t=

0

Kac, Murdock, and Szeg6 [13] have considered the special case where

(20) Co -/92, c 0.

The general case can be reduced to this by applying long division to (17), but this would
not shorten our presentation. Our results are more detailed than theirs, as we will indi-
cate below.

With T as in (17), (7) becomes

P(w; ) Co- X(1 +/92) + 2(c + /9)w.

Our assumption (18) and its consequence (19) imply that f(0) and f(-) are the
endpoints of the interval [a, b] defined by (16), and that c + X/9 4: 0, P(1; ?) 4: 0, and
P(-1; X) 4:0 if a < X < b. Therefore, Theorem implies that

Kn(c + X/9)nCn(’)/’)Sn(’)/)
(21) p,(,) a < , < b,

cos 3’ sin 3’

where Kn is a constant,

_, + I =
"r= cs 2(c, -i J’ 0< <-,

(22)

and

(23)

Cn() cos (n + "y -/9 cos (n %

sin (n + 1)-r -/9 sin (n 1)’r.
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The formula given in [8] and [13] for the characteristic polynomial of the Kac-
Murdock-Szeg6 matrix

-InTn (plJ )i,j 1,

obtained by choosing Co and c as in (20), is

(-p)nHn(3")
(24) 1)n(k)

(1 p2) sin 23’’
with

(25)

and

H,(3") sin (2n + 2)3,- 20 sin 2n7 + o sin (2n- 2)3,

(26) 3’ z cos- x( +)- )]
2p ]

It is observed in [8] that if Hn(V) 0 for some 3’ in (0, r/2), then solving (26) for X
produces an eigenvalue of Tn. It is also shown in [8] that the zeros 3’1, 3’’, of Hn
satisfy the inequalities

7r 27r nTr
0<3"1< <3"2 < <3"n <2n + 2 2n + 2 2n + 2

if 0 < 0 < 1. (The case where -1 < 0 < 0 was not considered in [8].)
Numerical computations were not considered in [8], but it is clear that, given such

precise information on their locations, 3’1, "’", 3’n can easily be obtained by applying
the method of regula falsi to Hn. Therefore, this classical example already illustrates the
feasibility of finding the eigenvalues of these matrices by the direct application of root
finding techniques, not to o’,(h) itself, but to the simple function

Further insight into the eigenvalue problem for this case can be gained by the fac-
torization

nn(3") 2C,(3")Sn(3")

(cf. (22), (23), (25)), which shows that (21)and (24)are equivalent if(20) holds. Theorem
implies that if C’,(3’) 0 for some 3" in (0, 7r/2) then the quantity

Co + 2cl cos 23"(27)
20 cos 23’ + o2

is in the even spectrum of T’,. Also, if Sn(3") 0, then in (27) is in the odd spectrum
ofT,,.

By rewriting (22) and (23) as

C’,(3") p cos 23") cos (n + 3" p sin 23". sin (n + )3"

and

Sn(3") p cos 23") sin (n + 1)3" + p sin 23". cos (n + 1)3,,

and then noticing the signs of C’, and S’, at the points

j
XJ- n + 1’

O <- J <-- n- [n/2]’
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and

(j+ 1/2)
YJ-- n+ O<j<[n/2]’

it is straightforward to verify that (i) if 0 < o < 1, then Cn has a zero in (xj_ , yj_ l) for
eachj 1,..., n In/2] and Sn has a zero in (y_, x) for eachj 1,..., In/2];
(ii) if- < o < 0, then Cn has a zero in (y_ , x.) for each j 1, n In/2], and
has a zero in (xj, y.) for each j 1, In/2].

In either case these zeros are easy to locate by the method of regula falsi. We have
written very short BASIC programs to find the zeros and compute the eigenvalues ofthe
Kac-Murdock-Szeg6 matrices. To illustrate the ease with which they solve the problem,
we cite two examples connected with the matrix

T1000 (2-I- il)7,j 1,

with computations performed on an IBM PC AT.
(a) With single precision arithmetic (seven significant decimal figures) and requiting

the regula falsi iterations to continue until the successive estimates of the zeros of
(or Sy)) agreed in the first six figures, it took 185 seconds to compute the 1000 eigenvalues
of T000.

(b) With double precision arithmetic (16 significant decimal digits) and requiting
the regula falsi iterations to continue until the successive estimates of the zeros agreed
to 15 places, it took eight minutes to compute the same eigenvalues (of course, to con-
siderably better accuracy than that obtained in (a)).

Since the fight side of (27) is a monotonic function of 3’ in (0, r/2) (its derivative,
except for a constant, is given by (19) with 23"), our results imply that the odd and
even spectra of Tn are interlaced. This has been previously observed by Delsarte and
Genin [6].

In the proof of Theorem we gave a general formula ([ 18, eq. (38)]) for the eigen-
vectors of rationally generated symmetric matrices. For the special case considered in
this section, this formula implies that if Cn(3") 0 and , from (27) is the corresponding
eigenvalue, then a corresponding (symmetric) eigenvector is given by U [u,
with

If S,(3") 0, then

U COS (n 2i + 1)3", l<=i<=n.

ui sin (n 2i + 1)3", _-< =< n,

which defines a skew-symmetric eigenvector.

3. The general ease (m >_- 2). Now suppose that rn >= 2 and X is an ordinary point.
Then (10), (11), and (12) enable us in principle to evaluate Pn(X) with computational cost
independent of n, but they suffer from the defect that even though Pn(k) is clearly real if

is real, (11) and (12) involve complex numbers unless w, Wm are all in the interval
(-1, 1), which is not so in general. Moreover, the tremendous range of values that Pn(k)
can assume make it impractical to apply root finding methods directly to Pn(k), or perhaps
even to compute it at all.

Fortunately, these problems can be overcome. We will now show that on any
subinterval [a, b] of [a, b] (cf. (16)) containing only ordinary points of P( X), we
can write

(28) pn(X) Wn(X)Gon()Gn()
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where W, "absorbs" the large variations of p,(), but has no zeros on [a, bl] and is
therefore of no interest, while Gon and Gin are reasonably computable functions, involving
only real quantities, to which root finding methods such as the method of regula falsi or
one ofits variants can be applied. The zeros of Gon and Gin are, respectively, the elements
of the even and odd spectra of T, which lie in [al, bl].

We need the following lemma, which is established by invoking elementary properties
of algebraic functions (see, e.g., ]) and recalling that P in (7) has real coefficients.

LEMMA 1. The equation P(w; ) 0 defines m continuous (infact, analytic)functions
W Wi()k (1 <= < m) on any interval [a, b] consisting entirely of ordinary points
ofP( )). Moreover, for each 1, m; (i) wi()Q is real for some ) in [a, bl] if
and only if it is realfor all such ); (ii) if wi is real-valued, then thefunctions wi and
wi + have no zeros on [a, b].

This lemma enables us to factor p, as in (28), where

and

Gon() det mCrn(s)]r,s=

Gln(k) det [Srn(’Ys)lr,ms=l

For each s the definition of r(3’s) and r,(3’s) depends upon whether (i) -1 < ws < 1,
(ii) Ws > 1, (iii) ws < 1, or (iv) Ws is complex. Lemma implies that exactly one ofthese
conditions holds for all , in [a, b].

Case (i). -1 < Ws < 1. Here Crn(3’s) and Srn(3"s) are simply linear combinations of
(real) sines and cosines, so we let rn(s) Crn(’Ys), and rn(s) Srn(s).

In the remaining cases (9) implies that 3’s as + i/3s, where

(29) cos 2as cosh 2/3s Us, sin 2as sinh 2/3s -Vs, 0 <- as <= -with Ws us + iVs.
Case (ii). Ws > 1. Then Ws Us and vs 0 in (29); hence,

as=O and :3s=1/2cosh-lws;

hence, from (5) and (6),
q

(30) CrYs) , aj cosh (n + 2r- 2j- 1)/3s
j=0

and
q

(31) Srn(’)/s) Z aj sinh (n + 2r- 2j- 1)/3s.
j=0

The imaginary unit in the last equation cancels with one which occurs in column s of
the denominator in (12). To eliminate large variations, we factor eas/2 out of the sums
in (30) and (31), and define

q

n(’)’s)-- aj[e(2r-2j- 1)/3s_}_ e-(2n+ 2r-2j-1)s],
j=o

q

rn(’Ys)

_
aj[e(2r- 2j- 1)a_ e-(2n + 2r- 2j- 1)t3s]"

j=O
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The exponential factor is simply included in Wn(X). Note that rn("Ys) and grn("Ys) are
bounded for all n. This will also be true in the following cases.

Case (iii). Ws < 1. Now

with

s 1/2 cosla- (-

hence (5) and (6) imply that

(- 1)Jaj cosh (n + 2r- 2j- 1)/3s-
Srn("Ys)j=0

and

{ Sr.(’s)___i (- 1)Jaj sinh (n + 2r- 2j- 1)fls
j=0 Crn("Ys)

if n is odd,

if n is even

if n is odd,

if n is even.

Therefore, we remove the exponential factor and irrelevant constants as before, and
define

q [" (rn(3’s) if n is odd,
Z (-- )Jaj[e(2r- 2j- l)s + e-(2n + 2r- 2j- 1)/3s]
j= 0 grn(Ts) if n is even

and

(-- 1)Jaj[e(2r- 2j- 1)s_ e-(2n + 2r- 2j- 1)s] { rn("Ys) if n is odd,

j= 0 rn("Ys) if n is even.

Case (iv). Ws us + iVs, Vs 4: O. For real , the coefficients in (7) are real; hence, we
may assume without loss of generality that

(32) ws+l=Us-iVs.
If

(33) r cosh2 2/3s,

then (29) implies that

u Vs--+ l,

or

( )Us +v (- ).

Solving this quadratic equation and noting that r > yields

r 1/2(1 + Us2 + Vs2 + /(1 + u2 + Vs2)2- 4u2).

Now (29) and (33) imply that

o 1/2 cos-’ (u/)
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and

(34)

(35)

and

fl 1/2 sgn (-Vs) cosh-’

It now follows from (5) and (6) that

q

Crn("Ys) aj cos (n + 2r- 2j- 1)as cosh (n + 2r- 2j-
j=0

q

aj sin (n + 2r- 2j- 1)a sinh (n + 2r- 2j- 1)fls
j=O

q

Srn(Ts) aj sin (n + 2r- 2j- 1)as cosh (n + 2r- 2j-
(36)

=0

q

+ a. cos (n + 2r- 2j- 1)as sinh (n + 2r- 2j- 1)s
j=0

are the elements in the sth columns of the determinants in the numerators of (11) and
(12), respectively. But now (32) and (34) imply that 7s+ as iris, so the elements in
the (s + 1)st columns of these matrices are the conjugates of (35) and (36), i.e.,

Crn(’s + 1)-- Crn(’s), Srn(’s + 1)--- Srn(’s).

This and elementary properties ofdeterminants imply that replacing Crn(3’s) and Crn(3"s+
in columns s and s + of det [Crn(’s)]rn, by Re (Crn(s)) and Im (Crn(3’s)) simply
multiplies this determinant by a purely imaginary constant (which is cancelled by the
same constant produced by similar manipulations on the determinant in the denominator
of (11)). Following this by factoring out the exponential enl&l and other constants leads
us to define the elements in column s of Gon()O by

q

rn(s) Z aj[e(2r- 2j- )ltsl + e-(2n + 2r-- 2j- )l&l] COS (n + 2r- 2j- 1)as
j=0

and the elements in column s + by
q

rn("Ys + 1) aj[e(2r- 2j- 1)It’ll_ e-(2n + 2r- 2j- 1)ltl] sin (n + 2r- 2j
j=0

Similar operations on the real and imaginary parts of (36) lead to the definitions

q

rn(s)-- Z aj[e(2r-2j- l)ltsl -I- e-(2n+ 2r-2j- l)ltl] sin (n+ 2r-- 2j-- 1)as
j=0

and
q

Ln(Vs+ 1) aj[e(2r- 2j- l)lt,l_ e
j=o

-(2n + 2r- 2j- l)l/3sl] COS (n + 2r- 2j- 1)as

as the entries in columns s and s + of Gn()).

4. A proposed procedure for finding all eigenvalues of T.. Here we assume that
m >= 2, since 2 reduces the case where m to routine computations. We pro-
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pose a procedure for computing all the eigenvalues of Tn. As mentioned earlier, it is
known that the spectrum of T, is contained in the interval [a, b]. For simplicity we will
assume here that the eigenvalues Xln, "’", knn are distinct, that no exceptional point
of P( k) is an eigenvalue, and that

a < X In " k2n " " knn " b.

We consider two situations: (I) the eigenvalues of Tn-1 are already known and satisfy
the inequalities

a < kl,n- < X2,n- < < n- 1,n- < b;

and (II) the eigenvalues of T,_ are not known.
The first requirement ofthe procedure is to subdivide [a, b] into closed subintervals

I, Ik with disjoint interiors such that none of the Ij’s contains more than one
eigenvalue from each of the even and odd spectra. This is very easily done in situation
(I); we simply let k n and

[a, kl,n- ] ifj 1,

j= [Xj_l.._l. Xj..-1] if2=< j<=n- 1,

[X,-l,n-1, b] ifj n.

Since T,_ is a principal submatrix of Tn, standard separation theorems imply that each
of the intervals 11, In contains exactly one eigenvalue of

Obtaining the desired subdivision of [a, b] in situation (II) requires some guesswork,
but the guessing is of the educated variety, thanks to the celebrated theorem of Szeg6
which says that for large n the eigenvalues of Tn are distributed in [a, b] like the ordinates

(jTr) l<j<n.(37) f n +
(For a more precise statement of this result see [8] or [20].) Motivated by this, we have
used the following procedure to subdivide [a, hi: compute the ordinates (37), list them
in memory, and construct a new list gl, "’", g, consisting of these numbers arranged in
nondecreasing order. (Since f’ cannot have more than 2m 2 zeros on (0, r), this can
be accomplished efficiently, even for large n.) Then define go a and g,/= b. In
the numerical experiments that we have performed with m 2 and 3 the intervals/j-
[gj_ , gj], =< j =< n + usually satisfy our requirements even for small values of n, like
n 5 or n 10. (We would expect that the probability of success with this procedure
would increase with n, due to the asymptotic nature of Szegr’s theorem. It should also
be noted that we do not require that no interval contain more than one eigenvalue;
because of our factorization of the characteristic polynomial, an interval may contain
two eigenvalues, provided that one belongs to the even spectrum of T, and the other to
the odd.) In some cases we missed a few of the eigenvalues. We then used the "brute
force" approach ofsimply dividing all the intervals into k parts (usually with k arbitrarily
chosen to be 5). Obviously, this strategy can be improved.

Now we describe the computations performed for each interval in the subdivision.
Let I [c, d], where it is assumed that I does not contain more than one element from
each ofthe odd and even spectra of T, and that c and d are not eigenvalues of Tn. Suppose
first that I contains only ordinary points of P( X), and let G0, and Gin be the functions
defined on I in 4. If

(38) Gl.(C)G.(d) < O
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for 0 (l 1), then I contains exactly one element from the even (odd) spectrum of
Tn, which can be computed by applying the method of regula falsi to Gqn. If (38) does
not hold for either I 0 or 1, then I contains no eigenvalues of Tn.

Now suppose that I contains one or more exceptional points. In this case the defi-
nition of Gqn will in general change on L Now we simply subdivide I into subintervals
whose interiors contain no exceptional points, pick slightly smaller closed subintervals
of these which contain no exceptional points (hoping that no eigenvalue actually lies in
the small part of I that is excluded in this process), and apply the above procedure to
these intervals. This strategy has worked well in all cases considered.

5. Typical numerical experiments for m 2 and m 3. The computations per-
formed so far have been done with BASIC/D (double precision) programs on an IBM
PC AT. No attempt has as yet been made to use more sophisticated programming tech-
niques or numerical methods (such as improvements on the method of regula falsi to
find the zeros of Gon and Gn); the objective ofthese computations was simply to ascertain
whether there was any hope that this method would work. The results are quite encour-
aging. The following are typical examples.

Example 1. We took

and

C(z) 1.5 3.5(z + z-) + (2.2 --I- z-2).
Regula falsi iterations were continued until successive iterates agreed in the first 15 sig-
nificant decimal digits. The running times to obtain all eigenvalues of Tn were 0:54
(minutes and seconds) with n 10, 3:44 with n 50, 6:40 with n 100, and slightly
over 98 minutes with n 1000. (The last required time seems to be longer than we would
expect, given the first three. The author does not know the reason for this.)

Example 2. We took

A(z) -.4z-.47z2 + .21Z

and

C(z) + 2(z + z-) (z2 + z-) + (z + z-3).
The regula falsi iterations were continued until successive iterates agreed to 12 significant
decimal digits. The running times required to compute all eigenvalues were 3:58, 12:56,
and 22:10 for n 10, 50, and 100, respectively.

We have obtained partial checks on our results. For example, all of our test com-
putations yielded eigenvalue distributions consistent with what we would expect from
Szegr’s distribution theorem, and in all cases the eigenvalues of Tn separated those
of Tn+.

6. Conclusions and further research. Numerical results obtained so far indicate
that this method is an efficient way to compute the eigenvalues of high-order symmetric
rationally generated Toeplitz matrices with m 1, 2, or 3 in (2). Since the scaling of aon
and G makes these functions bounded for all n, there seems to be no reason why the
procedure cannot be applied to very high order matrices, particularly since it does not
require that the elements of Tn be stored, or even computed. Moreover, it is obvious that
much greater computing speeds can be obtained by using more sophisticated programming
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methods and/or equipment. We believe that the major problems which need to be over-
come in order to apply this method efficiently for larger values ofm in (2) are as follows.

(i) Efficient methods must be developed to find the zeros of P( k) for a given k.
For m 1, 2, 3 we have simply used standard formulas for the zeros of a polynomial in
terms of its coefficients. This method is also a possibility for m 4, but root-finding
methods are obviously required for m _>- 5. Ofcourse, there are standard methods available
for this problem; moreover, if kk and kk+ are successive iterates obtained in a regula
falsi procedure, then the zeros wl(k), Wm(k) should be reasonably good first ap-
proximations to wl(k/ 1), Wm(k/ 1).

(ii) An improved version of the method of regula falsi should be devised. This
would include the more or less standard procedure ofcombining it with bisection, which
accelerates convergence in certain situations (i.e., where one endpoint would otherwise
"stay in the game" for an excessive number of iterations). It is not clear how further
improvements could be attained; for example, iterative methods (such as Newton’s) which
require the computation ofderivatives would not be useful, since we have no computable
formulas for the derivatives of aon and Gn in terms of the zeros of P( ). Moreover,
it seems desirable to insist that the iterative method be one that is guaranteed to converge.

(iii) Accurate computation of the m m determinants defining Gon and Gin may
be difficult for larger values of m. This does not appear to be a problem for m 2 and
m 3. In fact, for m 3 we treated this problem in two ways: (a) a simple cofactor
expansion and (b) reduction to triangular form with full pivoting. Although the second
method would presumably be more accurate for larger m, there was no difference between
the results obtained by the two methods for m 3.

Another area of investigation would be to compute the eigenvectors associated with
the eigenvalues obtained by this procedure and check the residuals

ZnX- XX[I

This would be a formidable computation if carried out by brute force; however, the
formula given in 18] for the eigenvectors of Tn should greatly simplify this calculation.
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NECESSARY AND SUFFICIENT CONDITIONS FOR THE EXISTENCE
OF LOCAL MATRIX DECOMPOSITIONS*

PAUL D. GADERf

Abstract. Let D (V, E) be a directed graph with n vertices. We define the notion of a local matrix with
respect to D and we show that every n n matrix, over the real or complex numbers, can be factored into a
product of local matrices with respect to D if and only if D is strongly connected and contains all loops. We
discuss the significance ofthis result with respect to parallel computation oflinear transforms on SIMD processor
arrays. We observe that the result can be used to associate with certain irreducible n n matrices a generating
set of the semigroup of all n n matrices under matrix multiplication.

Key words, matrix decompositions, parallel processing, linear transforms, directed graphs, irreducible ma-
trices, neural nets

AMS(MOS) subject classifications. 15A23, 65W05, 05C50

1. Introduction.
1.1. Processor arrays and linear transforms. In recent years, there has been a great

deal ofinterest in the use ofparallel processing as a means ofincreasing the computational
capabilities ofdigital computers. Many types ofparallel computer architectures exist and
various means of categorizing these architectures have been proposed [6], [8], [10]-[ 12].
In this paper, we shall be concerned with the type of parallel computer called a processor
array. A processor array consists of a large number of simple processing elements (PEs),
all governed by a single controller. Each PE can perform arithmetic and logic operations
and generally has a small amount of memory. In addition, each PE can directly access
the memory ofa small subset ofthe other PEs by means ofsome interconnection network.
To execute a step of an algorithm, the controller broadcasts a single instruction to all of
the PEs along with a mask bit which determines whether or not a given PE will execute
the instruction. Those PEs that are to execute the instruction do so simultaneously, each
using the data available in their memories or in the memories of their neighbors. Thus,
in one step, a subset of the PEs will execute the same instruction, each on (possibly)
different data. Machines of this type are called Single Instruction Multiple Data, or SIMD,
machines. A popular example of an SIMD processor array is the mesh-connected array.
The PEs in a mesh-connected array are arranged in a rectangular grid and have nearest
neighbor connections. Examples of such processor arrays are the Massively Parallel Pro-
cessor (MPP), CLIP-4, ICL Distributed Array Processor (DAP) and the Geometric Arith-
metic Parallel Processor (GAPP) [5], [7], 10], 11], 14]. Another type ofprocessor array
is that based on an n-dimensional hypercube network [3]. It has even been suggested
that the Cayley graph ofa finite group be used as a model for the interconnection network
of a processor array ], [4], 13].

An important characteristic of these arrays is that each processor can communicate
directly with only a small subset of the other processors, its neighbors. Thus, in order to
compute efficiently using these arrays, methods should be found for decomposing com-
putations that require information from many processors (global information) into com-
putations that require information from only neighboring processors (local information).
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FIG. 1. A linear array ofprocessors.

In this paper, we consider the problem ofdecomposing linear transforms into forms
compatible with processor arrays. Let P, P2, , Pn denote the PEs in a processor array.
We assume that PE Pi contains a real or complex number xi. We establish conditions
on the interconnection structure ofthe processor array which guarantee that every linear
transformation ofx (x, x2, , xn) can be computed using a finite sequence oflinear
transforms, each of which is local with respect to the interconnection structure. The
precise statement of this result is given in Theorem 6, our main result. We remark that
these conditions are theoretical, not practical, in nature. They are analogous to conditions
for existence of solutions of differential equations. Thus, although our results guarantee
the existence of local decompositions, efficient means for computing them must still be
developed. Some initial work in this areas has been done [7], [15].

An interesting application of our results is to neural nets. For an excellent intro-
duction to neural nets as well as an extensive list of references see Lippman [9]. Roughly
speaking, a neural net can be considered to be a processor array together with an iteration
ofsome function defined on the values associated with the PEs. The structure ofa neural
net is based on "present understanding of biological nervous systems" [9]. Neural nets
are mainly used for pattern recognition and classification, particularly in speech and
image problems.

A Hopfield net is one example of a neural net. Let P, P2, "’", P, denote PEs and
let f:E -- E be the step function

ifx>_-0,
f(x)=

_1 ifx<O.

Let W (wij) be an n n matrix over E and let vj(0) denote the initial value associated
with PE P, j 1, 2, n. The iteration step is then

j=l

which is repeated until some stopping condition is reached. The point we would like to
emphasize is that a straightforward construction of a Hopfield net requires every PE be
connected to every other PE since the matrix Wmay, in general, be full. Indeed, this has
been cited as a disadvantage of the Hopfield net. The results of this paper show that a
Hopfield net can be implemented on a processor array with much less connectivity. For
example, a Hopfield net can be implemented in a straightforward way on a linear array
of processors with nearest neighbor connections, as shown in Fig. 1. This follows from
the fact that a consequence of our result, and an earlier related result 15], is that any
square matrix can be factored into a product of tridiagonal matrices and tridiagonal
matrices are local with respect to linear arrays.

1.2. Mathematical model. Henceforth, all vectors and matrices will be assumed to
have complex entries, although the results will also hold true for those having real entries.
Let D= (V,E) be a directed graph with vertex set V= {v,v2, "., v} with
n > and let /’ denote the algebra of all n n matrices over the complex numbers C.
We think of V as the set of PEs. If an ordered pair (vi, v) E, then we interpret this as
meaning that PE v can directly access the memory of PE vi. Since any processor should
have access to its own memory, we assume throughout that (vi, vi) E for 1, 2, ,
n; that is, we assume that D is a directed graph with all loops attached.
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DEFINITION 1. We say that a matrix A (ao) ln is local with respect to D, or
just local ifD is understood, if ao 0 whenever (vg, vi) g E. A local decomposition ofA
(with respect to D) is a decomposition A 1-I= Ai such that Ai is local with respect to
D for 1, 2, k. IfA I= Ai is a local decomposition, then we say that A has
a local decomposition and that the mapping x -- Ax can be executed locally with respect
to D.

Note that any function f:V- C can be represented by an n-tuple,

X’-(Xl,X2, ,Xn)t.

IfA has a local decomposition A I-[k_- Ai, then the linear transform x -- Ax can be
computed in k local steps:

X "-AkX XI

Xl Ak- X X2

Xk_ -’AIXk_ Xk.

Throughout this paper, in particular in Lemmas 3 and 4, we shall show that certain
matrices have local decompositions by constructing sequences of local n n matrices,
A,A2, A,, such thatAx AA2 Anx forxe C.

Let u, v e V. A path from u to v is a finite sequence of distinct vertices,
except possibly u and v, u= Wo, Wl, Wk-l, Wk V such that (wg, w+)eE for

0, 1, ..., k 1. If there exists a path from u to v, then we say that u is reachable
from v. We say that D is strongly connected if for every u, v e V, u is reachable from v.

We will show that every matrix A ///, has a local decomposition with respect to
D if and only if D is strongly connected. Tchuente 15] proved this result in the case
where D is a graph. His arguments used results that hold for graphs but not for directed
graphs. Our result guarantees that, as long as any PE can access the information in any
other PE, at least indirectly, then any linear transform on Cm with m _-< n can be computed
using a sequence of local, linear transforms.

2. Main theorem.
LEMMA 2. If every A 1 has a local decomposition with respect to the directed

graph D, then D is strongly connected.
Proof We prove the contrapositive. Assume that D is not strongly connected and

let vi, v V such that vi is not reachable from v. Let

C1-- U V:/)i is reachable from u}

and

C2 {v e V: v is reachable from v}.
By assumption, C C2 . IfB e /, is local with respect to D, v C and Vm C2,
then bm 0, since otherwise vi would be reachable from vj. Thus, in particular, the
matrix C having ci and Cm 0 if (k, m) 4: (i, j) cannot have a local decomposition
with respect to D. V1

Assume that D is strongly connected. We show that every permutation matrix has
a local decomposition with respect to D. As was observed by Tchuente, ifD is a graph,
then any permutation can be factored into a product of adjacent transpositions and the
problem is trivial. If D is not a graph, then a given permutation may not be expressible
as a product of local permutations. Consider, for example, the case of the directed cycle
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0

FIG. 2. The directed cycle C,.

with all loops attached Cn shown in Fig. 2. A permutation matrix which is local with
respect to C, is either the identity matrix or has cycle representation (1 2 n). The
subgroup of the full symmetric group S, generated by 2 n) is cyclic of order n and
is therefore not equal to S,. Thus, in general, to execute a permutation locally with
respect to a directed graph D we must factor the permutation matrix into a product of
local matrices which are not necessarily permutation matrices. We now show how this
can be done. Note that it is sufficient to show that any transposition of the form

(ao, al an- 1) (al, ao, a2, an 1)

can be executed locally by the following reasoning: If tr is any permutation on
{0, 1, n }, then we may express tr as a product of transpositions a cc2 c.
If c (p, q) is a transposition with q > p, then we may write

c=(p,p+ 1)(p+ 1,p+ 2)... (q-2,q- 1)(q- 1,q)

(q-2,q- 1). (p+ 1,p+2)(p,p+ 1).

Thus, if any adjacent transposition, that is, a transposition of the form (i, + 1), can be
executed locally with respect to D, then any permutation can be executed locally with
respect to D. Since the structure of the graph is independent of the labeling, we may
consider, without loss ofgenerality, the transposition (0, 1), thus arriving at (1). Moreover,
since D is strongly connected, any two vertices lie on a directed cycle which implies that
it is sufficient to consider the case D Cn, the directed cycle with all loops attached.
Figure 3 and the example after Lemma 3 are both helpful in the proof of the lemma.

LEMMA 3. Assume that D is strongly connected with all loops attached. Then every
n n permutation matrix has a local decomposition with respect to D.

Proof By the previous remarks, it is sufficient to show that the transposition (1)
has a local decomposition with respect to C,. Let P be the n n permutation matrix
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a b c d e f
n-I n-I

ao ao , ai ai a a
i=l i=l

a ao + a ao + a ao + a ao + a ao

a2 ai a2 a2 a2 a2
i=0

a3 at a3 a2 + a3 a3 a3
i=0

n-2 n-2

an- at an- ai an an
i=0 i=2

n-I n-I

an- E ai an- E ai an- an-
i=0 i=2

FIG. 3. Local implementation ofpermutation (1).

corresponding to (1), that is,

Let a (ao, al, an-1)t. We construct a local decomposition ofP by constructing a
sequence of n n local matrices, Ql, Q2, a2n+ 5, such that

Pa Qz, + 5Q2n + 4 Q2QIa.

Let b() a and define b(i) (bo;), bi), b{n/)_ l), 1, 2, n by

t(i) f bi-
1) ifj 4 i,

e,j It’(i-l) bi-tJj-- -- ifj= i.

The matrices ai, 1, 2,..., n with Qib(i- 1)_._ bO are local. The entries of
b b(n- l) are given in the second column of Fig. 3. Define c (Co, Cl, cn-l) by

bn_l-bo ifj=0,

cj= bl ifj= 1,

bj- bj_ otherwise.

The matrix Q, with Qb c is local. The entries of c are given in the third column
of Fig. 3 Define di) .(;) .i)(do,d]’), l)t,i n,n+ 1, ,2n+3byd")an- c and
fork= 1,2,...,n-3,

,4(n + k l)n+k-1)+j_
dSn+ k’ { dS.n+ k_ l,

ifj k + 2,

otherwise.
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The matrices Qi, n + 1, n + 2, ..., 2n + 3 with Qid"-1)= dtO are local. The entries
of d dt2n / 3) are given in the fourth column of Fig. 3. Define e (eo, el, en- )t by

do-dt_ ifj 0,

d ifj 1,
ej=

d2 ifj=2,

d- d_ otherwise.

The matrix Q2n + 4 with Q2n + 4d e is local. The entries of e are given in the fifth column
of Fig. 3. Definef= (j, j, fn- )t by

j) [e- e0 ifj= 1,

ej otherwise.

The matrix Q2, + with Q2, + 5e f is local. The entries offare given in the last column
of Fig. 3. By construction, Pa (I-I]= 2,+ Qi)a which proves the theorem. [3.

Example. Let n 5. Then the sequence of local linear transformations used to
execute (1) are given by

b() (ao, al, a2, a3, a4),

b() (ao, ao + al, a2, a3, a4),

b(2) (ao, ao + al, ao + al + az, a3, a4),

( 3)b(3) ao,ao + a,ao + a + a, , ai, a4
i=0

(
3 4

)b b(4) ao, ao + a, ao + al + a, , ai, ai
i=0 i=0

(4 )C , ai, ao+al,a2,a3,a4
i=1

/
4

)d(6) ] a, ao + a, a2, a2 + a3, a,
i=1

e (al, ao + a, a2, a3, a,0,

f= (a, ao, a2, a3, a4).

LEMMA 4. IfD & strongly connected, then forj 1, 2, ..., n the matrices

0 0

X+...X.
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and

Ij_

0

have local decompositions with respect to D.

/.tj +

0

Proof Fix j between and n- and note that if a (a, a2, an) and
b Mj.a (b, b2, bn)t, then bi ai if 4: j and bj Z,= Xk. Since D is strongly
connected, we can choose m such that (Vm, vj) E. Let

A=diag(1, 1, ..., 1,X, 1, ..., 1)
where j is the jth element along the diagonal. For each k such that j < k =< n, let Pk,
denote the permutation matrix corresponding to the transposition (k, m). Let Lk be the
matrix having Xk as the jmth element and zeros elsewhere, and let Sk I + Lk. Since
(Vm, vj) E, Sk is local. By the previous theorem, each P,m has a local decomposition.
Note that, if x (x, x2, x,,)t, then

Pk,mSlPk,mX= (Xl, X2, Xj- 1, Xj -t- kkXk Xj + 1, Xn)t.

Hence,

k =j +

which shows that M has a local decomposition.
Note that if b Mj.2a (b, b2, ..., bn)t, then

a if k< j,

bk tga if k j,

ak+ttka ifk> j.

Let 2 diag (1, 1, ttj., 1, 1), where ts is the jth element along the diagonal.
For each k such that j < k N n, choose m such that (Vm,, v) E, let P’.m, be the
peutation matrix coesponding to the transposition (k m), let N. the matrix having

as the kmth element and zeros elsewhere, and let S I + M. Then

2=1 ek,mkSkek,mk} a
k=j +

which shows that2 has a local decomposition.
Tchuente [15] has shown that if M is any n X n matrix over N, then there exist

n X n permutation matrices P and Q, constants X, X, .., X, Ul, 2, ", u, and an
(n 1) x (n 1) matrix C such that

X )t2"’" X, 0"" 0 /-l 0’’" 0

0 0 /22
M=P I_ C I

0 0 /An

ao
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Although Tchuente states this result over , an inspection of the proof reveals that it
remains valid over C since only the notions of linear independence ofrows and columns
of a matrix and solutions of linear systems were used. A straightforward induction ar-
gument yields the following lemma.

LEMMA 5. Let M be any n n matrix. There exists n n permutation matrices, Pj.
and Qj, n n matrices, Mj and Mj2, oftheform given in Lemma 4, for j 1, 2,
n 1, and a constant, c, such that

M PM., diag (1, 1, 1, c) M2Q

Combining Lemmas 2-5 yields the desired result.
THEOREM 6. Let D (V, E) be a direct graph with n > vertices. Every n n

matrix over or C has a local decomposition with respect to D ifand only ifD is strongly
connected with all loops attached.

3. Irreducible matrices. The notion of a local matrix is closely related to that of an
irreducible matrix [2] and therefore Theorem 6 has implications for irreducible matrices
which may be useful.

Let A be an n n matrix over C. The digraph ofA, denoted by I’(A) (V, E), is
the directed graph with vertices { 1, 2, n} and arc set E {(i, j): aij 4: 0}. Note that
I’(A) is strongly connected ifand only if I’(At) is. Observe further that ifA has all nonzero
diagonal elements, then (i, i) e E for 1, 2, n. We say that A is irreducible if I’(A)
is strongly connected. Denote by &t’(A) the set

(A) {Be//,: ao=O implies b0=0}.
Note that B e ft(A) if and only if B is local with respect to F(A). Let (/n, *) denote
the semigroup of n n matrices under matrix multiplication.

THEORZM 7. The n n matrixA is irreducible and has all nonzero diagonal elements
ifand only if-(A) generates (/g,, ,).

Proof Assume that A is irreducible and has all nonzero diagonal elements and let
C be any n n matrix. By Theorem 6, C has a local decomposition, C I]= Bti, with
respect to F(A). Hence, C I-I]= B; where Bg t’(A) for 1, 2, k.

Conversely, if&’(A) generates (/,, ,), then, given C n, there are n n matrices
BI, B2, ", Bg 6 ’(A) such that C I-I= B is a local decomposition of C with respect
to r(A). [2

4. Conclusion. We have shown that every n n matrix, over E or C, has a local
decomposition with respect to the direct graph D if and only if D is strongly connected
with all loops attached. As can be expected for so general a result, the proof, although
constructive, is impractical and does not yield methods for obtaining efficient local de-
compositions.
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EXTREMAL PROBLEMS FOR HOLDER NORMS OF MATRICES AND
REALIZATIONS OF LINEAR SYSTEMS*

HARALD K. WIMMERf

Abstract. Let F and G be complex n n matrices and v(. be a matrix norm. We consider the functional
#(F, G; S) v(FS)(S-IG), where S varies over all nonsingular n n matrices. For certain singular value norms
the infimum of # is determined. An application to realizations of linear systems is given.

Key words, matrix norms, Cauchy-Schwarz inequality, balanced realizations
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1. Realizations and norms of the Hankel matrix. Let WCp q(z) be a given matrix
of strictly proper rational functions. If Whas the realization

(1.1) W(s)=C(sI-A)-IB, ACkk, BeCkq CCp,
then W is the transfer matrix of the linear system

(1.2) (t) Ax(t) + Bu(t), y(t) Cx(t),

and the Markov parameters W/e Cp q in the expansion W(s) Zi> o Wiz -i are given
by

(1.3) l/V,. CAi- B, 1,2, ....
All the information on W is contained in the block Hankel matrix

w w,_

H= Wa W3 Wk /

W, W,+ W2-
If

C

Mo CA. Mc (B, AB, A 1B)

CA-are the observability and controllability matrices of (1.2), then

H MoMc.
In this paper we are concerned with norms of the Hankel matrix H and its factors

Mo and Mc. Let el >= aa >= >- O" > 0 be the singular values of H. Then

[Inll- (f +... + )l/_ [Tr (H*H)p/2] l/" p>
and
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are unitarily invariant matrix norms. We focus on IIHII, 1, 2, . The following
estimates are crucial for our investigation:

Ilnlli -< IIMo[12illMcll2i, 1,2,

A change of coordinates, x S, in the state space of (1.2) induces the realization

(1.4) W(s) (sI-.)-’
where S-AS, S-B, and CS. We call (1.4) isomorphic to the realization
(1.1). To (1.4) corresponds the factorization H hoQwith Qo MoSand hr S-’M.
What happens with the products [[Mo[12il[Mc[12i as S varies over the set of all nonsingular
matrices in ckk? We will show that [[nl[i inf [[MoSll2illS-1Mcl[2i in the case 1, 2
and IIHII min liMoSIIIiS-MII. For 1, 2, we give conditions under which the
infima are attained. It will turn out that the stable realizations that actually yield a min-
imum are those that can be balanced.

Notation. We write R > 0 if R is Hermitian and positive definite; R >= 0 means
positive semidefinite. S’ is the set of all nonsingular and the set of all positive definite
matrices in Ckk. S-* stands for (S*)-. The largest eigenvalue of a matrix P >= 0 is
denoted by max (P). If A is a matrix that has only eigenvalues with negative real parts,
then we write Re (A) < 0.

2. Extremal problems. Let F Cp k and G e Ck q be given nonzero matrices. We
wish to minimize the functionals

(2.1) #i(F, G;S)= IIFSll2llS-’Gllz, 1,2,

where S varies over the set of all nonsingular matrices in Ck k. The following gen-
eralization ofthe Cauchy-Schwarz inequality is surely known. We conjecture that in the
case p q the inequality

holds for all unitarily invariant norms [1" on
LEMMA 2.1. Suppose F Cp k and G e Ck q, F f O. Then

(2.2) IlFalli <= IlFll=lla]l=i, i- ,2,

with equality ifand only if
(2.3) GG* cF*F

for some real nonnegative c.

Proof. In the case we have to show that
, , 1/2(2.4) Tr [(G F FG) < (Tr F*F)/2(Tr G’G)

The traces in (2.4) remain unchanged if F and G are replaced by UF and GV, where U
and V are unitary matrices. Hence we can assume without loss of generality

(2.5) FG=
0 0

Z diag (cry, ar), a >- -> ar > 0. Let F and G be partitioned corresponding
to (2.5):

F=( F ), G=(G,G2).
F
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Then F G1 (F1GI)* > 0. Ifwe endow the vector space Ckr with the inner product
(X, Y) Tr X’Y, then the Cauchy-Schwarz inequality yields

Tr F1G _-< (Tr Ff F)/2(Tr GI Gf)/2.

From Tr F*F Tr FfF + Tr FlF21 Tr F’F and the analogous inequality for G
we obtain (2.4). We have equality if and only if F2 0, GI2 0 and Gf TEl. This
implies GG* GG II-yII 2 F’F I]-yIIEF*F. Conversely (2.3) is sufficient for equality.

In the case 2, the inequality (2.2) is equivalent to

(2.6) Tr G*F*FG <= Tr [(F*F)2] /2 Tr [(G*G)2] 1/2.

Because of Tr G*F*FG Tr GG*F*F we can again use a Cauchy-Schwarz
inequality. []

We remark that IIF 2; =< ]IF ]li; hence for 1, 2, the estimates (2.2) are sharper
than

LEMMA 2.2. Let F Cp k and G Ck q. Then

(2.7) I]VGllo <- IIFII IIGI]

with equality ifand only ifthe matrices F*Fand GG* have a common eigenvector which
corresponds to their largest eigenvalues.

Proof Formula (2.7) is known. We check the condition for equality in (2.7). Assume
G 4 0. Then

y*G*F*FGy y*G*F*FGy y*G*Gy
FG max max

y/o y*y /o y*G*Gy y*y

z*F*Fz y*G*Gy_-< max max ]1F G
z/O z*z y/o y*y

Put c IIFII and/3 IIGII. Then a2 kma F*F and/32 max G*G. We see that
[IFGII IIFlllIGll if and only if there is a vector y Cq such that Gy 4 O,

132
y*G*Gy

and a2 y*G*F*FGy.
y*y y*G*Gy

Such a y satisfies G*Gy =/2y and F*FGy 2Gy. Then z Gy is an eigenvector of
F*F which belongs to a2 and also an eigenvector of GG* corresponding to/2. [--]

The preceding lemmas yield lower bounds for Ii(F, G; S) of (2.1), which are in fact
infima.

THEOREM 2.3. Let F C k and G Ck be given. Then for 1, 2, oz

FG[li inf FS 2i S-IG[[ 2i
s ,

1/2(2.8) inf FRF* ]1/2 G’R-’G ]]i
Re

Assume F 4 0 and G 4 O. Then there exists an S St’ such that

(2.9) ]IFGI[ [IFS]I IIS-GI[o

ifand only ifFG 4 O. For or 2 the infimum in (2.8) is attained, ifand only if
(2.10) rank F rank G rank FG.
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For the proofwe need some auxiliary results. The construction ofan approximating
R in (2.8) will hinge on a matrix given by (2.11).

LEMMA 2.4. Let K and L be two complex matrices such that K is nonsingular
and KL >= O. Then there exists a unique Hermitian idempotent E such that

(KL)E 0 and rank (KL + E) t.

For any > 0 the matrix

(2.11)

is positive definite and

(2.12)

then

A K-(KL + 6E)K-*

L*AL KL.

Proof Put M KL. If U is unitary such that

0 0
P>0,

(oE U* U
0

and the statements of the lemma are readily verified. U]

The existence of a minimizing R is related to the following two lemmas.
LEMMA 2.5 [1 ]. Let P >= 0 and Q >= 0 be of the same size. Then there exists a

nonsingular matrix S such that

where z rank P, D diag (d, d, dr), rank D rank PQ, rank M rank Q
rank PQ.

LEMMA 2.6. For F Cv k and G Ck q there exists an R > 0 such that

(2.13) GG* RF*FR

ifand only if

(2.10) rank F rank G rank FG.

Proof. Suppose (2.13) holds for some R > 0. Then rank F rank G is obvious.
From (2.13) it follows that FGG*F* (FRF*)2. Therefore

rank F rank FRF* rank (FRF*)2
rank FG)(FG)* rank FG.

To prove the converse we first note that Ker F*FGG* Ker FGG*. From rank FG
rank G it follows that Ker FGG* Ker GG*. Now put P F*F and Q GG*. Then
rank P rank Q rank PQ. According to Lemma 2.5 there exists an S O such that

SPS* S-*QS-
0 0 0

D>0.
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Then

R=s,(D-1/2 O)0 I S

is a positive definite solution of (2.13).
Assuming p q and FG >= O, Flanders [3] proved that (2.10) holds if and only if

there exists an R > 0 such that G RF*.
Proofof Theorem 2.3. For 1, 2, we define

),(F, G;R) IIFRF* III/ IIG*R-’Glll/2.
We set out to construct a matrix R > 0 such that Xi(F, Gi; R) -- [IFII with di -- 0.
There is no loss of generality if we assume that p q. Otherwise if p < q, we inflate F
by zero rows such that

is a q k matrix. Then Xi(/, G; R) Xi(F, G; R) and I111,. IIFIli. Now choose
unitary matrices U, V, W such that

(2.14) =UFV=(I O) Kc=-Cx

and UFGW >- O. Put ( V*GWand/ V*RV. Then X(/, (;/) X(F, G; R) and
IIFIli Ill’lie, which allows us to work with/,
Thus we can assume

as in (2.14) and

(K 0)F=
0 0

(2.15) FG (FG)* >= O.

Let G be partitioned as

L G12) Ctt"G=
G G_

L

then (2.14) and (2.15) imply KL >= 0 and G12 0. We also note that

(2.16) IlFal]i Ilgtl]i.

Define R e Ck k as

where A is the matrix (2.11). Then

FR F* (KL + , 00)
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and (2.12) yields

+ 5N
0

where

L*L
N= G’G-

0

The following estimates are obvious:

Hence

and

0

IINII, IINII [Ia*alloo 2,

IIFRF*II, Ilgt + EII, Ilgtlli+ k

IIG*R-’Glli < IIKLIIi+ 6IINIIi -< IIKLII, + 52.

From (2.16) and the arithmetic-geometric mean inequality we obtain

X(F, G;R) <- IIFa[l+ 1/2(k+
which completes the proof of (2.8).

We now deal with (2.9). Assume FG q: O. To show that there is an S e S’ such that

(2.9) IIFGIIo IIFIIoo IIGIIo
we use Lemma 2.5. Let T e 6t be such that

0 0 KL

D diag (d, &). Then FG 0 implies D 0 and we can assume d max &.
Choose > 0 such that dl > Xmax KL and put

0 -I
Then the unit vector el (1, 0, 0)r is a common eigenvector of SF*FS* and
S-*GG*S-1 which for both matrices belongs to the largest eigenvalue. According to
Lemma 2.2, this implies (2.9).

In the cases 1, 2 we see from Lemma 2.1 that

FG FS 2i S- G 2i

if and only if

or

S-GG*S-* aS*F*FS,

GG* RF*FR

a>O

with R a/2SS* > 0. From Lemma 2.6 we know that (2.13) is equivalent to the rank
condition (2.10).

A problem in electric circuit theory led Flanders [3], [4] to a functional on ’ which
involves an arithmetic mean of traces. We phrase his result in our notation.
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Then

(2.17)

THEOREM 2.7 [3]. Let F, G* Cp k be given. For R > 0, R Ck k define
f(F, G;R) 1/2([IFRF* [11 -- [[G*R-GI[ 1).

(a) IIFGll, inf f(F,G;R);
Re

(b) f(F, G;Ro) IIFGII ,
for some Ro > 0 ifand only if(2.10) holds.

The results for in (2.9) can be derived from (2.17) and Lemma 2.1. We point
out that in our proof of (2.9) the construction of an approximating R is straightforward
and works for 1, 2, .

3. The rank condition and balanced realizations. We return to realizations and the
factorization H MoMc, H 4: O. With F Mo and G Mc Theorem 2.3 settles the
problems raised in 1. The fact that Mo and Mc are the observability and controllability
matrices ofthe linear system (1.2) leads to a different interpretation ofthe rank condition
(2.10). It will be shown that (2.10) holds if and only if each controllable mode of (1.2) is
also observable and vice versa. For asymptotically stable systems this means that there
exists a state space transformation such that the transformed system has a balanced
realization.

THEOREM 3.1. Let the realization

(1.1) W(s) C(sI-A)-B,
W 4: 0, be given.

(a) Then there exists a realization

(1.4) W(s) (sI-d)-B
isomorphic to (1.1) with observability matrix 21710 and controllability matrix hYlc such that

IIHII- I1oll IIrcll
(b) In the case 1, 2 there exists for any e > 0 an isomorphic realization with

observability and controllability matrices Mo and Mc such that

ro =, 2i < nil, + .
There is an isomorphic realization (1.4) such that

Ilnlli I1o11=i IIll=i, 1,2,

ifand only if

(3.1) rank Mo rank Mc rank H.

(c) The condition (3.1) holds ifand only ifthere is a nonsingular T such that

(3.2) T-1AT=(Ao1 A20 )’ T_B=(BI)o CT=(CI,O)

where the pair (A, B) is controllable and (A, C) is observable.
Proof Only (c) has to be proved. The other statements are contained in Theorem

2.3. According to the decomposition theorem for linear systems [5], [7] there is a non-
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singular T such that

(3.3)

//A 0 A13 0

T-1AT= /A21 A22 A23 A24 /0 A43 A44

T-1B= B2 CT-- (CI O, C3, 0),

where the pair

A2

is controllable, and

(AIlAI3)0A33
(C1’C3)

is observable. Let A0 be of order k; kj.. Then rank Mc kl + k22, rank Mo kl + k33
and rank H= kl. Hence (3.1) is equivalent to k22 k33=0 and (3.3) reduces
to (3.2).

DEFINITION 3.2 [8]. Let

(1.1) W(s)=C(sI-A)-IB
be a realization with Re ),(A) < 0 and let the controllability and observability Gramian
of (1.1) be defined as

P eAtBB*eA’t dt, Q eA*tc*CeAt dt.

The realization (1.1) is called balanced if P Q Z where Z is a diagonal matrix. We
say that (1.1) can be balanced if it is isomorphic to a balanced realization.

The matrices P and Mc, respectively, Q and 540, are related to each other.
LEMMA 3.3 (see, e.g., [2, p. 79]). Assume Re ,(A) < 0. Then

(3.4) P= McRM* Q MSRMo

for some R >= 0 and

(3.5) rank P rank M, rank Q rank Mo.

THEOREM 3.4. A realization W(s) C(sI- A)-IB with Re (A) > 0 can be balanced
ifand only if

(3.1) rank Mo rank Mc rank H

or equivalently (3.2) holds.
Proof If there is a T such that (3.2), then

P= T(PO 00) T*’ Pi eAltBl Bfeat dt
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and

/ f00 0 T-l’ QI eA]tC’Cl east dl.

As W(s) C(sI- A)-B is a minimal realization and Re ,(A) > 0 there is a T (see,
e.g., [6, p. 1129]) such that TP T{ T-{*Q Ti- Z with a diagonal Z. Hence x
SY with

S=To I

is a balancing transformation.
Conversely let us assume that (1.1) can be balanced. Because of (3.4) we have P

QP Q M*oRHRM* which implies rank P rank Q _-< rank H. On the other hand,
rank H =< rank M, a o, c, and (3.5) yields (3.1).
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RECURSIVE LEAST SQUARES ALGORITHM FOR
LINEAR PREDICTION PROBLEMS*

SANZHENG QIAO’{"

Abstract. A new triangularization technique is presented for solving linear prediction problems. The al-
gorithm is based on the exploitation of the special structure that problems of this type exhibit. The reduced
triangular system and the error are computed recursively and the problem is solved when the optimal order has
been found. The computational complexity of this algorithm is better than existing methods. In addition, good
numerical properties are expected of the method.

Key words, linear prediction, Toeplitz, least squares problem, lattice algorithm, orthogonalization, Givens
rotation, Householder transformation
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1. Introduction. Let (t;) be a time series with a finite number of nonzero terms, say
ti 4:0 for =< _-< n. In the linear prediction problem, this signal is modeled by a linear
combination of its past values. The predictor parameters al, -’-, av (p < n) are then
found to minimize the error function

n+p

(1.1) E(p) (ti+alti-i +’’" +avti-v)2.
i=1

This problem can be solved by the autocorrelation normal equations method [9]. Levinson
[8] derived an elegant recursive procedure for solving equations of this type. His method
is applicable to equations with a general fight-hand-side vector. By making use of the
special structure possessed by the fight-hand-side vector in the normal equations, Durbin
[4] derived another method that is twice as fast as Levinson’s. However, it is known that
the least squares problems are better solved by the orthogonalization methods than by
the normal equation techniques [5]. An orthogonalization scheme called the lattice al-
gorithm contributed by Itakura and Saito [6] and Cybenko [2] offers a better alternative.
Later Cybenko [3] generalized the lattice algorithm to apply to general Toeplitz matrices.
Among the important papers on lattice methods, Makhoul 10] presented a class ofstable
and efficient algorithms, and Lee, Morf, and Friedlander [7] gave a class of recursive
least squares ladder estimation algorithms. Recently, Sweet 13] and Bojanczyk, Brent
and de Hoog [1] proposed new QR decomposition algorithms for general Toeplitz ma-
trices. Although the orthogonalization methods have better numerical properties, they
usually require more computation.

In this paper, a new recursive algorithm for solving the linear prediction problem
is described. This method recursively computes the error E(p) without producing the
intermediate solution ai. When it detects the error curve becoming flat, it then solves
the linear prediction problem for the optimal p. This technique is based on Qiao’s previous
work 11 in which a new fast orthogonal factorization algorithm for general Toeplitz
matrices was derived. Numerical experiments showed that this algorithm had good nu-
merical properties. Moreover, by making the use of the special structure, this method is

Received by the editors September 2, 1986; accepted for publication (in revised form) September 16,
1987. This work was supported by a fellowship funded by the U.S. Army Research Office through the Mathematical
Sciences Institute of Cornell University, Ithaca, New York.

f Center for Applied Mathematics, Cornell University, Ithaca, New York 14853.
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almost as fast as the normal equation methods using fast Toeplitz algorithms and five
times as fast as the lattice algorithm.

In 2, the problem setting and some notation is introduced. The algorithm is de-
scribed in 3 and a brief remark is made in 4.

2. Problem setting. The linear prediction problem (1.1) can be formulated as a
matrix least-squares problem by writing

(2.1) T(p)=

and

to t-1 t-2 t _p

t to t_ t2-p

t.2 t! to. t3 7

tn + p- tn + p 2 tn + p tn

a(p)

a t
a2 t2
a3 x(p) t3

tn "+ p
where ti 0 for < or > n. The problem then becomes

(2.2) min E(p) T(p)a(p) + x(p)ll.

The correlation method, in matrix terms, is the method ofnormal equations. The solution
of the following normal equations:

T(p)TT(p)a(p) T(p)rx(p)
is the solution of (2.2). The QR decomposition of T(p),

(2.3) T(p) Q,(p)R(p)

where Q(p) is an order n + p orthogonal matrix and R(p) is (n + p) p and an upper
triangular matrix, is a better alternative [5], [12]. If Q(p) and R(p) are partitioned as

(2.4) Q,(p)=(Q(p),Q2(p)) and R(p)=[R(p)]
[ J0

where Q(p) consists of the first p columns of Q(p) and R(p) is a p p upper triangular
matrix, then (2.3) gives

(2.5) T(p) Q(p)R(p).

The decomposition above is called an orthogonal factorization (triangularization). Then
the solution to (2.2) satisfies the following triangular system:

(2.6) R(p)a(p) -Q(p)rx(p).

In this paper, we assume that T(p) has full column rank, i.e., at least one entry of T(1)
is nonzero, and that the diagonal ofR(p) is positive. The QR decomposition (2.3) is then
unique.

Before we solve (2.2), an important decision that usually has to be made is the
determination of an "optimal" p. Clearly, in order to reduce the computation and to
minimize the possibility of ill-conditioning, we would like to obtain the minimum value
of p which is adequate for the problem (as p increases, T(p) may become more ill-
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conditioned). It is known that after some P0, the error curve remains flat for p > P0 when
the signal model is exactly autoregressive [8]. So a simple test to obtain the optimal p is
to check when the error curve becomes flat. One suggestion is the use of the following
threshold test:

E(p+ 1)
(2.7) -<6.

E(p)

When the test above is satisfied for several consecutive values of p, the error curve is
then considered to have flattened out. The object of this paper is to present a scheme for
the linear prediction problem by computing the orthogonal factorization. While increasing
p, this method recursively computes R(p) and applies the test (2.7) without solving for
a(p). When the optima] p is reached, it then computes the solution a(p). In terms of
computational costs, this method is better than the prevailing methods.

3. The algorithm. Let S denote the circulant shift operator:

S=
I

It follows from (2.1) that

(3.1) T(p + 1) T(p), y(p))
x(p) T(p)

and x(p + 1)
0

where

(3.2) T(p)=
0 j

and y(p)= +x(p+l).

To derive the algorithm, we need the following lemmas. The proofs can be found in the
Appendix.

LFMMA 1. IfT(p) Q(p)R(p) and T(p + 1) Q(p + 1)R(p + 1) are two orthogonal
factorizations, then R(p + 1) and Q(p + 1) can be partitioned as

(3.3a) R(p+ 1)=(R(p),rp+ ,) where R(p)=
0T

and

(3.3b)

(3.4)

then

LEMMA 2. Define
u(p) Q(p)Tx(p);

(3.5) u(p+l)=[ u(p)]u+,
and

(3.6) E(p + E(p) u; +1.
Lemma says the first p columns ofR(p + 1)(Q(p + 1)) are identical to the columns

of R(p)(Q(p)) except for the zeros at the bottom. Lemma 2 indicates that u(p) is a
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subvector of u(p + 1) and E(p + 1) can be obtained by subtracting Up2 from E(p). Then
it is clear that R(p), u(p) and E(p) are given recursively, if ue and re + can be computed
from u(p 1) and re.

We first describe how ue is given by re and u(p 1). The definition of u(p) in (3.4)
implies that u(p) is the solution of the triangular system

R(p)’u(p) T(p)Vx(p).

Then by Lemma 1, ue is given by the last equation of the above system, and using (3.1)
and (3.2) we get

(3.7) ru(p) (Sex(p))’x(p).

Second, we show the computation of re +l. Suppose T(p) has QR decomposition
(2.3), and that from (3.1) we have

Or ]T(p+l)= v(p) 0
0 Or

where vector v(p) Q(p)rx(p). Then the matrix in (3.8) is triangularized by a product
of Givens rotations W Wl’" W, + e, i.e.,

l/V1 Wn + p I) le

where each Wi is an (i, + 1)-plane rotation and el (1, 0, 0). If we define
2 2(3.9) rti+l=rt-ui for l<-i<=p withr/2=l[x(p)[[22,

then each W/(i 1, p) is determined by the following equation:

where ci and s,. are the cosine and sine parameters for the rotation W. Specifically,

(3.10) ci u/ri, si ri + l/ri.

Assume W is chosen so that the diagonal of the resulting triangular matrix is positive.
Because of (3.5), the quantities re, WI, We- are the same as for the lower-order
systems. We can therefore assume that re, W, "’, We_ are calculated in the previous
steps. By the above argument, re/ and We are given by (3.9) and (3.10) with p. Now
the desired re /1 is obtained by

(3.11) Wl’"we[re]"0
Noting that re is not affected by Wp / 1, W, / e and that QR decomposition is unique,
we get . / v(pl =(p+ .

0 or

Finally, by comparing (3.9) with (3.6), we see that

r+ E(p) with E(0)=
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Thus the test (2.7) is simply

E(p+ ) .+(3.12)
(p) + -s+, =c+, <.

We conclude this section by presenting the following algorithm.

ALGORITHM.
Initialize p 1, rp [Ix(P)[I2 and 2 i[x(p) 22,
repeat

Solve up from u(p 1) and rp using (3.7);
Update r/p2+ r/p

2 up,
Compute Wp from (3.10);
Find rp + by (3.11);
p-p+ l;

Until c2_ < i for several consecutive steps;
Solve up from rp and u(p 1) using (3.7);
Back solve R(p)a(p) -u(p).

If we refer to a floating point multiplication and addition as a FLOP, then the
algorithm above requires only about np / 3p2/2 FLOPS. The lattice algorithm needs
approximately 5np FLOPS [2].

4. Concluding remarks. This paper has described a triangularization approach to
solving the linear prediction problem. This algorithm is among the most efficient methods
yet devised. Moreover, it computes the error E(p) recursively and finds the optimal p. A
slight modification can adapt the method to solving the discrete-time Wiener filtering
problem, in which li in (1.1) is replaced by xi so that the fight-hand-side vector x(p) is a
general column vector.

Appendix. Proofs of lemmas.
ProofofLemma 1. Let Q(p + 1) and R(p + 1) be partitioned as follows:

Q(p+ 1)=[O’(p),qp+] and R(p+ 1)=[/’(p),rp+]

where

Q’(p)=
hr

and R’(p)=
0r

By the partitioning of T(p + 1) given in (3.1) and (3.2), we get

(A1) T(p) Q’(p)R’(p) and Or= hrR’(p).

So, because R’(p) is nonsingular, the vector

(A2) h=0

is null, implying that Q’(p) must be orthogonal, for otherwise the first p columns of
Q(p + l) are not orthogonal. Thus, the first equation in (A1) is the orthogonal decom-
position of T(p). Hence Q’(p) Q(p) and R’(p) R(p), under the assumption that
diagonal elements of both R’(p) and R(p) are positive. These relations, together with
(A2), complete the proof.
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ProofofLemma 2. The definition of u(p) implies that

(A3) R(p+ 1)Tu(p + 1)= T(p+ 1)Tx(p+ 1).

Denote

(A4) u(p+l)=[ z ]"u+l
It then suffices to show that the vector z satisfies

R(p)Vz T(p)x(p),

which can be done by partitioning (A3) and substituting (3.3a), (A4), (3.1), and (3.2).
The second part of the lemma follows from the first part, (3.1), and

E(p) [[x(p)[[2- [[u(p)[[22.
This can be proved by noting (2.3), (2.4), (2.6) and

E(p) T(p)a(p) + x(p)[[22

I[Q(p)(T(p)a(p) + x(p))[]2

[[R(p)a(p) + Q(p)Vx(p)H + [[Q(p)Tx(p)[[2

[[Qz(p)Tx(p)l[22

]]x(p)]]2- ][Q(p)Tx(p)]]2.
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A GUIDE TO THE ACCELERATION OF ITERATIVE METHODS
WHOSE ITERATION MATRIX IS NONNEGATIVE AND CONVERGENT*

G. AVDELASf, J. DE PILLIS:I:, A. HADJIDIMOS, AND M. NEUMANN

Abstract. For an n n nonnegative matrix B whose spectral radius is less than unity we consider the
acceleration of the fixed-point iteration scheme

(1) Xj Bxj "ql-

by two parameter-dependent techniques: the extrapolation method

(2) z [coB + (1 w)B]z+ wc

and the second-degree stationary method

(3) u wBu+ w)uj_ .qt_ wC.

It is shown whether, when B is (also) irreducible, it is possible to accelerate (1) and, if so, whether technique (2)
or (3) provides the best acceleration, which is largely determined by the cyclicity p ofB. In this paper all possible
values ofp are analyzed. In the case when B is reducible, the possibilities for accelerating (1) can be determined
with the aid of the Frobenius normal form of B.

Actually, one motivation for the present work is an observation that if B is an n n nonnegative matrix
whose spectral radius is less than 1, then for no decomposition of B into B B1 + B2, where both B and B2
are nonnegative matrices, does the second-degree iterative method

wj+ Bw+ B2wj- + c

attain a convergence rate superior to the scheme in (1).

Key words, iterative methods, acceleration of convergence, nonnegative matrices

AMS(MOS) subject classifications, primary 65F10; secondary 15A06, 15A18

1. Introduction. In numerical linear algebra, fixed-point iteration, schemes of
the form

(1.1) Xj+l=BXj+, j =0, 1,

are often used to compute an approximate solution to the nonsingular system

(1.2) Ax (I- B)x c.

It is well known that the iteration scheme (1.1) converges to the solution to (1.2) from
every initial vector x0 ifand only ifp(B) (here p(. denotes the spectral radius ofa matrix)
is less than unity. Moreover, it is customary to adopt the quantity p(B) (or sometimes
-In (o(B))) as a measure of the rate of convergence of (1.1) to the solution to (1.2).

If o(B) is not much less than 1, then the scheme (1.1) has a poor rate of convergence
and we may seek to accelerate it. Of the several techniques which have been suggested
for this purpose in the literature, two will be of interest to us here. The first technique
consists of converting scheme (1.1) to a second degree stationary linear iteration process
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which has the form

(1.3) yj+l=Blyj+B2yj_l +c, j =0, 1, -...

The second technique consists ofintroducing an iteration parameter w 6 \{0}, frequently
referred to as an extrapolation parameter, and performing the extrapolated itera-
tion process

(1.4) zj+l=B,ozj+wc, j-0, 1,

where

(1.5) Bo := oB + (1 o)I.

We then ask for an oa Oopt which minimizes o(B) (see, for example, Isaacson and Keller
1966, pp. 73-78]).

Consider for a moment the second-degree scheme of (1.3). It is readily observed
that this scheme can be embedded, in fact identified with, the 2n-dimensional first-degree
iterative scheme given by

showing that we can use

to measure the rate of convergence of (1.3).
In this paper we shall only be concerned with the acceleration of fixed-point iteration

schemes (1.1) in which the matrix B (bgj) is nonnegative, that is, bg -> 0, i, j 1,
n. We shall always assume that 0(B) < 1. Then, as is well known, A I B is a nonsingular
M-matrix. We mention that many of the properties of nonsingular M-matrices, and the
various applications which give rise to these matrices, are discussed in Berman and Plem-
mons [1979] and Varga [1962].

In the first result of this paper (cf. Theorem 2.1) we show that if the second-degree
scheme (1.3) is obtained from (I. 1) by letting

(1.8) B B + B2, Bl, B_

_
0,

then (1.3) does not possess a superior rate of convergence to (1.1). This result shows that
for 0 < o =< 1, the second-degree stationary iteration method

(1.9) uj. + ooBu+ (1 oo uj_ + wc,

which we derive from (1.4) by setting Bl oaB and B2 (1 oo)I, does not possess a
better rate ofconvergence than the scheme in (1.4) for oa’s in this range. We are therefore
led to ask the following questions:

(a) Under what additional assumptions on B does the second degree iteration scheme
in (1.9) have, for some w e R\[0, ], a superior rate of convergence to the extrapolation
scheme (1.4) when the extrapolation parameter varies over all oa’s for which (1.4) converges
and vice versa?

(b) Under what additional conditions on B do neither of the schemes (1.4) and
(1.9) provide a means to accelerate the convergence of the "original" scheme (1.1)?

We shall attack the above questions by assuming at first that our matrix B, which
we have previously assumed to be nonnegative with o(B) < 1, is also irreducible. We
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shall then use the Frobenius normal form of a matrix to consider the answer to the same
questions when B is reducible. As background information concerning the question in
(a), we mention that in the case when B is irreducible it can be shown, from the papers
by de Pillis and Neumann 1981 ], Hadjidimos 1983], 1986], Hughes-Hallett 1981 ],
and Kulisch [1968], that

(1.10a) 0 < o < ifB is p-cyclic, p > 2,
p(B,o) < when + p(B)

(1.10b) w e (0, w") for some w" > o’ if B is primitive.

In Lemma 2.1 we show that when B is irreducible, the range of o’s for which the second-
degree scheme in (1.9) converges is at least o’ given in (1.10a).

The answers which we provide to the above questions can be briefly summarized
as follows:

(i) When B is irreducible p-cyclic, p >= 3, then neither scheme (1.4) nor scheme
(1.9) provides for any o a rate of convergence which is superior to (1.1).

(ii) When B is irreducible and 2-cyclic, then the second-degree iteration scheme of
(1.9) attains for some o opt > a rate of convergence which is superior to both the
"original" scheme (1.1) and the extrapolation scheme (1.4).

(iii) When B is irreducible and primitive, then both schemes (1.4) and (1.9) attain
a rate of convergence superior to (1.1). However, in general, which of the acceleration
schemes (1.4) or (1.9) will provide optimal acceleration to (1.1) can depend on the structure
of the convex hull of the eigenvalues of B.

The results above are stated rigorously in Theorem 3.1 and we use several lemmas
preceding this theorem to provide a substantial part of its proof. The discussion on the
acceleration of the scheme in I. in case B is reducible is given following that theorem.

We finally mention that most of the proofs to our results in 3 are based on the
construction ofcapturing ellipses and the determination ofsuch ellipses which are optimal.
In so doing we utilized results of de Pillis [1980], Avdelas, Galanis, and Hadjidimos
[1983], Young [1971, Chap. 6], and Young and Eidson [1970].

2. Further background material and initial results. Let B (b0.) be an n n real
or complex matrix. B is called irreducible if for no permutation matrix P,

(2 1) pBpr=[ J12]0 /}2,

where/ and /22 are square matrices. It is well known that the irreducibility of B is
equivalent to its directed graph being strongly connected. Iffor some permutation matrix
P, (2.1) holds, then B is said to be reducible. In this case there exists a permutation matrix
Q such that

B Bk

(2.2) QBQr 22

0 Bkk
where each diagonal block is square and irreducible or the null matrix. The matrix
on the fight-hand side of (2.2) is called the Frobenius normalform ofB (e.g., Berman
and Plemmons [1979], Varga [1962]).
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Suppose now that B is an n n nonnegative and irreducible matrix. Then the
spectral radius ofB is a positive eigenvalue of B. Moreover each eigenvalue X ofB with
X to(B) is simple. The number ofdistinct eigenvalues ofB with moduli to(B) is known

as the cyclicity of B. If the cyclicity ofB is p, then the eigenvalues k ofB with k[ to(B)
are given by j to(B)e2’/p, j 0, 1, p 1. When p 1, B is called a primitive
matrix. Ifp > 1, then according to a theorem of Frobenius (see Varga [1962, Thm. 2.8])
there exists a permutation matrix P such that

0

pBpr
Be- l,p

/pl 0

where the diagonal blocks are all null square matrices.
In the first result of this paper we shall show that the second-degree stationary

iterative scheme (1.3), induced by the iterative process (1.1) in accordance with (1.8),
does not lead to a scheme with a superior rate of convergence compared to (1.1).

THEOREM 2.1. Let B be an n n nonnegative matrix with to(B) < 1. Consider the
iterative schemes (1.1) and (1.4), where Bl and B2 satisfy (1.8). Then

(2.3)
to(B) <= to([Bl B2

<= pl/2(B).

Moreover, when B is irreducible, then the inequalities in (2.3) are all strict.

Proof Recall that a splitting of a square matrix C into C M N iscalled regular
if det (M) 4: 0, M-l >__ 0, and N >_- 0. In our proof we shall make use of a comparison
theorem for the rate of convergence of iteration matrices induced by regular splittings
due to Varga 1962, Thm. 3.15].

Consider the three splittings of the (2n) (2n) matrix C given by

(2.4) C’=
-I I

I 0

(2.5b)
0 I I 0

(2.5c) =[ -B o]"
All three splittings are easily observed to be regular. Moreover,

(2.6)
I 0 0 I 0

Now, as to(B) < 1, C is invertible and can be expanded in a Neumann series. This easily
shows that C has a nonnegative inverse. Hence, by Theorem 3.13 in Varga [1962], all
three iteration matrices induced by the splittings in (2.5a-c) have a spectral radius less
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than 1. Moreover by Varga’s comparison theorem mentioned above we have that

I B 0

and so (2.3) is valid. To conclude that strict inequalities hold in (2.3) when B is irreducible,
we need only observe that since A I-B is now a nonsingular and irreducible
M-matrix, A- > 0, showing that

I+A-B]
>0

and the result now follows by Corollary 2 to Theorem 3.15 in Varga [1962]. I--I
An immediate consequence of our theorem is the following statement, the proof of

which is omitted.
COROLLARY 2.1. IfB is an n n nonnegative matrix with p(B) < 1, then for no

o e (0, 1] is the rate of convergence of the iterative scheme (1.9) superior to the rate of
convergence ofthe iterative scheme (1.4).

In view of Corollary 2.1, (1.10), and Theorem 2.2 below, it will be seen that to
obtain a complete comparison between schemes (1.4) and (1.9) we need only consider
their behaviour in the case where o > 1.

We have already mentioned in that (1.10) gives an interval of convergence in w
for the extrapolation scheme (1.4) when B is an n n nonnegative and irreducible matrix
with p(B) < 1. In much of the remainder of this section we summarize results from the
literature concerning the convergence of the second degree scheme in (1.9) which will
be needed in the development of our work in the next section. To this end we need first
to introduce some further notation and terminology.

Let B be an n n matrix. We shall denote by SD (B) its spectral disc, that is,

SD (B) {z C zl --< o(B)}.
The spectral circle of B is then SC (B) 0(SD (B)), 0(. denoting the boundary of a set.
CH (B) will denote the convex hull of the spectrum of B, that is,

CH (B) { z C z kOlk kk with ak >- O, kOlk 1, and Xke r(B)}.
CIZI (B) will denote the smallest convex polygon which is symmetric with respect to the
axes. Thus if S is the infinite strip

S: {zl- <Re(z)< 1},
then

(2.7) o-(B) c:: CH (B) CI2I (B) SD (B) c:: S.

We next define the notion of capturing ellipses which is essentially taken from
de Pillis [1980] and Young [1971, Chap. 6]. Beforehand let us comment that, since all
the ellipses which we shall consider lie in the complex plane and are symmetric about
the real and imaginary axes, it will be convenient to refer to their appropriate semi-axis
as either the real semi-axis or the imaginary semi-axis, as the case may be.
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DEFINITION 2.1. Let K be a subset of S. Then a capturing ellipsefor K is an ellipse
E/ that is symmetric about the axes, passes through at least one point in K, contains K,
and lies in S. In particular, if B is an n n matrix such that tr(B) - S, then a capturing
ellipse is a capturing ellipse for a(B).

If E is an ellipse which is symmetric about the axes and contained in S, it will be
convenient to denote the length of its real semi-axis by Mr(E) and length of its imaginary
semi-axis by Mi(E). As a measure ofthe eccentricity ofE we shall adopt the ratio

(2.8) ,e Mr(E)-Mi(E)
Mr(E) + Mi(E)"

Note that because E c S, the quantity

(2.9)
M,(E) + M(E)

UE’= + [I M2r(E) + M2(E)] I/2

is well defined and strictly bounded above by 1. The importance of the concept of a
capturing ellipse is illustrated by the following theorem.

THEOREM 2.2. (de Pillis [1980], Avdelas, Galanis, and Hadjidimos [1983]). Let B
be an n n matrix whose spectrum lies in S and let E be a capturing ellipse. Thenfor
(2.10) co co(E) / XE#,

co > 0 and the iterative scheme (1.9) converges to the solution to (1.2)from any arbitrary
vectors u_, Uo Rn. Moreover,

(2.11)

Conversely, for any 0 < co < 2 for which the scheme (1.9) converges with a conver-
gence rate

P I
=: #’

there exists a unique capturing ellipse E such that # #, whose eccentricity is given by
,(E) (co 1)/#2, whose real semi-axis is given by

Mr(E) #2 / (co 1)

and whose imaginary semi-axis is given by

Mi(E) #2 (co 1)
co4: 1.

Theorem 2.2, and in particular its result in (2.11), motivate our next definition.
DEFINITION 2.2. (i) Let P be a point in S and let ’e be the family of all capturing

ellipses through P. An optimal capturing ellipse for P is the capturing ellipse in ’e which
minimizes #, as Ep varies over

(ii) Let K be a subset of S and let / be the family of all capturing ellipses for K.
An optimal capturing ellipse for K is the capturing ellipse in Kwhich minimizes #er as

EK varies over r.
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In the next section as a general rule we shall use the "hat" symbol to denote capturing
ellipses which are optimal, e.g., for a point P e S, ,denotes the optimal capturing ellipse
through P. Moreover, under the conditions of Theorem 2.2 on B, we shall denote by
opt the value of w given in (2.10) which is determined when setting E in (2.8) and
(2.9). Thus according to the equivalent statements of the theorem and according to the
discussion in 1, opt furnishes the iteration parameter for which the second-degree
scheme of (1.9) attains the optimal rate of convergence.

Next, using Theorem 2.2 we are now able to show that if B is an n n nonnegative
and irreducible matrix with o(B) < 1, then the interval ofconvergence in w ofthe second-
degree stationary iterative scheme of (1.9) always extends to at least w’ given in (1.10a).
Thus, by (1.10a), when B is also p-cyclic with p >= 2, then the second-degree scheme
always possesses an interval of convergence in w which is at least as large as the interval
of convergence in w of the extrapolation scheme (1.4).

LEMMA 2.1. Let B be an n n nonnegative and irreducible matrix with o(B) < 1.
Then the interval ofconvergence in , (0, ?o), ofthe second-degree scheme (1.9) satisfies
that ?o > ’, where ’ is as given in (1.10a).

Proof According to Theorem 2.1 the interval ofconvergence of (1.9) in w is at least
(0, ]. Consider now the family of all ellipses E possessing the following properties:

(i) Each E e is symmetric with respect to the axes and has a real semi-axis
Mr(E) 1.

(ii) a(B) E for all E .
For each E " let/ denote its union with its interior. Let

Then is an ellipse with M(N) which contains r(B). Evidently, has o(B) >- M(N)
with equality if and only if io(B) r(B). It is now clear by a limiting argument involving
(2.8)-(2.10) that, by Theorem 2.2, the interval of convergence in o of(1.9) extends from
(0, 1] to (0, ), where

2
?o=

q-Mi(8)
f"

Throughout most ofthe next section we shall continue to assume that B is an n n
nonnegative matrix with p(B) < 1. We shall analyse and compare the rates ofconvergence
ofthe extrapolation scheme (1.4), when o satisfies (1.10) with the rate of convergence of
(1.9) for all o’s for which it converges.

3. Comparison between the extrai)olated and the second degree schemes. Our com-
parison of the iterative schemes given in (1.4) and (1.9) will concentrate on determining
the value of 0 for which each of the schemes achieves an optimal convergence rate. It
will be seen that in several cases the optimal value of o for either scheme is dependent
only on the cyclicity p of the matrix B.

We begin with the following observation.
LEMMA 3.1. Let B be an n n irreducible nonnegative with p(B) < and cyclicity

p >= 2. Then for the ectrapolated scheme (1.4), Ooot 1.
Proof. We appeal here to Theorem 3.2 in de Pillis and Neumann [1981 ]. Since B

is irreducible of cyclicity p >= 2, B has p eigenvalues uniformally distributed on SC (B).
But then SC (B) satisfies the requirements for being a capturing circle given in axioms
(3.5) ofde Pillis and Neumann 1981 ]. Since SC (B) is centered at the orion, the conclusion
now follows by Theorem 3.2 cited above. 1-]
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The above result says, of course, that for p >= 2 the optimal extrapolation parameter
for 1.4) is independent ofp. We now proceed to show that the optimal iteration parameter
gopt for (1.9) is a constant equal to only when p >_- 3. Our analysis here utilizes the
notion of capturing ellipses introduced in the previous section. It is motivated by results
in Avdelas, Galanis, and Hadjidimos [1983] which, in turn, are based on an algorithm
of Young and Eidson [1970]. Because of the symmetry about the axes of the capturing
ellipses, Young and Eidson conclude that the optimal capturing ellipse for a(B) coincides
with the optimal capturing ellipse of CI:I (B). They show that the latter can be found by
considering, in a certain order, optimal capturing ellipses through vertices of CI:I (B) in
the first quadrant only.

In our analysis here we shall make use of the following simple observation.
LEMMA 3.2. Let P(a, ) S\{(0, 0)} be a point in the first quadrant and let e

be the optimal capturing ellipse through P. A sufficient condition for the eccentricity
)ge < 0 is that a <= .

Proof According to a simplified form of the equations in (4.24) in Young [1971,
p. 196] given in Avdelas, Galanis, and Hadjidimos [1983], #ge > 0,

2 1/3mr(Jp) [2UCea2/(1 +

and
2Mi(e) [2uf132/(1 ue)] /3

Hence Mr(e) < Mi(l,). [2

We are now in a position to prove the following lemma.
LEMMA 3.3. Let B be an n n nonnegative and irreducible matrix of cyclicity

p >= 3. Then the optimal iteration parameterfor (1.9) is &opt 1.
Proof Consider the eigenvalues of B on SC (B) and construct the smallest regular

q-gon G, symmetric with respect to both axes, such that all these eigenvalues are ver-
tices of G. Observe that ifp is even then q p, while ifp is odd then q 2p. Certainly
G c_ CIZI (B) (see (2.7)) and all vertices of G are vertices of CII (B).

We distinguish between two cases: q(mod 4) 0 and q(mod 4) 2.
Case 1. q(mod 4)- 0. In this case, as illustrated in Fig. 1, G, and hence

CIZI (B), have vertices on both axes, P(o(B), 0) and Q(0, o(B)), respectively. Then
the optimal capturing ellipse/ for CI2I (B), and hence for a(B), must have semi-axes
Mr(), Mi() >= o(B). But then according to the results given in displays (4.17)-(4.18)
of Young [1971, Chap. 6], necessarily, Mr(E) Mi(E) o(B) showing that &opt
by (2.8)-(2.10).

Case 2. q(mod 4) 2. In this case, as illustrated in Fig. 2, G has a horizontal edge
linking its highest point in the first quadrant, Q :- Q(o(B) cos 0, o(B) sin 0), where
0 (1/2 1/q)r, with its adjacent vertex T in the second quadrant. Moreover, the ordi-
nate of Q is always greater than its abscissa. To determine the optimal capturing ellipse
for CI2t (B) we now follow the algorithm in Young and Eidson 1970] which is implicitly
given in Young [1971, Chap. 6].

We begin by observing that any capturing ellipse for CI2I (B), and hence for a(B),
must contain both P(o(B), 0) and Q. It must therefore contain (also) all vertices of
CI2I (B) other than P and Q which lie in the region bounded by the spectral circle and
the chord joining P and Q (see Fig. 2). Thus in applying the Young-Eidson [1970]
algorithm for determining the optimal capturing ellipse for CIZI (B) all such vertices can
be discarded.

Consider the ellipse symmetric about the axes which passes through the points
(1, 0), Q, T, and (-1, 0) and note that any capturing ellipse for Q or for a set which
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(-i,0)

Q(O,o())

P (p(B) ,o)

(i,0)

FIG.

contains Q must (also) contain, because of its symmetry about the axes, all vertices of
CIZI (B) in the first quadrant other than Q which lies in the region bounded by ; and the
line segment joining Q and T. Once again the Young-Eidson algorithm permits us to
discard all such vertices in determining the optimal capturing ellipse for CII (B). Thus
to complete the construction of the optimal ellipse it remains to consider all vertices of
CI2I (B). Thus to complete the construction of the optimal ellipse it remains to consider
all vertices of CI:I (B) other than Q in the first quadrant which lie in the region bounded
by the spectral circle and . Let R be such a vertex and observe the following:

(i) By Lemma 3.2, the optimal capturing ellipse/R through R has ,g < 0 and
therefore excludes both Q and P.

(ii) Again by Lemma 3.2, the optimal capturing ellipse/Q through Q must have
a negative eccentricity and hence excludes P.

(iii) The optimal capturing ellipse through P is the line segment joining the points
P and (-p(B), 0) and therefore it excludes both Q and R.

(iv) The symmetric ellipse Ee,n, which passes through both P and R, excludes Q,
as it passes through a point which lies in the interior of the unit circle.

(v) The symmetric ellipse EQ,R, which passes through both Q and R, must have a
real semi-axis greater than p(B) and must contain P in its interior.

(vi) The symmetric ellipse Ee,(, which passes through both P and Q, contains R.
From (ii), (v), and (vi) we see that

Mr(Q.) < p(B) M,.(Ep,Q) < Mr(EQ,).

Consider the family a of all capturing ellipses passing through the point Q and define
the function a: a -- [a, 1) by

a: a(Ee) Mr(Eo_),

For the possible locations of eigenvalues of nonnegative and stochastic matrices, see the paper by Dmitriev
and Dynkin 1945].
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Recall that for a given ellipse the imaginary axis can always be expressed in terms of its
real axis and in terms of the coordinates of a point through which it passes. Hence we
obtain, on identifying u Ee with "0" in Young [1971, Chap. 6, eq. (4.27)], that

Thus Ee,Q is the optimal capturing ellipse for Cfl (B). Moreover, Ee,Q is precisely
the spectral circle SC (B) and hence &opt by (2.10) because ee,o 0. This completes
the proof.

We now come to the consideration of the behaviour of the second-degree scheme
(1.9) when B is 2-cyclic.

LEMMA 3.4. Let B be an n n nonnegative irreducible 2-cyclic matrix with p(B) <
1. Then the optimal iteration parameter optfor the iterative scheme (1.9) satisfies

COop > 1.

Proof By Romanovski’s theorem (e.g., Varga 1962, Thm. 2.4]) with every e r(B),- e a(B). Also we know that as B is a real matrix, with every k e a(B), e (B). Hence
the spectrum of B is symmetric about the real and imaginary axes and so CIZI (B)
CH (B). Moreover, only two vertices of CIZI (B), (p(B), 0) and (-o(B), 0) lie on SC (B).

It is a freshman calculus exercise to show that there exists an ellipse E, symmetric
with respect to both axes, such that Mr(E) p(B) and Mi(E) < p(B) and such that E is
a capturing ellipse for CH (B). Thus, by (2.9),

IE < p(B).

But then, by (2.8) and (2.10), opt q: 1. Notice that for E, co co(E) + ke# > 1.
That oot must be greater than is now an immediate consequence ofCorollary 2.1.

We remark that to find the optimal co for the iteration scheme (1.9) when B is
2-cyclic we must follow the steps of the Young-Eidson [1970] algorithm as was shown
by Avdelas, Galanis, and Hadjidimos [1983]. In the case when the spectrum ofB is real,
an explicit formula for opt has been obtained essentially by Golub and Varga [1961]
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(see also Niethammer [1967]). It is the familiar expression

(3.1) ot

To recoup: what we have accomplished so far in this section is to establish the
behaviour of the iteration schemes (1.4) and (1.9) when the cyclicity of B is at least 2.
We now come to the comparison of these schemes when p 1, that is, when B is
primitive. In this case we shall exhibit, by means of two examples, that whether scheme
(1.4) or scheme (1.9) attains a superior rate ofconvergence depends on which part ofthe
spectrum ofB lies in the interior of SD (B).

Example 3.1. Let

0
0 0

(3.2) B
0 0

.144 .108

0 0
0

0
.04 .3

Here a(B) {.8, -.5, +.6i and o(B) .8. By following the analytical algorithm for
determining the best extrapolation parameter for (1.4) of Hughes-Hallet [1981] or the
geometrical algorithm obtained by Hadjidimos [1983], we can show that the optimal
extrapolation parameter for B in (1.4) is Wopt 20/17 1.1765, which yields

o(Bopt) .7647.

To find the optimal iteration parameter o.pt for the second-order iteration scheme (1.9),
we first note that in the present example CH (B) has only two vertices in the first quadrant
P(.8, 0) and P2(0, .6). In this case the application ofthe Young-Eidson 1970] algorithm
results in an optimal capturing ellipse with Mr() .8 and Mi() .6. Thus by (2.8)-
(2.10), opt 50(1 .6V)/7 1.0819 and

/-opt-/.t/ 5(1 --.6V) .7574 < ,o(B,,,o,,,).
We therefore see that for B in (3.1) the second-degree scheme of (1.9) has a rate of
convergence superior to that of the scheme in (1.4).

We comment that because of the spectral configuration ofB in (3.2), we could have
determined oot and Uopt from Wrigley’s [1963] formulas which coincide with equations
(4.14) and (4.15) in Young 1971, Chap. 6].

Example 3.2. Let

(3.3)
.8 .OO5 0 ]B= .02 .8 .005
0 .02 .8

Here a(B) {.8, .8

_
.01V} and o(B) .8 + .01 f. The fact that all eigenvalues of B

are now real simplifies the problem of determining Woot for (1.4) and opt for (1.9).
For (1.4) we see by (7) and (8) in Isaacson and Keller [1966, p. 76] that Woot 5, in
which case

o(B6oopt)---,05 ]( .0707.

To determine the optimal iteration parameter for (1.9) we first notice that CISI (B) has
only one vertex in the first quadrant which is (o(B), 0) and so the optimal capturing
ellipse/ for CIZI (B), and hence for r(B), has Mr(l#) o(B) and Mi(l#) 0. From
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(2.8)-(2.10) we obtain that opt 2/(1 + /1 p2(B)) , 1.2653 and

Thus p(Bop,) < #opt and we see that here, in contrast to Example 3.1, the extrapolated
scheme (1.4) has an optimal rate of convergence superior to the optimal rate of conver-
gence attained by the second degree of (1.9). We remark that the spectral configuration
of B in (3.2) permits the determination of opt for the scheme (1.9) directly from the
formula in (3.1) due to Golub and Varga [1961].

The results ofthe section are now summarized and included in the following theorem.
THEOREM 3.1. Let B >= 0 be an n n, n >= 2, irreducible nonnegative matrix of

cyclicity p and consider the three iteration schemes (1.1), (1.4), and (1.9).
(i) Ifp >= 3, then Oopt gopt and

p(B) p(B,oopt)= #opt.

That is, no acceleration ofthe "original" iteration scheme (1.1) can be achieved by either
the extrapolation iteration scheme (1.4) or the second-degree stationary scheme (1.9).

(ii) Ifp 2, then COopt 1, opt > and

#opt < P(B,o) p(B).

That is, an acceleration, ofthe "original" iteration scheme (1.1) is always possible by the
second-degree scheme (1.9), but not by the extrapolation scheme (1.4).

(iii) Ifp 1, then the "original" iteration scheme (1.1) can always be accelerated
by either schemes (1.4) and (1.9). However, in general which ofthe acceleration schemes
(1.4) or (1.9) has a superior rate ofconvergence depends on the spectral configuration of
B. In the special case when r(B) is real and is the minimal eigenvalue orb thefollow-
ing hold:

(3.4)

p(B,,,o,) < #opt,

p(B,,,o,) #opt,

#opt < P(B,,,o,,),

/1 p2(B) < u,

/ p(B)= ,
v < [ pZ(B).

Proof The proof of (i) is a consequence of Lemmas 3.1 and 3.3 and the fact that,
when o 1, both iterative schemes (1.4) and (1.9) reduce to the iterative scheme (1.1).
The proof of (ii) is a consequence of Lemmas 3.1 and 3.4. We come now to the proof
of (iii). Assume then that B satisfies the condition in (iii). The fact that (1.1) can always
be accelerated by the extrapolation scheme (1.4) follows from Theorem 3.2 in de Pillis
and Neumann [1981 ]; the details can be found in Hadjidimos [1986]. To see that (1.1)
can always be accelerated by the second-degree scheme (1.9) we first note that, similar
to the case p 2 (see the proof of Lemma 3.4), there exists a capturing ellipse E of
CIZI (B). The same is true for a(B), such that Mr(E) p(B) and Mi(E) < p(B) showing,
by (2.8)-(2.10), that UE < o(B). Next, that (1.4) does not consistently attain a rate of
convergence superior to that of (1.9) and vice versa is an outcome of Examples 3.1
and 3.2.

Suppose now that a(B) is real. Then CIZI (B) is a line segment on the real axes, and
hence it is its own optimal capturing ellipse/, whence Mr() p(B) and Mi() 0 so
that by (2.9),

(3.5) #
p(B)

+ /1 p2(B)
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Next, with u being the smallest eigenvalue of B, it follows according to Isaacson and
Keller [1966, pp. 75-76] that the optimal convergence rate of (1.4) occurs when

and is given by

COop CO
2 (p(B) + )

p(B)-
(3.6) P(B’") 2 -(p(B) + )"
The various claims in (3.4) now follow from the comparison of (3.5) and (3.6). Fq

We conclude the paper by considering the acceleration ofthe iteration scheme (1.1)
when B is an n n nonnegative matrix with p(B) < l, but is reducible. From (2.2) we
know that

k

a(B) IJ a(/j).
j=l

In the spirit ofthe terminology introduced by Rothblum 1975] we shall refer to a diagonal
block in (2.2) as basic if

p(Bjj) p(B).

It is the highest order of cyclicity among the basic blocks which largely governs whether
the scheme (1.1) can be accelerated. Indeed let us now examine all possible cases.

Case 1. B has a basic block of cyclicity p >= 3. Then by following reasonings similar
to those used in the proofs of Lemmas 3.1 and 3.3, we conclude that the convergence of
(1.1) cannot be accelerated by either of the iteration schemes (1.4) or (1.9).

Case 2. B has a block of highest cyclicity p 2. Then by following arguments
similar to those used in the proof of Lemma 3.1, the convergence of (1.1) cannot be
accelerated by the extrapolation scheme (1.4). As for the second-degree scheme of (1.9)
it is clear that CI:I (B) can be captured by an ellipse E whose semi-axes satisfy

Mr(E) p(B) > M(E),

which implies, by (2.8)-(2.10), that the scheme in (1.1) can be accelerated by (1.9). To
find the optimal iteration parameter &opt we must now apply the Young-Eidson [1970]
algorithm.

Case 3. All basic blocks in B are primitive. By reasoning similar to that used in
the proof of Theorem 3.1 (iii), the iteration scheme (1.1) can always be accelerated by
both the extrapolation scheme (1.4) and the second-degree scheme (1.9). As in the case
when B itself is irreducible and primitive, it is not generally possible to determine a priori
which scheme will provide the superior optimal rate of convergence. To find the best
extrapolation parameter COo,t we must follow the algorithms developed by Hughes-Hallet
[1981] or by Hadjidimos [1983]. To find the optimal iteration parameter 3Jo,t for the
second-degree scheme (1.9) we must once again follow the algorithm due to Young and
Eidson 1970].
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ON THE RANGE OF THE HADAMARD PRODUCT OF A POSITIVE
DEFINITE MATRIX AND ITS INVERSE*

MIROSLAV FIEDLER’ AND THOMAS L. MARKHAM

Abstract. Suppose A is an n n real positive definite matrix. This paper characterizes for n 3 the range
ofthe operator A .A-l, where, denotes the Hadamard product. It is shown that the necessary conditions exhibited
by the first author in 1964 [M. Fiedler, Czechoslovak Math. J., 14 (1964), pp. 39-51] are also sufficient in
this case.
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In [2], it is shown that ifA is a positive definite matrix, then the Hadamard product
P A o(A-), has the property that the matrix P I is positive semidefinite and Pe
e, where e is the column vector of all ones. In ], it is even shown that the multiplicity
of as the eigenvalue of P is equal to the maximum number of diagonal blocks in all
possible block diagonal forms to which the matrix A can be brought by simultaneous
permutations of rows and columns.

Then, in [3], the following necessary and sufficient condition for the diagonal entries
Pii of such a matrix P is found:

pl/2 1) < (pl/2 1).2 max, ii ii
i=1

In the present paper, we shall show that in the 3-by-3 case, the just-stated necessary
conditions for a real matrix P to have the form A A-l, A real symmetric and positive
definite, are also sufficient. The explicit form ofA is also given.

THEOREM. Let P (Po) be a real symmetric 3-by-3 matrix. Then thefollowing are
equivalent:

(1)

(i) P A oA-I for some real symmetric positive definite matrix A.
(ii) P I is positive semidefinite, Pe e (e is again (1, 1, 1)7) and

(131/2 1) < (pl/2 1).2 max, ii ii
i=1

(2)
+ P2 + P3 -P3 -P2 ]

P -P3 +P d- P3 -Pl
--P2 --Pl + pl + P2

(iii)

for some real numbers p, p2, p3 satisfying

(4)

(3) PzWP3>--0, Pl-+-P3 >=0, Pl +P2 >--0,

PlP2 +PiP3 +P2P3 >= O,

(PPz +PIP3 + PzP3)2 + 4PlPzP3 >= O.
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(iv) P A oA-, whereA is an elementwise nonnegative and real symmetric positive

definite matrix.
In terms ofcondition (iii), the matrix A can be chosen as that nonnegative matrix

(6)

for which

(7)

al2 al3]a2 a23
al3 a23

2P3 + Q+ Wa22=2+2S+Q+ w’
2p2+Q+ w

a23-2+2S+Q+ w’

a3=
2p + Q+ W

2 + 2S+ Q+ w’

where

(8) S p +p +p3, Q pp+pp3 +pp3
and W is the nonnegative square root ofthe left-hand side in (5).

Proof The implication (i) -- (ii) was proved in [3].
We have that the implication (ii) -- (iii). If (ii) is fulfilled, P clearly has the form

(2) with real numbers Pi satisfying (3) and (4). It remains to prove (5). If Pi are all non-
negative, (5) is fulfilled. Thus, let P3 < 0, say, and denote

(9) P3I m, Wl P +P3, 092 P2 +P3.
Then

(10) O) -0, 0920
and by (4),

091092 m2.
Condition (1) then reads

(1’) (1 + 2m + oo + w2) l/z + <- (1 + w)/2 + (1 + 2)1/2;

condition (5), which we have to prove, becomes

m2)2 4m(m + w)(m + w2) > O.(5’) (oo_

Now, (1’) implies

+ 2m + w + wz + + 2(1 + 2m + w + w2)/z -< + w + + w2 + 2(1 + w)/2(1 + w_)/2,

which is equivalent to

m + + 2m + wl + o_2) 1/2 =< (1 + w)/2( + w2)/.

Again, this implies

m2 + + 2m + o +o + 2m(1 + 2m + o + w2)/2 =< + w + o2 +
which can be rewritten as

2m(1 + 2m +.o + (.02) 1/2 1(.02- m2 2m.
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Both sides being nonnegative, it follows that

4m2( + 2m +o + (.02) 4m2 + 4m(m2 6010)2) -- (0)10)2 m2)2.
The left-hand side being

4m2 + 4m(m2 0)10)2) + 4m(m + 0)l)(m + 0)2),

we obtain the inequality (5’).
We have that the implication (iii) --* (iv). For P given in (2) and pi satisfying (3)-

(5), we have to show the following:
(a) The fight-hand sides in (7) are nonnegative (the denominators are clearly pos-

itive);
(b) The matrix A defined by (6) is positive definite;
(c) P=AoA-.
To prove (a), suppose that, say,

2p3 + Q+ W<0.

Then,

2P3 <-(Q+ W)=<O

and by (3), p -> IP31, P2 >- IP31, so that by (5),

(PP2 +PP3 +P2P3)2 -> 4pp2 IP3 > 2pp2(Q + w) >= 2pp2Q.
Since Q >= 0, we have

which implies

Q> 2pp2,

P3(P +/92) > PIP2,

a contradiction.
To prove (b), we shall show that all principal minors ofA are positive. The diagonal

entries are positive. Now,

2 + 2(p + P2)
(12) 1-aZ2=2 +2S+Q+ W
implies this for minors of degree two by (3). The determinant A ofA is

A a22- a123- a223 + 2R,
where

(13) R=aza3a23.
By (7),

R2 8PP2P3 + 4Q(Q+ w) + 2S(Q + W)2 + (Q + W)
(2 + 2S+ Q+ W)

Since 4ppzp3 W2 Q2,

R2 Q+ w
W)3(Z(W-Q)+ 4Q+ 2S(Q+ w)+(Q+ w)2)

(2+2S+Q+

(Q+ w)2

=(2+2S+ Q+ W)3(2+2S+Q+ W)
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so that

(14) R=(Q+ W)/(2+2S+Q+ W).

Again by (7),

aZz + a23 + a2:3 (2S+ 3Q+ 3 W)/(2 + 2S+ Q+ w),

which easily implies

A =(2+2S+Q+ W-(ZS+3Q+3W)+Z(Q+ W))/(Z+ZS+Q+ w),

i.e.,

(15) A= 2/(2 + 2S+ Q+ W).

Thus A > 0.
To prove (c), observe that

[ ]a223 al3a23- a2 al2a23- a3
A-1

alaa23- alE a213 azal3- a23
a12a23- a13 a12a3- a23 a2

so that by (1 3),

-a212 a23 R-a3.AA-I
-a23 R-a3 1-a2

It then follows easily from (7), (12), (14), and (15) that P AoA-l. Since the im-
plication (iv) --} (i) is trivial, the proof is complete. [2]

For n >= 4, conditions (i) and (ii) of our theorem are not equivalent. To understand
the reason, we return to a concept used in [4].

DEFINITION [4]. Let A be an n n matrix over a field F. The off-diagonal rank of
A is the smallest integer w, with the property that there exists a w w nonsingular
submatrix ofA which does not contain any diagonal entry ofA, and every submatrix of
A of order w + is either singular or must contain a diagonal entry ofA.

In [3, Thm. 3.3, p. 46], the conditions for equality to hold in (ii)-(1) are given. In
the case of equality, it is straightforward to see that P must have off-diagonal rank less
than or equal to 1.

Now consider

P=I+

11

11

P has the property that Pe e, P I is positive semidefinite, and equality holds in
condition (ii)-(1) of the theorem. However, P has off-diagonal rank of 2, so P 4: A oA-for any positive definite matrix A.

For n > 4, we obtain the same conclusion by considering the matrix P (R) In-4,
where In-4 denotes the identity matrix of order n 4.

Observation. The range of the mapping A --} AA- is not convex.
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The matrices

belong to the range.
Indeed, MI A oAi- 1, where

and

where

I289 _818-T" 1
Ml=

_ -25 16 -40]M2 16 25 -40
-40 -40 81

17 2V 2]/-
9 9 3

2/ 10 V
9 9 3

2f
3 - 2

M2 A2 *A

5 4 2/]-

A2 4 5 2fi-
2fi 2fi 9

However, the matrix (1 e)Ml + eM2, for sufficiently small positive e, does not belong
to the range since its diagonal entries

1736 100 19259+--e, -gi-+-i-e, 4 + 77e

do not satisfy condition (ii)-(1). This condition then reads, as O(e2),
868, [_Q 1105+

which is false for e small.
We note that this problem ofcharacterizing the range ofAoA-1 has been mentioned

in [5].
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Abstract. The consistency and solutions of the matrix equations AX XB C, AX +_ XAr C, and
A+_ XA* C are characterized. As a consequence it is shown that Ar (respectively, A*) may be obtained from
A by a consimilarity transformation using a Hermitian (respectively, symmetric) matrix.
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1. Introduction. This paper extends the results of [2] concerning the matrix equation
AX- XB C, where A and B are complex m-by-m and n-by-n matrices, respectively,
and X denotes the matrix obtained by taking the complex conjugate of each element of
X. The equation is said to be consistent for given matrices A, B, and C ifthere is a matrix
X for which the equality holds. In 2 we give closed-form consistency conditions and
particular solutions for this equation. The general solution to the corresponding homo-
geneous equation AX- XB 0 is given in [2], where it is noted that any solution to
the equation AX- XB C can be written as a particular solution plus a complementary
solution to the homogeneous equation. Thus we also obtain the general solution to
AX- XB C.

Square matrices A and B are said to be consimilar if there is a nonsingular matrix
P such that A PB-. Consimilarity first appeared as a change of basis for the matrix
representation of semilinear transformations [8], [9]. More recent interest in consimilarity
arises in the work of Hong and Horn [4]-[6], and in the study of matrix products of the
form UAU r UA-, where U is complex unitary and U v denotes the transpose of U
[7, 4.6].

A consimilarity version of Roth’s theorem is given in [2], namely

is consimilar to

A O

ifand only ifAX- XB Chas a solution; furthermore, ifX is a solution to this equation,
then the consimilarity may be carried out via the matrix

Thus the results of 2 may be ofinterest in simplifying matrix representations ofsemilinear
transformations arising from quantum mechanics.

In 3 we show that the results of 2 are sufficient to characterize solutions to the
matrix equationsA +_ XAr C andA +_ XA* C where A* denotes the conjugate
transpose of A. It is known [5] that A is consimilar to A r and to A*. As an application
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of the results of 3 we show that A is consimilar to Ar via a Hermitian matrix and A is
consimilar to A* via a symmetric matrix.

2. The equation AX XB C. In order to simplify the equation AX XB C
we use a canonical form introduced by Hong and Horn [5] who showed that any
square complex matrix A is consimilar to a direct sum of blocks of the form Jk(X) with
X>= 0, and

[Jk(X)o
with X < 0 or Im (X) > 0, where Im (X) is the imaginary lart of X, I is the k-by-k identity,
and Jk(X) is the k-by-k Jordan block

X O
X

O

Such a direct sum is called a concanonical form for A and is also discussed in [2]. The
set of X appearing in the J(X) of these blocks is called the conspectrum of A and is
denoted by cr(A). Now cr(A) may be determined from r(AA), the spectrum of AA.
Moreover, according to [2, Thm. 3] AX XB C has a unique solution for all C if and
only if cr(A) f’) c(B) is empty, which is equivalent to (AA) fq r(BB) being empty.

Let P and Q be nonsingular matrices such that K PA/5-1 and L QBO_- are the
concanonical forms ofA and B, respectively. Let Y PXQ-1 trst and PC-1 [st
have rows partitioned according to the blocks of K and columns partitioned according
to the blocks of L. Then A- XB C is equivalent to Kf YL PC-I which is
equivalent to KY YL C for all s, t, where K and L denote diagonal blocks of
Kand L, reslgectively. Indeed there are four 19ossible forms for the last equation depending
on the form of the blocks K and L. These are as follows.

Case I. J(X)Y- YJn(#) C with X, # -> 0.
Case II.

[m(Ox) Im ]
_

YJn(u) C with X < 0 or Im (X) :# 0, and/z >- 0.
O

Case III.

[oJm(X)Y- Y
Jn(#)

with X >= 0, and u < 0 or Im (u) g: 0.

Case IV.

Jm(X) o Jn(U)
with X < 0 or Im (X) 4: O, and < 0 or Im (t) 4: O.

These four cases and their possible subcases will be treated in Lemmas 2-5 herein. Our
results will be based on results of [3] and [10] which are summarized in Lemma 1.

In order to portray the relationships between the solutions to these cases we introduce
the following matrix functions. For an m-by-n matrix C and conformal matrices
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U, V let
m-I n-I

,(g, c, v)= ucv-- 1, (g, c, v) u- lcv,
k=0 k=0

g-I v--I

EL(C) ] J’yk(C)(Jr)k, I’R(C) (Jm)k"t’k(c)Jk
k=0 k=0

where Jm Jm(O), V min (m, n), and ,(C) [j when C [c0 ]. Thus -yk(C) C for
k even and -k(C) 7 for k odd. We use several elementary properties ofthese functions,
such as OL(-U, C, V) -eL(U, C, -V) and Oz.(U, CS, V)S-1 ebb(U, C, SVS-), in
the computations below, where we also use e to denote the kth column of the appro-
priately sized identity matrix.

LEMMA 1. Consider the equation Jm(X)Y- YJn(#) C.
(i) If # then there is a unique solution

(2.1) Y= --[Jm, C, J.(U- X)] ,I, [Jm(X- U), C, Jn].

(ii) If X I, then the equation has a solution ifand only ifC satisfies the consis-
tency condition

(2.2) 2z(C)e 0 for rn <= n or eTm2R(C) 0 for rn >= n.

In that case a particular solution is given by

(2.3) Yp -2z(C)J for m <= n or Yp J TmfR(C) for m >= n,

and the general solution is Y Yp + Yc, where Yc is an arbitrary upper Toeplitz matrix.
An m-by-n matrix Y (Yo) is said to be Toeplitz (respectively, conjugate Toeplitz)

if Yi+ l,j+ Yi, (respectively, Yi+ l,j+ 37;,) for all < rn and j < n. We say that a
matrix is upper if it has the form [O T], T, or [], where T is a square upper triangular
matrix. Upper Toeplitz and upper conjugate Toeplitz matrices arise in the solution of
the equations Jm Y- YJn O and Jm Y- YJn O, respectively. Conjugate Toeplitz
matrices were introduced in [1] as solutions to similar equations involving companion
matrices. Below we denote the real and imaginary parts of a matrix C by Re (C) and
Im (C), respectively. We are now ready for our first case, which has three subcases.

Case I. >-_ O, t >= O.
LEMMA 2. Consider the equation Jm(,)Y- YJ,(t) C, where ), t >= O, and C is

an m-by-n complex matrix.
(i) If t then the equation has a unique solution given by

(2.4)
Y= --L[Jm, Re (C),Jn(l- ,)]- i(bz[-Jm, Im (C),Jn(, +

Og[Jm(X- I), Re (C),Jn] i[Jm() + t), Im (C),-Jn].

(2.5)

(ii) If U > 0 then a solution exists ifand only if
fL(Re (C))e 0 for rn <- n or emftg(Re (C)) O for rn >= n.

In this case a particular solution is given by

(2.6) Yp= -fz[Re (C)]Jr- iO[-Jm, Im (C),Jn(2,)] for rn <-_ n,

Yp= Jmr ft[Re (C)]- iR[Jm(2X), Im (C),-Jn] for rn >= n
or
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and the general solution is given by Y Yp + Yc, where Yc is an arbitrary real upper
Toeplitz matrix.

(iii) If 0 then a solution exists ifand only if
(2.7) I’L(C)el 0 for rn <- n or ermI’R() 0 for rn >= n.

In this case a particular solution is given by

(2.8) Yp=-PL(C)Jr form<n= or Yv=JrI’R()m form>n=
and the general solution is given by Y Yv + Y where Yc is an arbitrary upper conjugate
Toeplitz matrix.

Proof By writing Y U + iVand C D + iE in terms of their real and imaginary
parts we see that the equation is equivalent to

(2.9) Jm()k)U- UJn(l)= D,

(2.10) Jm(k)V+ VJn(t.t) -E.

Let H be the n-by-n diagonal matrix H H-a= diag (1,-1, 1,-1,...). Since
HJn(#)H -Jn(-#), (2.10) is equivalent to

(2.11) Jm(X)VH- VHJn(-U) -EH.

If , :/: # are nonnegative, then , :/: -# so that (2.9) and (2.11) have unique solutions.
The real part of Y in (2.4) follows directly from (2.1) which also implies that

V= -z[Jm,-EH, Jn(-#- X)]H= a[Jm(X + t),-EH, Jn]H

bz[Jm,E, HJn(-X- #)H] --[Jm(, q- #),E, HJ,,H]

-I[-Jm,E, Jn(, + #)] -[Jm(X + #),E,-Jn].

This gives the imaginary parts of Y in (2.4), and for case (ii), where 4 -#, it also gives
the imaginary parts of Y in (2.6).

If u > 0, then , 4: -u, so there is a unique solution for the imaginary part of
Y, as we just noted. However, (2.9) may or may not be consistent. Thus (2.5) and the
real parts of (2.6) are obtained by applying (2.2) and (2.3) to (2.9).

If u 0, then the real parts of (2.7) and (2.8) are obtained by applying (2.2)
and (2.3) to (2.9) as above. Also ,

-# so that (2.1 1) is consistent if and only if O
2L(-EH)e for rn _-< n or O ermf(-EH) for rn >- n. Note that for real matrices such
as E, ftI(iEH)H I’i(iE) and fR(iEH)H I’R(iE). Thus the consistency condition for
(2.1 1) is equivalent to

0 [21(iEH)H][He] I’i(iE)e for rn -< n, or

T0 eVm2(-iEH)H emI’(-iE) for rn >- n

which gives the imaginary parts of (2.7). If (2.1 1) is consistent, then a particular solution
for VH is given by

VpH= -21(-EH)J for rn =< n or VpH= Jmft(-EH) for rn >= n,

or equivalently,

iVp [ftL(iEH)H][HJH] -I’l(iE)Jr, for rn _-< n, or

iVp J rm2(-iEH)H J T for rn >= n.

This establishes the imaginary parts of (2.8). The complementary solutions are given by



352 J. H. BEVIS, F. J. HALL, AND R. E. HARTWlG

Theorem 2(2), 2(3) of [2].
Case II. , < 0 or Im ()) 4: 0, and # >_- 0.
LEMMA 3. Consider the equation

0 Im ] ._ yj.(#) C
Jm(X) O

where ) < 0 or Im ()) 4: 0, >_- 0, and C is a 2m-by-n matrL,c. Partition Y and C
conformally into m-by-n submatrices as

YI

Then there is a unique solution oftheform

(2.12) Y=
I?jn(#) + (

Proof The conspectrum of

with Y, ’bL[-Jm, 2 + C,J,(#), In- Jz(u)].

jm(Ox) lmol
and J,() are disjoint, so by Theorem 3 of [2] the equation has a unique solution. When
the equation is written in terms of the submatrices of Y and C we obtain

(2.13) Jm(X) Y1 YJn(#) C
and Y2 YIJn(#) Cl. Thus Y2 YIJn(#) d- Cl, which gives the form of (2.12) and
when combined with (2.13)gives Jm(X)Y yj2(#) W, where W (2 + CiJ,(t).
Since the spectra of Jm() and J(#) are disjoint (, 4: uz), the last equation uniquely
determines Y. This equation may be solved by iteration. Indeed, since Jm(X) Jm +
Im, we have Jm YI + Y[In J2(U)] W, and hence

Yl W- Jm Y] [XI,, j2(#)]-,

which when iterated yields the expression for Y in (2.12).
The proof of the next result follows that of Lemma 3 and is omitted.
Case III. >= 0, and # < 0 or Im () # 0.
LEMMA 4. Consider the equation

Jm(X)Y-
Jn(t.t) 0

where >= O, g < 0 or Im (g) 4: 0, and C is an m-by-2n matrix. Partition Y and C
conformally into m-by-n submatrices Y [Y, Y2] and C [C, C2]. Then there is a
unique solution oftheform
(2.14) [Jm(h)2 C2, Y2] with Y2 R[JZm(’) #Im, C -b Jm(k)2, Jn].

We now come to the last case, which has four subcases.
Case IV. X < 0 or Im (X) 4: 0, and u < 0 or Im (#) 4: 0.
LEMMA 5. Consider the equation

Jm(,) 0 Jn(#) 0
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where ) < 0 or Im ()) 4 O, < O, or Im () 4 O, and C is a 2m-by-2n matrix. Partition
Y and C into m-by-n submatrices

y= Y
Y3 Y4

Then a solution, ifany, has theform

and [C C2]C=
C3 C."

y Y ](2.15/ Y=
fj,() + , f, + (

The blocks YI and Y2 are given below, where W 3 + C2Jn() and W2 CI - 4.
(i) If 3 4 # and 4 , then the solution (2.15) is unique with

(2.16) Y =--L[Jm, Wl,Jn(- X)] R[Jm(X--), Wi,Jn]

(2.17) Y=-z[Jm, W,J,(u-)]= [Jm(--U), W,J,].

(ii) If U < O, then a solution exists ifand only if
(2.18) (Wl)e=O for m n or e(W) O for m n,

(2.19) z(W)el O for m n or e(W2) O for m n.

In this case a particular solution Yv is given by (2.15) with

(2.20) YI=-z(W1)J formn or YI=J(WI) formn,

(2.21) Yz=-(W)J formn or Yz=J(W) formn.
The general solution is then given by

Y= Yv+
where U and V are arbitrary m-by-n upper Toeplitz matrices.

(iii) If h # , then a solution exists ifand only ifthe consistency condition (2.18)
is satisfied. In this case a particular solution Yv has the form (2.15), where Yl is given
by (2.20) and Y2 is given by (2.17). The general solution is then given by

g= g’+[o
where U is an arbitrary m-by-n uer-Toelitz matrix.

(iv) If X X , then a solution exists ifand only ifthe consistency condition (2.19)
is satisfied. In this case a articular solution Y has theform (2.15), where YI is given by
(2.16) and Y is given b (2.21). The general solution is then given b

[o ;jY= Y,+
Jm(X)V

where V is an arbitrary m-by-n upper-Toeplitz matrix.
Proof By writing the equation in terms of the paition submatfices we obtain

(a) Y YJ.(u) C, or Y3 YJ.() + C,.

(2.22) (b) Y4- Y,=Q or Y4= Y,+C,

(c) Jm(X)Y,- Y4J.(U)= C3,

(d) Jm(X)Y- Y3 C4.
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Now (2.22a) and (2.22b) immediately imply that Y has the form of (2.15). Substituting
for Y4 in (2.22c) and for Y3 in (2.22d) we obtain

(2.23) (a) Jm(k)Yl YIJn(x)= C3 + C2Jn(x)= W,

(b) Jm(X)Y_- YzJn(#)= C + C4 W2.

We now directly apply Lemma to the last two equations to yield the desired results.
The complementary solutions are given by Theorem 2(4), 2(6) and Lemma 6(4) of [2].

In summary of the results of this section we have the following theorem.
THEOREM 1. For square complex matrices A and B, where A is m-by-m and B is

n-by-n, let K PAP- andL QBO_- be the concanonicalforms ofA and B, respectively.
Denote the diagonal blocks ofK and L by Ks and Lt, respectively. For a given m-by-n
complex matrix C, partition PCO- [Cst with row blocks conformal to K and column
blocks conformal to L. Then A- XB C is consistent ifand only ifKs st YstLt
Cst is consistentfor all s and t. IfAX- XB C is consistent, then X is a solution ofthis
equation ifand only ifX P-[Yst]Q, where the Yst are solutions ofKs st YstLt Cst
as given in Lemmas 2-5.

Note that if Xs and #t are the conspectral values associated with the blocks Ks and
Zt, then Ks Yst YstZt Cst is immediately known to be consistent if Cst O or if Xs 4:
t and Xs 4: t; otherwise consistency may be checked by using the appropriate condition
(2.5), (2.7), (2.18), or (2.19) as given in Lemmas 2 and 5.

When B A and Q P, Theorem may be applied directly to the equation AX-
XA C. Furthermore, X is a solution to AX + XA C if and only if iX is a solution
to A(i-)- (iX)A =-iC. Next we note that the blocks of/ PA-P- have the same
form as the blocks considered in Lemmas 2-5 and A) +_X C is equivalent to
K(PXfi-) +_ (PXfi-)g PCP-. Thus Lemmas 2-5 are sufficient to characterize solutions
of the equations AX +_ XA C and AX +_ XA C.

3. The equations A +_ XAr C and A +_ XA* C. As an application of the
results of 2 let us consider the special cases ofA+ XB C, where B A7; or B A*.
In order to apply Lemmas 2-5 we will need properties of the reverse identity or
"flip" matrix

F= O .."
O

for which F ff FT;= F- and

(3.1) FJn(#)F J (#).
Let K PAP- be the concanonical form ofA with diagonal blocks Ks, and let G be the
block diagonal matrix with diagonal blocks Gs conformal to those of K such that Gs
F if Ks Jk(X), or

[0 FO] ifKs=[ 0 I]Gs= F Jk(X) O

Thus G (7 G T; G- and GK K 7;G. We will say that G is the block flip matrix
determined by K. Since K T;= P*- AT;PT;, premultiplication by P and postmultiplication
by PT; show that

A+_XA7; C,K+ ZK 7; PCP7; with Z PXP*
(3.2) .KY+ YK PCP7;G with Y ZG PXP*G.
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Similarly K* pr-A*P* so that

A, +_XA * C,K+ZK * PCP* with Z PXPr
(3.3)

,=, K"+_- YI PCP*G with Y ZG PXP’G.
Thus we obtain the following theorem.

THEOREM 2. For square complex matrices A and C, let K PAP-l be the conca-
nonicalform ofA. Let G be the blockflip matrix determined by K, anddenote the diagonal
blocks ofK and G by Ks and Gs, respectively.

(i) IfPCPr [Cst] is partitioned conformally to K, then AX +_ XA T C is consistent

if and only if Ks Yst +- YstKt CstGt is consistent for all s and t. In which case X is a
solution ofA +_ XA T C ifand only ifX P-l[yst]GP*- , where the Yst are solutions
ofKsYst +-- YstKt CstGt as given in 2.

(ii) IfPCP* [Cst] is partitioned conformally to K, then AX +__ XA* C is consistent

if and only if Ks Yst +-. Ystgt CstGt is consistent for all s and t. In which case X is a
solution ofA +_ XA* C ifand only ifX P-[Yst]GP- l, where the Yst are solutions
ofKs Yst "+- Ystgt CstGt as given in 2.

Note that ifX is Hermitian and C is defined by C AX XA r, then C XA
AXr XA T AX -C so C is skew-symmetric. A converse of this also holds in that
ifC is skew-symmetric andAX- XAT C is consistent, then the equation has a Hermitian
solution. To obtain this converse, let X be some solution to the equation. It is then easy
to check that 1/2 [X + X*] is a Hermitian solution. Using (3.2) and (3.3) we can obtain a
little more.

THEOREM 3.
(i) For the equation A- XAr C thefollowing are equivalent:

(a) CT -C and the equation is consistent,
(b) The equation has a Hermitian solution,
(c) The equation has a nonsingular Hermitian solution.

(ii) For the equation AX- XA* C thefollowing are equivalent:
(a) C* -C and the equation is consistent,
(b) The equation has a symmetric solution,
(c) The equation has a nonsingular symmetric solution.

(iii) For the equation AX + XAr C thefollowing are equivalent:
(a) Cr -C and the equation is consistent,
(b) The equation has a skew-Hermitian solution,
(c) The equation has a nonsingular skew-Hermitian solution.

(iv) For the equation AX + XA* C thefollowing are equivalent:
(a) C* C and the equation is consistent,
(b) The equation has a symmetric solution,
(c) The equation has a nonsingular symmetric solution.

Proof In each part it is clear that (c) implies (b) which implies (a). All we must do
is show that (a) implies (c) in each part. For part (i) let Xp be a particular solution so that
1/2 [Xp + X is a particular Hermitian solution as noted above. By (3.2), A. XA 0
is equivalent to K ZK r O, where Z PXP*. Thus we may take Zc G so that
Xc p-1Gp- * is a nonsingular Hermitian solution to the complementary equation.
Hence 1/2 [Xp +X + cXc must be a nonsingular Hermitian solution for some real value
of the scalar c. Part (ii) may be obtained in a similar manner. To be specific, if Xp
is a particular solution to the equation of part (ii) and C is skew-Hermitian then
1/2 [Xp + X] + ap-1KGP-T is a nonsingular symmetric solution for some value of the
scalar a. Parts (iii) and (iv) follow from (i) and (ii), since X is a nonsingular skew-
Hermitian solution ofAX+ XAr Cifand only ifiXis a nonsingular Hermitian solution
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ofA(i-) (iX)Ar -iC, and X is a nonsingular symmetric solution ofAX + XA* C
if and only if iX is a nonsingular symmetric solution ofA(iX) (iX)A* -iC.

Hong and Horn [5] have shown that every square matrix is consimilar to its transpose
and to its conjugate transpose. By taking C O in Theorem 3 we obtain the following
corollary.

COROLLARY 1. IfA is a square matrix, then:
(i) A is consimilar to AT, via a Hermitian matrix,
(ii) A is consimilar to A* via a symmetric matrix,
(iii) A is consimilar to -AT, via a skew-Hermitian matrix,
(iv) A is consimilar to -A* via a symmetric matrix.
Corollary may also be obtained by an argument similar to that given in [7, p. 172]

to show that A is similar to A* if and only ifA is similar to A* via a Hermitian similarity
transformation. Another interpretation of the results of Corollary is given by the fol-
lowing corollary.

COROLLARY 2. Any square matrix A can be written as a product A SH or A
HS where S is symmetric and H is Hermitian or skew-Hermitian. When A is singular
exactly one ofS or H can be chosen to be nonsingular (when A is nonsingular both S and
H are nonsingular).

Proof. This corollary describes eight possibly different factorizations of a matrix A.
One ofthese follows from Corollary (i), which provides a nonsingular Hermitian matrix
H such that AH ItAT,. Thus A (IQAT,)H -, where H- is nonsingular Hermitian and
(tAr)7, AH * AH IrlAT, is symmetric. Three other factorizations are similarly ob-
tained from Corollary (ii)-(iv). The other four factorizations are obtained by applying
parts (i) and (iii) of Corollary to A r, and parts (ii) and (iv) to A*.

Elementary calculations similar to those preceding Theorem 3 show that:
(i) AX-XA7,= C is consistent and C= C7,.AX-XA7,= C has a skew-Hermitian solution;

(ii) AX-XA* C is consistent and C C*
,.AX-XA* C has a skew-symmetric solution;

(iii) AX+XAT,= C is consistent and C C7,
>AX+XAT" C has a Hermitian solution;

(iv) AX+XA* C is consistent and C -C*
>AX+XA* C has a skew-symmetric solution.

However, we cannot necessarily claim that these special solutions are nonsingular as in
Theorem 3. The reason for this may be seen by taking C O in Theorem 4.

THEOREM 4. Suppose that AA is nonderogatory and nonsingular.
(i) IfCT, -C andA.- XAT, C is consistent, then every solution is Hermitian.
(ii) IfC* -C andAX- XA* C is consistent, then every solution is symmetric.
(iii) If C7,= -C and AX + XAT, C is consistent, then every solution is skew-

Hermitian.
(iv) IfC* C andAX + XA* C is consistent, then every solution is symmetric.
Proof. The nonsingularity ofAA implies that 0 is not a coneigenvalue ofA. Also if

is a block of the concanonical form ofA, then (see [2, 2])

J(X) o ]o
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is contained in the Jordan form of AA. Since AA is nonderogatory, there can be no
negative coneigenvalues ofA. Thus if As and At are the conspectral values associated with
the blocks Ks and Kt of the concanonical form ofA, where s 4 t, then As 4 At, As > 0 or
Im (As) > 0, and At > 0 or Im (At) > 0. We use the notation of Theorem 2 so that for
part (i) A.,,-XAr= C is equivalent to X P-l[Zst]P-* with Zst YstGt, where
Ks Yst- YstKt CsG. Thus we need to show that Z [Zs] is Hermitian or Zs, Z
for all s, t. Now [Cs] PCPr is skew-symmetric so that C =-Cts for all s, and
Y]K Kt Y -GtCts. Hence Kt(Gt Y]Gs) (G, Y*stGs)Ks CtsGs so that Gt Y]Gs
is a solution to the equation for Y,. For s# this solution is unique by
Lemmas 2(i), 3, 4, or 5(i), and thus Yts GtY*stGs or Zt, YtsGs (Ys, Gt)*= Z].
Also for s t, Yss Gs Y*ss Gs is a solution to the homogeneous equation Ks Y YKs O.
IfKs Jm(As), As > 0, then by Lemma 2(ii), YssGs GsY [Yss GsYGs] Gs VGs,
where V is an m-by-m real upper Toeplitz matrix. Now V is a real linear combination
of powers of Jm so that VGs VF FVr= GsV* (VGs)* [YssGs- GsYs]*
-VGs. Hence VGs O and Zs.,. YssGs Gs Y. Z.. Similarly, if

0 Im] Im (As) > 0,K=
Jm(Xs) 0

then by Lemma 5(iii)

Yss-GsY*ssGs=
0

where V is an m-by-m upper Toeplitz matrix. Thus

GsY*ssGs- Yss=Gs[Yss-GsYs*Gs]*Gs

YssGsF 0 0 Vr F 0

As before Zss YssGs Gs Y*ss Z *ss, which completes part (i).
Part (ii) is similar to part (i) except that we also need the equality Jm(A)V VJm(A)

which holds for any m-by-m upper Toeplitz matrix. Parts (iii) and (iv) follow from parts
(i) and (ii) as in the proof of Theorem 3.

Comment. Suppose that A- XAr C is consistent, C is skew-symmetric, and A
is any square matrix. One approach to obtaining a Hermitian solution to this equation
could be: find Zst such that Ksst ZstKtT Cst for all s, t, where PCPr [Cst], form
X P-[Zst]P- *, and then form 1/2 [X + X *]. However, the proof ofTheorem 4 suggests
an alternative method, namely: (1) find Zst such that Ks;st- ZstKtT= Cst for all
s >= t; (2) set Zst Z s for all s < t; (3) replace Zss by 1/2 [Zss + Z s*s] for As -< 0; (4) form
X P-[Zst]p-1 .. Clearly X is Hermitian if and only if [Zst] is Hermitian, so this alter-
native method is justified by the observations in the proof of Theorem 4 that when C is
skew-symmetric Z ?s is a solution to the equation for Zst, and Zss Z for ks > 0 or
Im (As) > 0. Thus steps (1) and (2) provide a matrix [Zst] which is Hermitian for all off-
diagonal blocks and for all diagonal blocks with As > 0 or Im (As) > 0. That is, step (3)
is only necessary for diagonal blocks with As -< 0.

The blocks Zst required for this approach may be obtained from Lemmas 2-5 since
they are determined by Zst YstGt, where Ks Yst Ystgt CstGt.

In relation to the matrix Zss + Z YssGs + (YssGs)* in step (3), it is interesting
to note that the matrices YssGs and (YssGs)* are related to the two forms ofthe solutions
given by Lemma 2(iii) and Lemma 5(ii). We exhibit this relationship below, where we
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use the properties [FL(W)]r FL(wT), [Fn(W)]T= I’n(WT), and Fr(W)F rR(FWF)
of the F notation, and similar properties of the f notation.

First consider the case Ks Jm(0), where Xs 0. Since tn n in Ks Yss YssKs
CssGs, (2.8) yields two solutions Y =--FL(CssGs)JTm and Y2- JTmFR(ssGs). Since
Css -C we obtain

Gs Y{as FJmFL(-CssF)*F FJmFL(-FTss)F FJmrL(Fss)F JmrR(sGs)= Y2.
Hence YGs and (YGs)*= YzGs are both solutions to the equation for Zss. Thus
1/2[Y + Yz]Gs is a Hermitian solution to the equation for Zss.

We next consider the case

[oKs=
Jm(,s)

Partition Yss and Css as

Im] with s < 0.
O

and [C C2]C3 C4’
respectively, so that C -CI, Cr -Ca, Cf -C3, and

where

Y:zF YtF]Zss= YssGs=
Y4F Y3FI

[CzF C,F]Ks Yss YssKs
C4F C3FJ

We now show that Zss is Hermitian whenever Y2 is chosen such that Y:zF is Hermitian:
(i) If Y2F=(YzF)*, then by (2.22a) and (2.22d), Y3 YzJm(Xs)+C2F

Jm(Xs)Y2 C3F so that

(Y3F)* F[Jm(hs)Yf+ FCf] Jm(Xs)(zF)* + Cf Jm(Xs)zF- C3 Y3F.

(ii) Let U YF- (Y4F)*. By (2.22b) Y4 + IF so that UF Y FYF-
CF. We may use (2.23a) which in this case states that Jm(X)Yl YIJm(X) 4F +
CFJm(Xs) to compute J(Xs) (ZF) (ZF)J(X) O. Hence by Lemma 1, UF is an
m-by-m upper Toeplitz matrix. Now

U (UF)F= F(UF)= U= [YF-FY+ C]v=FY- YF- C -U.

Thus U O and YF (Y4F)*.
We complete the case Xs < 0 by showing how to choose Yz such that Y2F is Heitian.

Since m n, (2.21) provides two solutions to (2.23b). By taking half the sum of these
two solutions we obtain another solution of (2.23b), namely,

r [Jn(w)- n(w)j],

where W2 C2F + C3F. Now FWF -W2 so that

(Y2F)* F[(W)Jm-JmL(W)] [(FWF)J-JR(FWF)]F

[-nL(W2)J + JnR(W2)]F Y2F.
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ANALYSIS AND SOLUTION OF THE NONGENERIC TOTAL
LEAST SQUARES PROBLEM*

SABINE VAN HUFFELf:!: AND JOOS VANDEWALLEf

Abstract. Total least squares (TLS) is one method of solving overdetermined sets of linear equations
AX B that is appropriate when there are errors in both the observation matrix B and the data matrix A.
Golub and Van Loan (G. H. Golub and C. F. Van Loan, SIAM J. Numer. Anal., 17 (1980), pp. 883-893)
introduced this method into the field of numerical analysis and developed an algorithm based on the singular
value decomposition. However in some TLS problems, called nongeneric, their algorithm fails to compute a
finite TLS solution. This paper generalizes their TLS computations in order to solve these nongeneric TLS
problems. The authors describe the properties of those problems and prove that the proposed generalization
remains optimal with respect to the TLS criteria for any number of observation vectors in B if additional
constraints are imposed. Finally, the TLS computation is summarized in one algorithm which includes the
proposed generalization.

Key words, total least squares, singular value decomposition, overdetermined sets of equations, numerical
linear algebra

AMS(MOS) subject classifications. 15A 18, GSF20

1. Introduction. Many problems in signal processing, system theory, automatic
control and in general engineering, physics, and economics give rise to an overdeterrnined
set of linear equations AX B which are usually solved with the linear least squares
(LS) technique. This technique assumes that all the errors can be allocated to the obser-
vation matrix B. Unfortunately, this assumption is frequently unrealistic; sampling errors,
human errors, modeling errors, and instrument errors may imply inaccuracies on the
data matrix A. For those cases a better more general fitting technique, total least squares
(TLS), has been devised to compensate for data errors. The TLS approach is appropriate
when independent and equally sized errors occur in all data and amounts to fitting a
best subspace to the data. Although studies of the univariate problem, i.e., line fitting,
are quite old ], the multivariate problem has only been analyzed recently. Golub and
Van Loan [5] introduced the method in the field of numerical analysis by presenting
first a singular value decomposition (SVD) analysis of the problem.

The TLS problem can be formulated as follows (R denotes the range).
TLS DEFINITION. Given an overdetermined set of rn linear equations in n d

unknowns

(1) AXB, Aren, B-red, X-nd,
a TLS solution is any solution X of the set

(2) AX=/

where and/ are determined such that

(3) R()cR(A),
(4) II[AA;A/IlIF II[A;BI--[A;OIlIF is minimal.

The problem of finding [A; A/}] such that (3)-(4) are satisfied, is referred to as the TLS
problem.
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Whenever the TLS solution is not unique, TLS singles out the minimum norm
solution. It is clear that the TLS solution can be deduced from a basis of the kernel of
[j; J0]. This computation can be done genetically by using the algorithm of Golub and
Van Loan [5]. However in some cases, the computed solution becomes infinite and does
not satisfy condition (4). For those cases, Golub and Van Loan concluded that the TLS
problem has no solution. In this paper however, we generalize the TLS computations to
all nongeneric TLS problems, i.e., problems in which the algorithm of Golub and Van
Loan fails to compute a TLS solution. We describe the properties of those nongeneric
problems and prove that the proposed generalization remains optimal with respect to
the TLS criteria (3)-(4) in the one-dimensional case (d 1), as well as in the multidi-
mensional case (d > 1) under additional constraints.

This paper is organized into five sections. In 2, the nongeneric TLS problem is
formulated. Section 3 then describes the properties and solution ofthe nongeneric problem
and compares the TLS solution of those problems with the LS solution. The one-di-
mensional case, as well as the multidimensional case, is considered. In 4, the TLS
computations are summarized in one generalized TLS algorithm. Finally, 5 presents
the conclusions.

2. Formulation of the nongeneric TLS problem. Before starting, we introduce the
notation used throughout this paper:

The superscript T denotes the transpose of a vector or matrix.
The m bij m identity matrix is denoted by Ira.
X’ is the n by d minimum norm least squares (LS) solution and " is the n by d

minimum norm total least squares (TLS) solution of (1).
For the one-dimensional problem, i.e., d 1, the matrices are replaced by their

corresponding vector notation, e.g., the vectors b and x are used instead of the matrices
B and X in (1).

Denote the singular value decomposition (SVD) ofA in (1) by

A U’’F’r with U’ U’ U], U’I [u’, ..., u;,], U [u;, / 1, "’", u,],

(5) u’iEm’ utTut"- Im’
v,Tv,V’= [tl, v], vi E n, In,

t" 0X’ diag(a’, ,a,) and cr’ >... >crn=
and denote the SVD of [A; B] in (1) by [A;B] UZVr with U [U; U2], U
[Ul, Un], U2 [Un+l, Um], uiE m,

(6)

UrU= Im,

V-- [ VIIV21
n

vTv In + d,

VI21 n

V22 d
[1 ",n Yn+l Yn+d], iE2n+d

X=diag(a, ,an+a) and el>= >=rn+d>--O.
Let V(tr) (respectively, U(trj)) be the fight (respectively, left) singular subspace of

[A; B] associated with the singular value a, and let V’(a) (respectively, U’(aj)) be the
fight (respectively, left) singular subspace ofA associated with the singular value a.
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Ker (V22) represents the kernel of V22.
[A; B’] is the LS approximation of [A; B] with B’ the orthogonal projection of B

onto the range R(A) of A. The TLS approximation of [A; B] (defined in 1) is denoted
by [;/].

The correction matrix AB’ B B’ is then the LS approximation effort and the
correction matrix [A; A/] [A J; B -/] is the TLS approximation effort in order
to obtain a solution of (1).

Using this notation, we call the problem generic if, for an-p > an-p +
with p >_- 0, the submatrix

(7) V with v., the jth component of vi
)n + d,n p + l)n + d,n +

of V in (6) has full rank d. If an > an/ 1, this means that V22 is nonsingular (or
v, / l,n +1 # 0 if d 1). The TLS solution of genetic problems can be computed with the
algorithm of Golub and Van Loan [5] and is given by

(8) ,= -zr-’
where Z, I’ are obtained by postmultiplying V in (7) with an orthogonal matrix Q
such that

(9) 0 0 r d

p d

For genetic one-dimensional TLS problems, i.e., d 1, the genetic TLS solution (8)
reduces to a simple scaling of the last column vector [.] in VQ:

(10) i- -z/3,.

This uniquely determined TLS solution has indeed the minimal norm I1- 112 and
as proven by Golub and Van Loan [6, p. 422] for the one-dimensional case and by Van
Huffel [8, p. 30] for the multidimensional case.

Whenever Vv is singular (or " 0, if d 1), the problem is called nongeneric. In
this case, the solutions (8) and (10) become infinite. This happens when r;, _-< or,+ , as
shown in the next theorem.

THEOREM 2.1. Let (6) be the SVD of[A; B] and the SVD ofA be given by (5):

(11) V22 singular rrn + a <- cr n +

Proof See [8, p. 42] for the proof.
Observe that the case V22 singular only happens when a, =< an +1, i.e., the length of

the projection a, of all columns a of A onto its lowest singular vector is smaller than
the length of the projection of all columns of [A; B] onto its (n + 1)th singular vector,
associated with an / 1. This is the case ifA is (nearly) rank-deficient, i.e., a;, 0, or when
the set of equations (1) (or at least one subset Ax; b) is highly incompatible.

Contrary to our algebraic approach, Gleser [3] used a statistical approach to prove
under which conditions V22 is nonsingular. In his proofs we can find the following very
interesting property (the superscript m on a sample quantity indicates that the quantity
is calculated from the first m rows of [A; B] in (1)).
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THEOREM 2.2. Let (6) be the SVD of[A; B] and [A; B] [A0; B0] + [AA; AB].
Assume that the rows of the error matrix [AA; AB] are independently and identically
distributed with zero mean and common covariance matrix a,In/d2 (a, unknown scalar).
Assumefurther that limm- (1/m)AA0 exists and is positive definite; then

m0 V rn >= m0: V": and V" are nonsingular.

Proof See [3, p. 35] for the proof, ff]
(m) r/.(m)This means that the genetic TLS solution -(m) --V 2 -22 exists for all m >-

mo. Hence, the property guarantees that, if the assumptions hold, a TLS solution can
always be computed in the generic sense when the set of equations (1) is sufficiently
overdetermined; in other words, a nongeneric TLS problem can always be made generic
by adding more equations to (1). This is the case if the data [A; B] are observations of
an exact but unobservable relation AoX Bo with Ao of full rank, and the observation
errors [AA; AB] are statistically independent and equally sized (same variance).

Those statistical results agree with our algebraic approach: nongeneric TLS problems
occur whenever A0 is (nearly) rank-deficient or when the set AoX Bo is highly incom-
patible. Although "exact" nongeneric TLS problems seldom occur, close-to-nongeneric
TLS problems are not uncommon. Moreover, from a numerical point of view, it is very
interesting to investigate their properties and generalize the TLS computations to solve
these problems in the TLS sense. Indeed, as shown in Theorems 3.1 and 3.4 of 3, the
TLS problem (1) becomes close to nongeneric when a, approaches an +. In those cases,
the generic TLS solution can still be computed but is unstable and becomes even very
sensitive to data errors when a, an+ is very close to zero [5]. Identifying the problem
as nongeneric, and computing the nongeneric TLS solution, stabilizes the TLS solution
and makes it rather insensitive to data errors [8, p. 103].

3. Properties and solution of the nongeneric TLS problem.
3.1. The one-dimensional case. Let us first assume that an an +. In this case the

genetic TLS solution in (10) is given by the only one fight singular vector of [A; hi,
associated with its smallest singular value an /l"

(12) [r; IT._ --n + l/l)n + l,n +

and the TLS approximation is:

(13) [:/; b] uv and diag (a,, ..., an, 0).

If v,+ 1,n+ 0 then the approximation [; I] proposed in (13) does not satisfy the TLS
condition (3). For those cases, Golub and Van Loan [5] argue that the TLS problem has
no solution because (12) becomes infinite. In this section, however, we claim that a TLS
approximation [A; b], satisfying both (3) and (4) under additional constraints, still exists
and can be determined by making the next larger singular value an of [A; b] in (13) zero.
This is equivalent to the case that TLS searches for a solution in a lower-dimensional
subspace [A; b], obtained by making one more ai in (13) zero, i.e., an an+ 0o Using
Theorem 3.1 (see further) we can indeed prove that under additional constraints this
solution is still optimal with respect to (4) and so (3) is satisfied. Moreover it is proven
that LS searches its solution in a subspace of the same dimensionality, i.e., there does
not exist any LS solution in a subspace of higher dimensionality than that of the TLS
approximation. The need for the extension can be best motivated with an example (see
Fig. 1).
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(14)

Example 3.1. Consider the set of three equations in two unknowns:

237377

2 2

Taking the SVD of [A; b] we obtain

(15) UZVr= 0 0 0 2 0
0 0 0 0 .5

2 2 2-2 2 2

o

Note that Vn+ 1,n+l 1)3,3 0. Since b 011)3,1111 -t- 0"21)3,2112 -t-- 0.u this implies that
b _L u3. By taking the rank-n approximation (14), we obtain the approximating vectors

(16) hi=h2=2 Ill "- u2, 1 b.

Since I R(J), (3) is not satisfied. Hence, [:i; I] as defined in (16) is not a valid TLS
approximation and cannot produce a TLS solution in the genetic sense. Therefore, Golub
and Van Loan [5] argue that no TLS solution exists. However, conceptually there is no

U2

0
u = R(A)

FIG. 1. Geometric representation ofExample 3.1 with three equations in two unknowns, characterized by
v3,3 O. This implies that b _L u3. i,, i2 and il are rank-two approximations ofA and b with
and 0 are rank-one approximations ofA and b with R() and i,, , and i) are the TLS approximations of
A and b with minimal approximation effort Ilia :i; b ]11 such that ) R(:i) and [A ; b )]v3 O.
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reason for nonexistence of a TLS solution. Moreover the LS solution exists. In-
deed from

(17) A U’Z,’V’"

we obtain the LS solution x’ as

2V3

(18)

x’= V’Z’- U’%

v2
3v5

A generalized TLS solution can be obtained by dropping one more singular triplet
in (15); i.e., by replacing 0-2 and 0-3 by zero. Then we obtain the TLS approxima-
tion [A; b] such that I R(A) 2 23VII1, and I 2u. Note that I remains
orthogonal to u3. Now R() and the generalized TLS solution is obtained
.from (10):

As Vn+ 1,n+ 0, [:r; _l]r is orthogonal onto 3, and hence, [r; _l]r is parallel with
v2. We only have to approximate [A; b], by making only 0-2 in (15) zero, in order to
satisfy (3). As the total approximation effort must be minimal, i.e., (4) must be satisfied,
0" need not be zeroed. Hence, the TLS approximation which satisfies (3) and (4) such
that [r; ]r d_ v3, is

(20)
a 0 O][2;]=u o o o v
0 0 a3

and the corresponding correction matrix of rank is given by

(21) [ ][;-]v,,[2; x] u,_v [A; b]

Observe that 0- 0" 5 and u’2 U Hence b _L u and b’ remains orthogonal on u.
All those facts are generalized and proven in Theorem 3.1. Observe from Fig. that the
case where the genetic TLS solution does not exist happens only when the length
lib b’ll2 of the orthogonal projection ofb onto R(A) is larger than the length 0-, of the
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projection of all columns ai ofA onto its lowest singular vector. This is the case when A
is (nearly) rank-deficient, or when the set of equations is highly incompatible as in this
example.

THEOREM 3.1. Let (5) (respectively, (6)) be the SVD ofA (respectively, [A; b]). Let
b’ be the orthogonal projection of b onto R(A) and [; I] the rank-n approximation of
[A; b], as given by(13). IfV’(aj) (respectively, U’(aj)) is the right (respectively, left) singular
subspace ofA associated with aj, then thefollowing relations can be proven:

F1

(b) aj. a, with k j-

(c) b I u’ with u’e U’(aj),

(d) u u’ with u’e U’(a),

(e) b’ +/- u’ with u’ e U’(a),

(f) I +/- u’ with u’ U’(a).

(22)

or k=jand <=k<=n,

Ifaj is an isolated singular value, the converses ofrelations (c) and (e) also hold.
Proof See [8, p. 36] for the proof.
As was said before, the genetic TLS solution does not exist ifv + ,n + 0. Theorem

3.1 describes the properties of this situation, namely: if v. + ,. + 0, then an +
This result can also be derived from Theorem 2.1 for d by contraposition. If addi-
tionally a. > a.+ then

Iln + Iln Yn + 1"-
0

and. b, b’ as well as I are orthogonal onto u,. For those cases we want to prove now that
a TLS solution satisfying (3) and (4) still exists under additional constraints and how
it is deduced. This is done in the next theorem which includes all cases in which the
genetic TLS solution fails to exist.

THEOREM 3.2. Let (6) be the SVD of[A; b] and p <= n. Assume vn+ 1, 0 forj
p+ 1, n + and v,+ l,p 4 O. Then, ifap- >

(23) [r;_ ]r= _Vl/Vn + ,
is the unique nongeneric TLS solution satisfying (4) subject to (3) and [A; Alv 0,
for allj with

(24) [AA; AI] apu.vr,
(25) [J;I]=U2Vr with2=diag(a,’",%_,O, ap+l,’",an+l).

Proof See [11, p. 9] for the proof. [2]

The condition ap_ > ap is not a restriction, and is used here only for reasons of
simplicity. Indeed, if ap_ ap, then the nongeneric TLS solution still exists. We must
take the minimum norm solution [r; ]r in the r-dimensional right singular subspace
V(a) of [A; b], associated with ap of multiplicity r. However, if several v,/ 1, 0 for
j p r + 1, ..., p, the nongeneric TLS solution is no longer unique.
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If l)n+ l,n+l 0, l)n+ 1,n =//= 0 and a,_ " O’n, the nongeneric TLS solution follows
directly from (23) in Theorem 3.2:

(26) [T; IT__ _Vn/l)n + l,n

with corresponding correction matrix [AA; al] a,U,Vnrhaving minimal Frobenius norm
a such that (b AI) R(A A) and [A; A[]Vn+l 0.

Let us also compare LS and TLS in the nongeneric case. LS looks for a solution x’
such that - ,.,_,r_, b’. IfO’iUiVi X

l)n+ l,j

with v, / 1,j 0 forj p + 1, ..., n + 1, then by Theorem 3.1, this implies that aj_

a. and b, as well as b’, are orthogonal onto uj u’ with u’ e U’(aj) for j p + 1,
n + 1. Or, [A; b]p [Ap_ 1; b] with [A; b] (respectively, Ap_ 1) the rank-p (respectively,
rank-(p 1)) approximation of [A; b] (respectively, A), as derived from the Eckart-
Young theorem [6, p. 19]. Also, x’ / vj’, j p + 1, n + 1. Hence, LS must also
look for a solution x’ in the (p 1)-dimensional row space RR(A,- l) ofAp_ 1, orthogonal
onto span (v"lj p + 1, ..., n + 1}, which equals span {vjlj p, "", n}. Thus b, as
well as I and b’, is orthogonal onto the same n p + singular vectors u, j p +
1, ..., n + 1. Both TLS and LS search for an optimal solution in a subspace of same
dimension p with p the largest index such that v, / 1,p :/: 0, i.e., dim (R[Ap_ ; b’])
dim (R[Ap_ 1; b]p_ 1) P 1. Hence, it follows that

(27)
lib-b’l[2 [A,_ ; b] [A,_ 1; b’] IIF>= min

rank (C) p

with [A; Al] given by (24). The LS approximation effort remains larger than the TLS
approximation effort. Observe that the generic TLS solution does not exist, if the set of
equations Ax b is highly incompatible (so that lib b’l[2 is large and exceeds a ofA),
or ifA is nearly rank-deficient (i.e., ap an

In the extreme case, where b is orthogonal on R(A), TLS and LS give the following
zero solution: as b +/- R(A), b’ O. Hence, x’ is zero. The zero nongeneric TLS solution
follows from direct application of Theorem 3.2. Indeed, the set of left singular vectors
of [A; b] is precisely {u’, u, b/l[bll2, u;, ..., u;,}. This is the set of left singular
vectors of A, where b is introduced at the ith location corresponding to its size- >-- Ilbll2 >-- a;. Correspondingly, the ith column vi of V is [0, 0, 1] and the
last row of V is [0, 0, 1, ..., 0] with its ith element equal to one. Since v, / l,j 0
for j= i+ 1, ,n+ and vn+l,iVO, the TLS solution [iT;--1]T is given by
-vi/v+ 1,i. Hence, i is zero.

In practice v+ 1, will seldom be zero. Indeed, due to errors in the observations
[A; b], a zero-valued v+ 1, in the SVD of the unobservable exact data matrix [A0; b0],
will differ from zero in the SVD of [A; b]. Hence it is advisable to define an error bound
e such that all Vn + 1,’l < are considered to be zero.

3.2. The multidimensional case. Before describing the properties of this situation,
we first prove that a TLS solution satisfying (3) and (4) still exists under additional



368 S. VAN HUFFEL AND J. VANDEWALLE

constraints and how it is deduced. This is done in the next theorem, which generalizes
Theorem 3.2 and includes all cases in which the generic multidimensional TLS solution
fails to exist.

THEOREM 3.3. Let (6) be the SVD of[A; B]. Assume ap > ap+ an+ 1. Let
QI be an orthonormal matrix such that

(28) [YI’ Zlln[vp + 1, Vn + a]Q1
I’ d0

n-p d

with I’1 singular ofcorank K and p <= n. Let Q be an orthonormal matrix such that

(29)

Y Z]n[q + 1, Yn + a]Q
O’ r d

n-q d

with minimal n q such that I’ is nonsingular (p q >= ). Assume Oq " O’q+ l. Then

(30) 2= -zr-
is the unique nongeneric TLS solution satisfying (4) subject to (3) and [AA; zX/][]} 0
for all [g] e span{vq +1, Vn + a}

(31) [A; A/}]= [A;B][] [Zr; I’r].

Proof See [1 1, p. 11] for the proof.
Theorem 3.3 proves that a TLS solution, called nongeneric, satisfying the TLS criteria

(3) and (4), still exists under additional constraints. Theorem 3.3 also proves how it is
computed: if the corank of V22 or I’ is >_-1, we must add the minimum number (at
least ) of fight singular vectors associated with the smallest singular values of [A; B]
until a nonsingular r in (29) is obtained. The basis [] is orthogonal onto the remaining
independent base vectors [or] of span {vo+ , v, + a} which make r singular.

As in the one-dimensional case (see Theorem 3.2), the condition rq > rq+ is not a
restriction and is only used here for reasons of simplicity. Indeed, if rq rq + then the
nongeneric TLS solution still exists and we must take the minimum norm solution.

In the following theorems, we describe the properties in the case of singularity of
V22 (or Il) by generalizing the properties given in Theorem 3.1 to the multidimensional
case. Observe that additional conditions concerning the multiplicity of rn + are imposed.

Let us first assume that the unique generic multidimensional TLS solution does not
exist, i.e., rn > , +1 and V22 is singular.

THEOREM 3.4. Let (5) (respectively, (6)) be the SVD ofA (respectively, [A; B]). Let
> rn+ and V22 be singular. Call V’(rj) (respectively, U’(rj)) the right (respectively,

left) singular subspace ofA associated with aj, and V(a) (respectively, U(r)) the right
(respectively, left) singular subspace of[A; B], associated with r. Consider any unit vector
x Ker (V22) and let b (respectively, r) be the index ofthefirst (respectively, last) nonzero
component ofx. Then thefollowing relations can be proven. Ifr, + b O’j

O’n + then



TLS PROBLEM: ANALYSIS AND SOLUTION 369

(a) v e V(aj), a v’s V’(): [ V: ]x=v= [v’]V22 0

(32)

(b) 3 i: aj a i,

(c)

(d)

u’ 6 U’(aj): B _1_ u’,

u e U(j), 3 u’ e U’(aj): u u’,

(e) : u’ U’(a)): B’ 2_ u’,

(f) u’e U’(a):/ u’.

Proof See [8, p. 47] for the proof.
If all components of x Ker (V22) differ from zero, the additional conditions are

V21an+l an+a. In this case, every linear combination of the columns of [v22J is a
fight singular vector of [A; B], associated with an

For the one-dimensional case (d 1) with a, > a, + and Vn + 1,, + 0, no additional
conditions are required and Theorem 3.4 reduces to a special case of Theorem 3.1.

Assuming that the conditions ofTheorem 3.4 are satisfied, let us consider the properties
ofthe nongeneric TLS solution (30), as deduced in Theorem 3.3. Assume that a nonsingular
I’ can be obtained in (29) of Theorem 3.3 for q n and a > 0"n. In this case,

" then Theorem 3.4 yieldscorank V22 1. Consider a > O" n,

(33)
3 V(o-j), I1 U(aj):

V12 Yn
X V aj an,

V22 0

B(and/)_t_u=u,eU(aj) and n+l<=j<=n+d.

U=Un,

Hence, B cannot be approximated in the space generated by the left singular vectors
{u,+ , Un+a} of[A; B] such that (3) is satisfied. This means that there is no generic
TLS solution along v (see (33)). Hence, we then look for a nongeneric [fir; _ia]r which
is orthogonal onto v. The correction matrix, given by (31) and satisfying [Aj; A/]v
0, has minimal norm given by

(34)

k/j

As in the one-dimensional case, we can also compare the nongeneric TLS solution with
the LS solution. The same conclusions hold for multidimensional problems (1) (see
[8, p. 50]).

If corank (V22) K >- 1, Theorem 3.4 can be applied to each vector 6 Ker (V_2). Or,
more conveniently, Theorem 3.4 can be formulated for K-dimensional subspaces (see
[8, p. 511).

Also, Theorem 3.4 can be straightforwardly extended to describe the properties of
the case that the minimum norm genetic TLS solution (8) cannot be computed with the
algorithm of Golub and Van Loan [5], i.e., an-v > an-v+l an+ 1, P >- and r
in (9) singular (see [8, p. 53]).
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The additional conditions may appear somehow restrictive. However, solving the
set of equations AX B with TLS makes sense only when the data A and B are obser-
vations ofan exact but unobservable relation AoX Bo. Due to errors, the singular values
an + 1, an + a of [A; B] will differ from the exact singular values a + a + a
0 of [A0; B0]. Hence, it is advisable to consider an+ 1, an+a of[A; B] as coinciding,
and thus assume that the additional conditions of Theorem 3.4 are indeed satisfied.

If V22 (or I’) is singular and the additional conditions are not satisfied, the nongeneric
TLS solution still exists as proven in Theorem 3.3. However, for those cases the nice
properties described in Theorem 3.4 are no longer valid and no adequate comparison
with the LS solution can be made. This situation will occur if at least one subset Axi
bi in (1) is highly incompatible. It affects the accuracy ofthe other solutions when solving
the d-dimensional TLS problem. In this case, it is expected to obtain more accurate TLS
solutions i, 1, d, by solving d single one-dimensional TLS problems ax ,, hi,
i=l,...,d.

4. Outline of the generalized TLS algorithm. In this section, we want to summarize
the practical TLS computation into a generalized algorithm which handles the genetic
TLS problem of any dimension d, as well as the case of nonuniqueness and the nonge-
neric case.

(35)

ALGORITHM 4.1. Computation of the TLS solution " ofAX B.
Given: an m by n data matrix A and an m by d observation matrix B.
Step 1.

l(a). If m > 5/3(n + d), transform [A; B] into upper triangular form R by
Householder transformations.

l(b). Compute the singular value decomposition (6) of [A; B] (or R).
Step 2. Compute the rank r (_-<n) of [A; B] by

>= >= ar2 > R0 >= ar2+ >= >= + d with R0 an appropriate rank determinator.

Step 3. Compute by Householder transformations an orthogonal matrix Q
such that

(36) a]Q "’Vr+ 17 Vn+ /"

I’ d0

n-r d

(37)

with I" a d by d upper triangular matrix.

Step 4. If I’ is singular then begin:

lower the rank r with the multiplicity of ar
go back to Step 3
end

else solve by forward elimination: 1 =-Z

END

A fully documented Fortran program of this TLS algorithm is given in [7].
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If m < n, the set of equations AX B is always underdetermined. This implies that
the solution, genetically, is never unique. In this case, Algorithm 4.1 can still be applied
to compute the minimum norm solution.

If d 1, the rank r n, rl > e > 0 and O"n > fin+ 1, (37) reduces to (12). The TLS
solution is obtained from a simple scaling of the fight singular vector vn/ of [A; b],
associated with its minimal singular value O’n +1.

If m > 5/3(n + d), it is more efficient to first triangularize [A; B], using a QR
factorization [2], and then proceed to R. Indeed, [A; B] and R have the same singular
values and fight singular vectors. Hence, the TLS solution " of AX B can also be
obtained from the SVD of R. This option has been incorporated into Algorithm 4.1
(see [7]).

The upper triangular matrix I must be tested for nonsingularity. This is done by
comparing the absolute value of each diagonal element IF, I, 1, d with a given
small positive number e. The choice of e can be based on the numerical accuracy of the
SVD computation [4] or, preferably, can depend upon the perturbations ofthe data [12].
A generally applicable, reliable error bound e in function of the standard deviation a, of
the perturbations has not yet been deduced.

Observe from (36) that we need only to compute a few singular vectors associated
with the smallest singular values of [A; B] in order to obtain the TLS solution. Moreover,
we need only to compute a basis ofthe singular subspace corresponding to the smallest
n + d r singular values with r the rank of [A; B]. Indeed, the TLS solution "is in.variant
with respect to orthogonal base transformations in its solution space R([_]) (see
[8, p. 57]).

On the basis of these properties we were able to improve the efficiency of the TLS
computations by computing the SVD of [A; B] in Step only "partially." This results in
the development of a new algorithm "partial total least squares (PTLS)." PTLS is about
two times faster than the classical TLS computation given in Algorithm 4.1, while the
same accuracy can be maintained. For more details, we refer the reader to [8]-[ 10].

5. Conclusion. In this paper, the total least squares problem, and the classical al-
gorithm ofGolub and Van Loan used to solve it, are generalized to all nongeneric cases,
i.e., problems in which the algorithm of Golub and I/an Loan fails to produce a TLS
solution ( 2). We prove that under additional constraints, the proposed generalization
remains optimal with respect to the TLS criteria in the one-dimensional ( 3. l) as well
as in the multidimensional case ( 3.2) and describe the properties of those problems. It
is concluded that nongeneric TLS problems occur when the set of equations AX B is
highly incompatible or when the data matrix A is (nearly) rank-deficient.

Finally, the TLS computations are summarized in one algorithm which includes
the proposed generalization ( 4).
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Abstract. For certain orthogonal matrices associated with classical self-dual discrete orthogonal families,
commuting symmetric tridiagonal matrices are constructed. Their eigenvectors are shown to be critical points
for functionals related to Heisenberg’s inequality.

Key words, orthogonal polynomials, commuting tridiagonal matrices, discrete Fourier transform
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1. Introduction. We begin by recalling three fundamental facts from elementary
Fourier analysis [DM]:

(i) Heisenberg’s inequality. Forfe L2(RI), we have

xlf(x)l dx x2lff(x)l dx >_-[I/[I 4,

where f is the L2 norm offand

Ff(x) ff(t)e -ix dt

is the Fourier transform of f. The lower bound is attained only if f is Gaussian,
that is, f(x) exp (-kx2), k > 0. Equality holds in particular for the Gaussian b(x)
exp (-x/2).

(ii) Eigenvector decomposition for the Hermite operator. The Gaussian is
the "ground state" (eigenvector coesponding to the lowest eigenvalue) of the Her-
mite operator L =-"+ x2. In general, the eigenvectors for L are of the fo
H(x) exp (-x2/2), where H(x) is the nth Hermite polynomial.

(iii) Commutativity. The Heite operator L commutes with the Fourier transfo
F. L has simple spectrum; thus the eigenvectors ofL are eigenvectors ofK

The theme of this paper is that these facts are tightly intewined. We will consider
discrete analogues of the Fourier transform associated with self-dual discrete ohogonal
polynomial families. For each such Fourier transfo analogue F we construct a self-
adjoint, second-order difference operator L which commutes with K Thus the eigenvectors
of L are again shared by F. These common eigenvectors enjoy another propey: they
are critical points for a functional closely related to the Heisenberg inequality. Because
of the analogy with the case of ordina Fourier analysis, we refer to L as a Hermite
matrix.

The construction ofL is inspired by previous work ofGmnbaum [Gr] and Dicnson
and Steiitz [DS]. In both cases, difference operators commuting th the discrete Fourier
transfo are obtained. One motivation for studying these commuting difference operators
is that their eigenvectors fo a canonical basis with respect to which the discrete Fourier
transform is diagonal. Thus it is plausible that there may exist fast transfo algorithms,
which would utilize the existence of these eigenvectors in some way. To date, this hope
has not been realized.
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We remark that the commuting operators of [Gr] and [DS] differ in that they cor-
respond to discrete Dirichlet and periodic boundary conditions, respectively.

2. Classical self-dual families. We will be considering the following discrete or-
thogonal families (see [A]):

(1) Poisson-Charlier polynomials:

Cn(X) 2F0(-n, -x; -; l/a), a > O, x O, 1,2,

w(x) e-aa/x!

(2) Meixner polynomials:

Mn(x) 2F(-n, -x; [3; 1/c), 13 > O, 0 < c < 1,

w(x) cX(B)x/X!, x O, 1,2, ....
(3) Krawtchouk polynomials:

Kn(x) 2Fl(-n, -x; -N; 1/p), 0 <p < 1,

In each case, we have recorded the weight with respect to which the polynomials are
orthogonal.

These families are self-dual, which for our purposes simply means that p(j) p(i)
for any polynomial in the families listed. The fact that our polynomials enjoy this property
is immediate from their defining formulae.

As defined above, the polynomials are orthogonal but not normal. The relevant
inner product formulae are given in [A, p. 15]. In each case, the formula can be written:, (pi(x))2w(x)= d/w(i) where d is a positive value,

depending perhaps upon auxiliary quantities, but independent of i. This will be important
later on. We define c, the normalization constant, to be equal to f.

It is well known that these polynomials are in each case eigenvectors of second-
order difference operators, self-adjoint with respect to the weights w(x). Let A+f(x)
f(x + 1) --f(x), A_f(x) f(x) --f(x 1). We list the associated difference operators
[L], [P]:

(1) Poisson-Charlier:

eaa-Xx! A+[e-aa- l/(x- 1)!(-a)A_ci(x)] ici(x).

(2) Meixner:

c-x!/()A+[c- ()/(x--1)!(x--1 / )A_Mi(x)] i(1- 1/c)Mi(x).

(3) Krawtchouk:

1/w(x)A+[(x- N)pw(x- 1)A_gi(x)] igi(x).

3. Matrix reformulation. We restate the properties described above in matrix no-
tation. Let { Pi} be any one of our orthogonal families, and let

F1 =(Pi(j));

that is, F is the matrix whose (i, j)th entry is p(j). F is semi-infinite in the case of
Poisson-Charlier and Meixner. Observe that F is in any case a symmetric matrix. Let

A (A), A o.
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Then the orthogonality relations can be restated as

(A) FIA2F FIA2F1 C-23--2.

The fact that the polynomials are eigenvectors of a second-order difference operator can
be written as

(B) A2F1 FiDl

where D is a tridiagonal matrix and 3-2 is the diagonal matrix whose entries are the
eigenvalues ofthe difference operator. The self-adjointness ofthe difference operator with
respect to the weight w simply corresponds to the fact that DI satisfies

(C) DIA2= A2D.

As an immediate consequence of (A), we have (AFIA)(AFA) c2I. Thus if we define
F c-I(AFA), then F is symmetric and orthogonal.

From (B), we derive

A2AFA AF1DA AFIAA-DIA
=:, A2F FA-IDIA.

Define D A-1DI3_. We can use (C) to obtain A-1D1A ADA--1, which says that D is
symmetric. This gives the following implications, by transposition:

A2F FD =; FtA2 DtF =; DF FA2.

Adding the first and third equalities, we finally obtain (3-2 -- D)F F(D + 3-2). Thus
L 3-2 + D commutes with F. We refer to L as the Hermite matrix associated with the
discrete orthogonal family.

We give explicit formulae for the matrices associated with the Krawtchouk poly-
nomials. For convenience, matrix entries are parameterized by 0 =< i, j -< N. Let q

p. Then we have the following:
(i) F(i, j) 2F(-i, -j; -N; 1/p).
(ii) w(i) ()pi(1 p)N-i and 3- is diagonal with 3-, ]/-(i).
(iii) c normalization constant qN/2.
(iv) F(i, j) q-N/2/w(i)w(j)F(i, j).
(v) D is tridiagonal with entries on the ith row

(N- + 1)p p(N- 2i) + i-(i + 1)q...).

(vi) 212 is diagonal with (3-2)ii i.
(vii) D is tridiagonal with entries on the ith row

/(N + 1)(i)pq p(N 2i) + -/(N i)(i + 1)pq ...).

(viii) L D + 3-2.
We now change gears a bit and consider an extremal problem.

4. An extremal problem. Let A and B be two positive, self-adjoint operators on an
inner product space V; we wish to find extrema of the functional (Av, v)(Bv, v)/(v, v)2

for v 4: 0. Because ofthe homogeneity ofthe functional, this is equivalent to the problem
of finding extrema of (Av, v)(Bv, v) subject to (v, v) c. We ask under what conditions
are such extrema v simultaneously eigenvectors for the operator L A + B?
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For example, let V L2(RI), Af(x) xZf(x), Bf(x) -f"(x). Then it is easily
seen that

x If(x)] z dx xZlFf(x) z dx (Af, f)(Bf f).

Thus the functional in Heisenberg’s inequality is the model for our extremal problem.
To solve our problem, we use Lagrange multipliers. Let g(v) (v, v), and h(v)

(Av, v)(Bv, v). We wish to find extrema of h subject to the constraint g(v) c. Thus the
equations for Lagrange multipliers are (i) grad h , grad g; (ii) g c. For our particular
problem, (i) says [Av(Bv, v) + Bv(Av, v)] ),v. Assuming that (A + B)v #v, we have
Bv (-A + I)v which implies

We collect terms

Av((-A + #I)v, v) + (-A + #I)v(Av, v) ,v.

Av {((-A + uI)v, v) (Av, v)} {X- #(Av, v) } v
or

(.) Av {Iz(v, v) 2(Av, v) { h tz(Av, v) } v.

Thus, either (i) v is an eigenvector for A, or (ii) u(v, v) 2(Av, v) 0. Let us investigate
the consequences of (i).

If v is an eigenvector for A, and also for A + B, then v is also an eigenvector for B.
In our applications, A and B will have no common eigenvectors.

Supposing (ii) holds, define #(Av, v); then (.) holds and so v is a critical point
for our problem.

5. The Heisenberg functional for self-dual polynomials. From our discussion of
self-dual polynomials, we have A2F FD, where F, D, A2 are symmetric, F is orthogonal,
A2 is diagonal, and D is tridiagonal. We wish to use the computations of the previous
section to find critical points for the Heisenberg functional (A2v, v)(Dv, v)/(v, v).
We know that v will simultaneously be a critical point for this functional and satisfy
(A2 + D)v #v (here we are letting A A2 and B D) if # satisfies # 2(A2v, v)/
(v, v). But

A2/) + Dv #v (A2/), p) + (Dv, v) #(v, v).

Also, since A2F FD, we have D F-1AzF FA2F. We use this last relation to substitute
for D:

(A2 v, v) + (FA2Fv, v) #(v, v) (A2v, v) + (AFv, Fv) #(v, v).

Since F commutes with L A + D, v is also an eigenvector of F. Since F2 =/, the
eigenvalues of F are z __+1, so we have (A2v, v) + r2(Av, v) #(v, v) 2(A2v, v)
u(v, v), the desired relation.

6. Concluding remarks. For each ofthe classical families of self-dual discrete poly-
nomials, we have exhibited an associated symmetric orthogonal matrix F which has a
commuting symmetric tridiagonal matrix L, the associated Hermite matrix. The eigen-
vectors of L are critical points of a Heisenberg-type functional associated with each
polynomial family.

Similar results hold for the discrete Fourier transform matrix

F= 1/f(o(i- l)(j-1)), (.ON= 1.
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The eigenvectors of the operator L of Dickinson and Steiglitz are critical points for the
functional (Av, v)(Bv, v), where A is the cyclic matrix

-2

A= -2
-2

-2

and B is the diagonal matrix with entries )k 2(COS (27r(i 1)/N) 1), 1, 2,
N. As usual, the Hermite matrix L equals A + B.

For the Hermite matrices L associated with our self-dual families, or the Hermite
matrix associated with the discrete Fourier transform, it would be of some interest to
obtain explicit formulae for the eigenvectors and eigenvalues. The fact that these eigen-
vectors have some special properties (critical points for some nontrivial functional) en-
courages us to believe this may be feasible. We are currently investigating this problem.
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Abstract. This paper considers a problem ofrotating m matrices toward a best least-squares fit. The problem
is known as the orthogonal Procrustes problem. For rn 2 the solution of this problem is known and can be
given in a closed form using the singular value decomposition. It appears that the general case of rn > 2 cannot
be solved explicitly and an iterative procedure is required. The authors discuss a dual approach to the Procrustes
problem where the maximal value of the objective function is approximated from above. This involves mini-
mization ofthe sum ofk largest eigenvalues ofa symmetric matrix. It will be shown that under certain conditions
ensuring differentiability of the obtained function at the minimum, this method gives the global solution of the
Procrustes problem.

Key words, orthogonal rotation, best least-squares fit, singular value decomposition, least upper bound,
eigenvalues, nonsmooth optimization
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1. Introduction. In this paper we consider the problem of rotating m matrices to-
wards a best least-squares fit. Let Ai, 1, ..., m, be a family of n k matrices. Then
it is necessary to find orthogonal k k matrices Yi, 1, , m, for which the function

f( Y1, Ym) X tr (./l Yi -/tj Yj)T(A Yi -4j Yj)
i<j

is minimized, or equivalently, for which the function

g(r,,"’, Y)= E tr YfAfAjYj

is maximized. The problem has been discussed extensively in the psychometric literature
and is known as the orthogonal Procrustes problem (see [2], [4], [8]-[ 10], and references
therein). For m 2 the solution is known and can be given in a closed form using the
singular value decomposition of the matrix hlTh2 (von Neumann [l l]). That is, let
ATA2 PDQ r, where P and Q are orthogonal matrices and D is a nonnegative definite
diagonal matrix. Then Y! P and Y2 Q solves the problem. It appears that the general
case of m > 2 cannot be solved explicitly and an iterative procedure is required. A
numerical algorithm employing singular value decompositions successively was proposed
in Ten Berge [9]. It can be shown that this algorithm converges, but there is no guarantee
that the calculated stationary point corresponds to the global optimum. Therefore various
upper bounds for the maximum of the objective function g have been introduced [9].

We consider a dual approach to the Procrustes problem where the maximal value
of the function g is approximated from above. The corresponding algorithm involves
minimization of the sum of k largest eigenvalues of a symmetric matrix considered as a
function of some elements of this matrix. The objective function is then convex, but is
not necessarily differentiable. It will be shown that under conditions ensuring differen-
tiability ofthe objective function at the minimum, this algorithm gives the global solution
of the Procrustes problem.
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2. Upper bounds. In this section we discuss some upper bounds for the maximal
value of the function g. Consider the k k matrices So AfAj and let So Po.DoQ.v be
their singular value decompositions. Then

(1) d* tr Do
i<j

gives an upper bound for the maximum of g(Yl, Ym) with respect to orthogonal
matrices Yl, Ym [9, p. 273]. We consider another upper bound for the maximum
of g. Let

XI S12 Slm

S(X) 321 X2 S2m

Sml am2 Xm
be the mk mk symmetric matrix considered as a function of the symmetric block
diagonal matrix X diag (XI, Xm). Denote by ),(X) >= >= 3,mk(X) the eigenvalues
of S(X). Then the following result holds.

THEOREM 1. For every X the number

(2) l(X) - m ),i(X)- tr S(X)
i--!

gives an upper boundfor the maximum ofg.
Proof The sum of k largest eigenvalues of the symmetric matrix S(X) can be rep-

resented in the form (Ky Fan [5])

(3) ,I(X) + + k(X)---- max tr ZTS(X)Z,
Z

where the maximum in the fight-hand side of (3) is taken over all mk k matrices
Z such that ZT"Z I. (I denotes the k k identity matrix.) Now let Y,..., Ym
be a set of orthogonal matrices and consider the corresponding mk k matrix Y
(Y(, Yrm)r. Then YrY =mlk, and hence it follows from (3) that

Moreover,

and hence

k

m ki(X) tr YS(X)Y.
i=1

rn

tr Y rS(X)Y 2 tr YrSo y+ tr Xi,
i<j

g( Y, "’", Ym) <= I(X ).

Since the orthogonal matrices Yl, ,Ym are arbitrary, this completes the proof.
It is natural now to minimize the function I(X). We show in the next theorem that

the obtained upper bound is always better than the upper bound given in (1).
THEOREM 2. Let d* be the upper bound given by the right-hand side of(l). Then

(4) d* >= inf I(X).
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Proof Let PijDijQf be singular value decompositions of the matrices Sij. Consider
the symmetric matrices

1, ..., m. We show that

(6)

First we observe that

X.*, , PIJDIJP,
j=l
j/i

d* >= l(X *).

tr S(X *) tr Dij.
i4:j

Therefore in order to prove (6) it will be sufficient to show that the matrix S(X*) is
nonpositive definite, i.e., X(X*) =< 0, and hence XI(X*) + + Xk(X*) =< 0. Consider
vectors y, Ym E k. For any two vectors a, b E k we have that

2arb <= aVa + brb,
[)!/.2 T i-)!/. 2and hence, by taking a ,a Pij Yi and b ,a Q yj, we obtain

y’PijDijQyj < T T(Yi PijDijPij Yi + yfQijDijQyj).
Now form the mk vector y (y, ym)r. It then follows that

YT(X *)Y y’Sij yj + yX? yi
ij i=1

rn
<_ j T _, yQijDijQffyj+ ., yTX?yi.- Y PijDijPij Y + - /j i=1

Moreover, since S, Sji we have that QIJDIJP ejiOjiQjT.i, and hence we can choose
Qij Pi. Therefore

yrS(X*)y< r rY PijDijPij Yi + yX? Yi
i4:j

Yi PijDijPij Yi- Y , PijDijPij Yi O.
i4j j4:i

Since vector y is arbitrary this proves that the matrix S(X*) is nonpositive definite, and
hence the inequality (6) follows. Clearly (6) implies (4) and the proof is complete.

Notice that the proof of Theorem 2 is constructive. Inequality (6) suggests X* as a
good starting point in minimization of the function I(X). It was found in extensive
numerical experimentations that this choice of the starting point is indeed a very
good one.

Now we discuss some properties ofthe function I(X). First we observe that it follows
from the max-representation (3) that the sum k= Xi(X), and hence the function I(X),
are convex. Using this max-representation it is also possible to calculate the subdifferential
of I(X) (cf. [1, Lemma 4.4]). For our purposes the following result will be particularly
useful. Consider a block diagonal matrix X0 and let E [e, ..., ek] be an mk k
matrix whose columns e, ..., ek form a set of orthonormal eigenvectors of S(Xo) cor-
responding to the eigenvalues X(X0), Xk(X0), respectively. We denote diagx (EE)
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the block diagonal submatrix of EEr corresponding to the block diagonal elements
ofX.

THEOREM 3. The function I(X) is the differentiable at Xo if and only if k(Xo) is
strictly greater than + (Xo). In the last case the gradient ofl at Xo is given by

(7) Vl(Xo) 1/2 {m diagx (EE) -Img}.

Proof Consider the max-representation (3). The function tr ZrS(X)Z is linear in
X and its gradient is given by diagx (ZZr). Then it follows from a theorem of Danskin
[3] that the subdifferential Oh(X) of the (convex) function h(X) (X) + + Xk(X)
is the convex hull of block diagonal matrices diagx (ZZr) taken over all maximizers in
the fight-hand side of(3) (see Rockafellar [7, 23] for the definition and basic properties
of subdifferentials). Notice that a matrix Z is such a maximizer if and only if its columns
form a set of orthonormal eigenvectors of S(X) corresponding to k largest eigenvalues.
It follows that the subdifferential Oh(Xo) is a singleton if and only if

(8) x(Xo) > x+ (Xo).

Therefore the function h(X)and then l(X)are differentiable at X0 ifand only if(8) holds.
In the last case (7) follows.

Now let X0 be a minimizer of l(X) and consider the partition

[, ..., 1,
E; are k k, ofthe associated matrix E. Suppose that (8) holds. Then the gradient 7l(Xo)
is zero, and hence it follows from (7) that

rn diagx (EE) Imp.

This implies that mEEf I, and hence

(9) Yi ml/ZEi, 1, m

are orthogonal matrices. Moreover, the proof of Theorem shows that in this case the
orthogonal matrices Y given in (9) maximize the function g. We obtain that the dual
problem of minimization of the function l(X) not only provides an upper bound but
actually solves the primary Procrustes problem if the corresponding minimizer X0
satisfies (8).

3. Numerical experimentations. The main difficulty in numerical minimization of
the function l(X) is that it is not everywhere differentiable. Although considerable attention
has been attracted to minimization of nondifferentiable convex functions, the developed
algorithms are quite complicated and, what is more important, are slow to converge (cf.
Cullum, Donath, and Wolfe [1 ]). In any case we are really interested in situations where
the objective function l(X) is differentiable at the minimum and consequently the dual
problem provides a solution for the primary problem. Therefore some standard "differ-
entiable" approaches have been applied. The point X*, given in (5), proved to be a very
good starting point. In fact, in many cases the gradient Vl(X*) was closed to zero so that
the eigenvectors of S(X*), via formula (9), gave numerically acceptable solutions for the
Procrustes problem.

A number of experiments were performed for various choices of m, n, and k. We
briefly discuss two, namely (m, n, k) (8, 3, 3) and (5, 4, 4). Denote by go the maximal
value of the function g as obtained by the Ten Berge algorithm proposed in [9] and by
l0 the minimal value of as obtained by a slightly modified Newton method we will
discuss later.
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For each choice of (m, n, k) we generated ten sets, each containing m matrices
A, A,,. The entries ofeach Ai consisted ofuniformly and independently distributed
random numbers between -1 and 1. We first tried to minimize I by using the conjugate
gradient algorithm. This turned out to be rather unsatisfactory since the convergence
was slow, and in some cases it was not even achieved after 100 iterations.

Then the Newton method was tried. Notice that for computational purposes, the
symmetry ofX should be kept in mind. Therefore the function l(X) was considered as
a function of the mk(k + 1)/2 vector x (vecsrX, vecsrXm)r, where vecsXi
stands for the k(k + 1)/2 symmetric mode vector representation of Xi. We denote
by x0 the entry of x corresponding to the (i, j) element of X. It follows that Ol/Ox,
[Vl(X)]ii and Ol/Ox0 is 2[Vl(X)]0 when :/: j. Here VI(X) is the gradient of l as it is given
in (7). Now let { e, em) be a set oforthonormal eigenvectors ofS(X) corresponding
to the eigenvalues XI(X), Xm(X). Denote eo the ith entry of e. Then if we assume
kk(X :#: kk+ I(X) and let

k km

ast,uv rn , , ()ki(X) Xj(X))-lesietjeuievj,
i=1 j=k+l

the elements of the mk(k + 1)/2 mk(k + 1)/2 Hessian matrix H(X) of l at X can be
shown to be

"[ ast,uv, s t, u v,
021 t ast,uv + ats,uv, s t, u v,

OXstOXuv ast,uv + ast,vu, s t, u 4: v,
ast,uv + ast,vu + ats,uv + ats,vu, s 4 t, u 4 v

(cf. Lancaster [6]).
For each set of matrices A1, , Am the value go was calculated. Then the Newton

algorithm for minimization of I(X) was implemented with X*, defined in Theorem 2,
taken as the starting point. Notice that the Hessian matrix H(X) is always singular.
Therefore it was stabilized at each iteration by adding e 0.1 along its diagonal. After
each iteration the new value of was verified in order to see if it was less than the previous
one. If not, a line search was performed along the direction -H-I(X)VI(X). This became
especially necessary after a number of iterations, when in some cases the kth and
(k + 1)th eigenvalues tend to converge to a common value. Convergence of the first
algorithm was assumed when the difference between consecutive values of g was less
than 0.0001. The difference value 0.01 was taken for the second. A point to which the
Newton algorithm converged is denoted by Xo, i.e., lo l(Xo).

Tables and 2 sum up the results obtained.
From these results the following observations are made:
(1) The pointX* seems to be a good starting point and I(X*) is a good approximation

for 10 and go.
(2) Whenever the difference Xk(X0) Xk/ (X0) is greater than about 0.1, the Newton

algorithm converges in a few iterations and the corresponding value of 1o go is very
small. This suggests that the Ten Berge algorithm also converges in each such case to the
global maximum of g.

(3) The kth and (k + 1)th eigenvalues frequently converge to a common value, in
which case the function is not differentiable at the corresponding point Xo. Despite this
the obtained upper bound 10 is still a very good one.

(4) For all the data we generated the Ten Berge algorithm seemed to converge to
the global maximum of g. This is rather surprising, since the corresponding problem is
not a convex one and only certain stationarity of the calculated point is ensured by the
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TABLE
Case (m, n, k) (8, 3, 3).

go

83.074
71.997
63.835
64.790
64.102
66.012
65.310
61.931
73.106
58.036

83.072
71.996
63.864
64.845
64.102
66.013
65.317
62.186
73.346
58.035

I(X*)

83.095
72.126
64.079
65.078
64.837
66.140
65.670
62.911
73.829
58.341

-0.002
-0.001
0.029
0.055
0.000
0.001
0.007
0.255
0.240
0.001

l(X*)- lo

0.023
0.130
0.215
0.233
0.735
0.126
0.353
0.724
0.483
0.306

x(Xo) x ,(Xo)

0.526136
1.098260
0.000105
0.000706
0.000021
1.046920
0.000066
0.000061
0.000116
0.336850

TABLE 2
Case (m, n, k) (5, 4, 4).

51.020
46.016
37.538
44.478
40.082
36.503
40.044
45.232
36.439
45.284

51.020
46.078
37.565
44.524
40.195
36.546
40.082
45.428
36.456
45.436

l(X*)

51.069
46.199
38.098
44.708
40.413
36.880
40.217
45.942
36.616
46.623

0.000
0.061
0.027
0.047
0.114
0.044
0.038
0.196
0.017
0.152

I(X*)- lo

0.049
0.121
0.533
0.183
0.217
0.333
0.134
0.514
0.159
1.187

x(Xo) xk ,(Xo)

0.238905
0.000088
0.000109
0.000085
0.000115
0.000014
0.000964
0.000342
0.000986
0.002255

general theory. Whenever the difference lo go became reasonably significant, the dif-
ference kk(Xo) kk+ (Xo) was invariably very small and the Newton method did not
converge.
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DETERMINANT INEQUALITIES VIA INFORMATION THEORY*
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Abstract. Simple inequalities from information theory prove Hadamard’s inequality and some of its gen-
eralizations. It is also proven that the determinant of a positive definite matrix is log-concave and that the ratio
of the determinant of the matrix to the determinant of its principal minor g, I/Ig,- 1 is concave, establishing
the concavity of minimum mean squared error in linear prediction. For Toeplitz matrices, the normalized
determinant g, TM is shown to decrease with n.

Key words, inequalities, entropy, Hadamard, determinants
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1. Introduction. The entropy inequalities of information theory have obvious in-
tuitive meaning. For example, the entropy (or uncertainty) of a collection of random
variables is less than or equal to the sum oftheir entropies. Letting the random variables
be multivariate normal will yield Hadamard’s inequality [1], [2]. We shall find many
such determinant inequalities using this technique. We use throughout the fact that if

-(1/2)xtK-lx(1) b/c(x) (27r)n/21K I/2 e

is the multivariate normal density with mean 0 and covariance matrix K, then the entropy
h(X1, X2, Xn) is given by

(2) h(X1,X, ,X) 4:ln 4= In (2re)lKI,

where KI denotes the determinant of K, and In denotes the natural logarithm. This
equality is verified by direct computation with the use of

(3) f K(X)xtK-lx dx , , gij(g-l)o FI In en

j

First we give some information theory preliminaries, then the determinant inequalities.

2. Information inequalities. In this section, we introduce some of the basic infor-
mation theoretic quantities and prove a few simple inequalities using convexity. We
assume throughout that the vector (Xl, X2, "", Xn) has a probability density

f(x,x:z, ,Xn).

We need the following definitions.
DEFINITION. The entropy h(X1, X:,..., Xn), sometimes written h(f), is de-

fined by

(4) h(X,, X2, "", Xn) ff In f
d
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DEFINITION. The functional D(f IIg) f/(x) In (f(x)/g(x)) dx is called the relative
entropy, wherefand g are probability densities.

The relative entropy D(fllg) is also known as the Kullback-Leibler information
number, information for discrimination, and information distance. We also note that
D(f I[g) is the error exponent in the hypothesis test offversus g.

DEFINITION. The conditional entropy h(XIY) ofX, given Y, is defined by

(5) h(Xl -ff(x,y) lnf(xly) dx dy.

We now observe certain natural properties of these information quantities.
LEMMA 1. D(f[]g) >= 0.
Proof Let A be the support of f Then by Jensen’s inequality, -D(fllg)=

faf In (g/f) <= In fa f(g/f) In fA g <= In 0. V1

LEMMA 2. If(X, Y) have a joint density, then h(XI Y) h(X, Y) h(Y).
Proof h(Xl Y) -f f(x, y) lnf(xly) dx d -ff(x, ) In (f(x, y)/f(y)) dx dy

-ff(x, y)lnf(x, y) dx dy + ff y) lnf y) dy h(X, Y) h( Y). E]

LEMMA 3. h(X] Y) <= h(X), with equality ifand only ifX and Y are independent.
Proof

h(X)- h(Xl Y)= ff(x, y) In (f(xly)/f(x)) ff x, y) In (f(x, y)/f(x)f(y))>= O,

by D(f(x, y)llf(x)f(y)) >= O. Equality implies f(x, y) f(x)f(y) almost everywhere by
strict concavity of the logarithm.

LEMMA 4 (Chain Rule). h(X, X2, Xn) ].n

,’]= h(Xi) with equality ifand only ifX, X2, Xn are independent.
Proof The equality is the chain rule for entropies, which we get by repeatedly ap-

plying Lemma 2. The inequality follows from Lemma 3, and we have equality if and
only ifXl, X2, Xn are independent.

LEMMA 5. IfX and Y are independent, then h(X + Y) >= h(X ).
Proof h(X + Y) >-_ h(X + Y[ Y) h(X Y) h(X ). I-]

We will also need the entropy maximizing property of the multivariate normal.
LEMMA 6. Let the random vector X e R" have zero mean andcovariance K EXXt,

i.e., K0 EXiX, <= i, j <= n. Then h(X) <- 1/2 In (2 7re)"lK[, with equality ifand only if
f(x) 4/(x).

Proof Let g(x) be any density satisfying f g(x)xixj dx Ko, for all i, j. Then

0 _-< D(gl{ 4tc)

fg In (g/4r)

(6) -h(g) fg In

-h(g)- f 41 In

-h(g) + h(cki),

where the substitution f g In qK f bK In K follows from the fact that g and bK yield
the same moments of the quadratic form In K(X).
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Motivated by a desire to prove Szasz’s generalization of Hadamard’s inequality in
the next section, we develop a new inequality on the entropy rates of random subsets of
random variables. Let (Xl, X2, Xn) have a density and for every S -=_ { 1, 2, n},
denote by X(S) the subset {Xi: S).

DEFINITION. Let

h(X(S))
(7) hn)_ ,

"---"-"s: IsI k

Here h") is the average entropy in bits per symbol ofa randomly drawn k-element subset
of {X, X2, Xn}. The following lemma states that the average entropy decreases
monotonically in the size of the subset.

LEMMA 7.

(8) hn) > h2n) >"" > l(n)
,n

Proof We will first prove the last inequality, i.e., h(n) <
’n-
h(n) We write

h(X, X2, X,,) h(X, X2, Xn 1) -- h(X,,lX,, X2, ..., X,, )

h(X X2 Xn) h(X1, X2 Xn 2, Xn) -- h(Xn X X2 Xn 2, Xn)

<= h(X1, X2 X, 2 Xn) -Jr- h(Xn X X2 Xn 2)

h(X, X:, ...,X) <= h(X_, X3, "", Xn) -- h(X).Adding these n inequalities and using the chain rule, we obtain

(9) nh(X X2 Xn) <= h(X X2 X Xi + Xn) + h(X X2 X,)
i=1

or

h(Xl X2,"" Xi-1Xi+ 1,"" Xn)
o) - h(x, x2 x)=-<

n hi= n-1

which is the desired result t,’ < h’),,n ’n- 1.

We now prove that hn) _-< h

_
for all k -< n, by first conditioning on a k-element sub-

set, then taking a uniform choice over its (k 1)-element subsets. For each k-element
(k) < (k)subset, hk hk-l, and hence the inequality remains true after taking the expectation

over all k-element subsets chosen uniformly from the n elements, ff]

COROLLARY. Let r > O, and define

(1 1) gn) ., erhtXtS))/k.S: ISI k

Then

(12)

Proof Starting from (10) in the proof of Lemma 7, we multiply both sides by r,
exponentiate, and then apply the arithmetic mean geometric mean inequality to obtain
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(13)

exp ( rh(Xl, X2, Xn))-< exp (l_ni=l rh(X1, X2, Xi_ Xi+ l’ Xn))
_-< exp

r/i= n-1

for all r >- 0,

which is equivalent to g) =< g(nn)-- 1. Now we use the same arguments as in Lemma 7,
taking an average over all subsets to prove the result that for all k < n, g(") < g)_ 1. ["]

Finally, we have the entropy power inequality, the only result we do not prove.
LEMMA 8. IfX and Y are independent random n-vectors with densities, then

(14) exp -h(X+Y) >-exp -h(X) +exp h(Y)
n n

Proof See Shannon [3] for the statement and Stam [4] and Blachman [5] for the

Thus

(16) INK, +(1- X)K21 >--IKl Ixlg21 l-x,

as desired.

(15)

3. Determinant inequalities. Throughout we will assume that K is a nonnegative
definite symmetric n n matrix. Let KI denote the determinant of K.

We first prove a result due to Ky Fan [6].
THEOREM 1. In gl is concave.
Proof Let X1 and X2 be normally distributed n-vectors, Xi 4K/(x), 1, 2.

Let the random variable 0 have distribution Pr {0 1) X, Pr {0 2) X, 0 =<
), =< 1. Let 0, X1, and X2 be independent and let Z X0. Then Z has covariance
Kz XK + (1 X)K2. However, Z will not be multivariate normal. By first using
Lemma 6, followed by Lemma 3, we have

1/2 In (2re)n XKI + (1 X)K21 > h(Z) > h(ZlO)
X 1/2 In (2re)" K + (1 X) 1/2 In (2re)n K21.

The next theorem, used in [7], is too easy to require a new proof, but we provide it
anyway.

THEOREM 2. K1 / g21 >- Kll.
Proof Let X, Y be independent random vectors with X 4/q and Y 4r2. Then

X + Y 4r, + :2 and hence 1/2 In (2re)nlK + K2I h(X + Y) >= h(X) 1/2 In (2re)nlKl,
by Lemma 5. V1

We now give Hadamard’s inequality using the proof in [2]. See also [1] for an
alternative proof.

THEOREM 3 (Hadamard). KI --< 1-Igii, with equality ifand only ifKo O, 4: j.
Proof Let X 4/. Then

(17) z In (2re)n KI h(XI ,X2,
z

Xn) <= , h(Xi) In 2relKii l,
i=

with equality if and only ifXl, X2, Xn are independent, i.e., Ko O, 4 j.

proof. Unlike the previous results, the proof is not elementary.
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We now prove a generalization of Hadamard’s inequality due to Szasz [9]. Let
K(i, i2, ik) be the k-rowed principal submatrix ofKformed by the rows and columns
with indices i, i2, ik.

THEOREM 4 (Szasz). IfK is a positive definite n n matrix and Pk denotes the
product ofall the principal k-rowed minors ofK, i.e.,

(18) P: 1"I K(i, iz, ,i,)l,
Ni <i2 <ik_n

then

(19) P >- P/("-?) >- P/(") >- >= Pn.

Proof Let X K. Then the theorem follows directly from Lemma 7, with the
identification h(n) (1/n) In P + 1/2 In 27re.

We can also prove a related theorem.
THEOREM 5. Let K be a positive definite n n matrix and let

(20) S,,) 1
Z K(i,, i2, "", i) ’/.

() - il i: <"" ik - n

Then

(21) sn) .(n) 1In-tr(K)= >Sn)>... > [K[--nn

Proof This follows directly from the corollary to Lemma 7, with the identification
gn) (2re)Sn), and r 2 in (11) and (12).

We now prove a property ofToeplitz matrices, which are important as the covariance
matrices of stationary random processes. A Toeplitz matrix K is characterized by the
property that Kij Krs if -Jl r s l. Let K denote the principal minor
K(1, 2, k). For such a matrix, the following property can be proved easily from the
properties of the entropy function.

THEOREM 6. Ifthe positive definite n n matrix K is Toeplitz, then

(22) IK, IK_I ’/= IKn-I /(n- ’)>- IKnl 1/n

and glllg_ 1 is decreasing in k.
Proof Let (X1, S2, Sn) )gn. Then the quantities h(SlSk_ , X) are

decreasing in k, since

(23)
h(XlX_ 1, Xl) h(Xk + X, ...,x)

h(Xk + X, ..., x=, x,),
where the equality follows from the Toeplitz assumption and the inequality from the
fact that conditioning reduces entropy. Thus the running averages

(24)
k

h(Xl ,Xk) i’1Tc h(XilXi- 1, Xl)

are decreasing in k. The theorem then follows from

h(X,X2, ,X,) 1/2 ln(2re)lKl.
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Since h(Xn IXn-l, "’", XI) is a decreasing sequence, it has a limit. Hence by the
Cesfiro Mean Theorem,

h(x ,x, ,x,)
lim

(25) n-- n
lim -1 h(XlX_ , ,X)
n-- nk=
lim h(Xn IXn- 1, ,X).
n--

Translating this to determinants, we obtain the following result:

(26) lim g=l TM lim
n--- Ig-,l’

which is one of the simple limit theorems for determinants that can be proved using
information theory.

In problems connected with maximum entropy spectrum estimation, we would like
to maximize the value of the determinant of a Toeplitz matrix, subject to constraints on
the values in a band around the main diagonal. Choi and Cover [10] use information
theoretic arguments to show that the matrix maximizing the determinant under these
constraints is the Yule-Walker extension of the values along the band.

The proof ofthe next inequality (Oppenheim 11 ], Marshall and Olkin 12, p. 475])
follows immediately from the entropy power inequality, but because of the complexity
of the proof of the entropy power inequality, is not offered as a simpler proof.

THEOREM 7 (Minkowski inequality [13]).

(27) IK +K)_l’m>= IK I’/"+ IKzl TM.

Proof Let Xl, X2 be independent with X (Ki. Noting that X + X2 (])K1 + K2
and using the entropy power inequality (Lemma 8) yields

(2re) K + g2 TM e(2/n)h(x + x2)

(28) >= e(2/n)h(x) + e(2/n)h(x2)

(2re)Ig TM + (27re) lg21TM. I--I

4. Inequalities for ratios of determinants. We first prove a stronger version of Had-
amard’s theorem due to Ky Fan [8].

THEOREM 8. For all <= p <= n,

(29)
P IK(i,p+ 1,p+2, ,n)l

IK(p+ 1,p+2,... ,n)l-.= i’-/l-’" ,-i

Proof We use the same idea as in Theorem 3, except that we use the conditional
form of Lemma 3:

(30)

IKIIn (27re)p
IK(p+ 1,p+ 2, ,n)l

<= Z h(XilXp+ l,Xp+ 2, ,Xn)

-i= In 2re
IK(i,p+ 1,p+2, ,n)l
IK(p+ 1,p+2, ,n)[
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Before developing Theorem 9, we make an observation about minimum mean
squared error linear prediction. If (XI, X2, Xn) chic,, we know that the conditional
density of Xn given (X1, X2, Xn-1) is univariate normal with mean linear in XI,
X2, Xn- and conditional variance . Here 2 is the minimum mean squared error

E(Xn 2n)2 over all linear estimators 2n based on X1, X2, Xn_ 1.

LEMMA 9. aZn Ignl/lgn-ll.
Proof Using the conditional normality ofXn, Lemma 2 results in

(31)

1/2 In 2re2n h(SnlX,S2, ,Sn-1)

h(X1, X., X,) h(X1,X, X_ 1)

1/2 In (2re)nlgnl 1/2 In (27re)n-llgn_l

1/2 In 2relgnl/Ig,-1 I.
Minimization of n2 over a set of allowed covariance matrices {Kn} is aided by the

following theorem.
THEOREM 9. In (I gn / g is concave in Kn.
Proof We remark that Theorem cannot be used because In K, I/[ K,_RI

is the difference of two concave functions. Let Z X0, where Xl s,(X), X2
4r,(x), Pr {0 } X Pr {0 2 }, and Xl, X2, 0 are independent. The covariance
matrix K, of Z is given by

(32) K kS -Jr- X)Tn.

The following chain of inequalities proves the theorem"

X In (2re)PlSnl/ISn_l /(1 X) In (2re)P Zl/I Zn-pl
(a)

kh(Xln,Xl,n-1, ,Xl,n-p+ 11Xll, ,Xl,n-p)

+ (1 X)h(X2n, X2,n- 1,

(33) X2,n-p+ lX21, ,X2,n-p)

h(Zn, Z 1, Zn-p+ Zl, Zn-p, O)

(b)
<= h(Zn, Zn- 1, Zn-p+ 11Zl, Zn-p)

5 In (2re)p

where (a) follows from

h(Xn X 1, Xn p + Xl, Xn p) h(Xl Xn) h(Xl, X, p),

(b) follows from the conditioning lemma, and (c) follows from a conditional version of
Lemma 6.

The above theorem for the case p is due to Bergstrom [14]. However, for
p 1, we can prove an even stronger theorem, also due to Bergstrom 14].

THEOREM !0. KI/IKn- 1 is concave in K,.
Proof Again we use the properties of Gaussian random variables. Let us assume

that we have two independent Gaussian random vectors, X A, and Y ,. Let
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Z X + Y. Then

IA,+B,I
In 2re

2 A,-1 +B,-ll
(a)
=h(ZnlZ,-I,Z,,-z, ,Z1)

(b)
_
h(Z, Z,, Zn 2 ZI ,X. ,Xn- 2 ,Xl

Yn-l,Yn-2, ,YI)
(c)
h(Xn"- YnlXn- l,Xn-2, ,X1, Yn- l, gn-2, ,YI)

(d)

E7 In [2re Var (X. + Y. IX.-I,X.-:,z

(34) Yn- l, Yn- 2, YI)]

(e2-E In [2re(Var (X, IX,-l,Xn-2,

+ Var (YnIY,-, Y,-2, YI))]

(f)_l IA, + IB,
=Eln (27re( IAn- IBn------- ))
=_1 In (27re( IAn___l +2 IAn-ll INn-I

In the above derivation, (a) follows from Lemma 9, (b) from the fact the conditioning
decreases entropy, and (c) from the fact that Z is a function of X and Y. X, + Y, is
Gaussian conditioned on X, Xz,..., X,_, Y, Yz,..., Y,_, and hence we can
express its entropy in terms of its variance, obtaining (d). Then (e) follows from the
independence of Xn and Yn conditioned on the past XI, X2, Xn-1, Y1, Y2,
Yn-1, and (f) follows from the fact that for a set ofjointly Gaussian random variables,
the conditional variance is constant, independent of the conditioning variables (Lemma
9). In general, by setting A XS and B XT, we obtain

XSn+XTI X I&l +X TI(35) I)kSn-1-t-XZn-1 ]- ISn- ITn-l-------’
i.e., KnlIIK,- is concave. Simple examples show that K, IIIKn-I is not necessarily
concave for p >= 2. W!

5. Remarks. Concavity and Jensen’s inequality play a role in all the proofs. The
inequality D(f lie) f fin (f/g) >= 0 is at the root of most of them.
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TOMOGRAPHY IN PROJECTIVE SPACES: A HEURISTIC FOR
LIMITED ANGLE RECONSTRUCTIVE MODELS*

PABLO M. SALZBERG’f

Abstract. Given a projective geometry, PG(s, p), over a finite field of characteristic p, the tomographic
problem can be stated in the following terms: unknown densities w, w2, , are attached to each point ofthe
space; how can these values be obtained if we are allowed to "irradiate" along the lines of our geometry and
measure the total attenuation of energy of each ray (line)?

A complete answer to this problem is given. The solution is close to the (Filtered) Back Projection Tech-
nique, one ofthe earliest techniques in computerized tomography, and can be used as a spatial limited angle tomo-
graphic model.

Key words, tomography, mathematical modelling, image processing, matrix equations, latin squares,
finite geometry

AMS(MOS) subject classifications. 68U10, 15A24, 05B15, 51E20

1. Preliminaries. The tomographic problem ([2], [6], [8]-[10]) can be succinctly
described in the following terms: let E be a finite set endowed with a set R of "rays" or
"directions" (R c 2), and let us assume that unknown densities Wl, w2, ---, are assigned
to the points of E. We would like to know the value of these densities, for which we are
allowed to "irradiate" along the rays on E and measure the total attenuation of energy
in each direction. Actually, we shall deal with the following equivalent problem: unknown
weights wl, w2, "’", are attached to each point of E; how can these values be obtained
if we know the weight of each ray in R?

Some discrete models were extensively studied in the earlier days of X-ray tomog-
raphy (cf. [1] and references therein). In general, the tomographic problem involved in
these models can be described in terms of a pair (E, R); E being a square grid (or matrix)
of points in the Euclidean plane, whereas each ray in R consists of the subset of points
belonging to a straight strip in some direction. Thus, the solution of the tomographic
problem leads to the inversion ofa large matrix which, besides the amount ofcomputation
required, is an ill-conditioned problem. One of the simplest techniques used in com-
puterized tomography that avoids inverting large matrices is the Back Projection Tech-
nique (BPT) introduced by Kuhl and Edwards [5]. Unfortunately, as we shall see later,
BPT combines the information obtained from the scanning process in an inadequate
way, reconstructing the "images" (densities) without the resolving power ofother methods.
On the other hand, BPT is less sensitive to noise in data, which is one of the major
problems when dealing with image reconstruction.

In what follows we shall exhibit a technique that is close to BPT arising from prop-
erties of rays in projective spaces. From this framework, it becomes clear why BPT fails
to give better image resolution.

2. The PSCT model. As we mentioned above, a fairly simple solution to the to-
mographic problem can be found if E PG(s, p), the projective space of dimension s
on Kp [3], [4], and R is the set of lines on E. In general, the possibility of finding a

Received by the editors October 10, 1986; accepted for publication (in revised form) November 2, 1987.
This work was supported by the National Institutes ofHealth (Minority Biomedical Research Support Program)
under grant S 14 RRO3232-01.
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solution depends on the properties of R. We shall consider the following four properties
of projective lines:

(i) Given two different points P, Q there is one and only one line containing
(incident to) P and Q.

(ii) Given two different points P, Q there is at least one line passing through P and
not containing Q.

(iii) Two different lines are disjoint (parallel) or intersect at one point.
(iv) Every line has the same number of points.
Properties (i)-(iv) are not exclusive of projective spaces. Indeed, given any finite set

E, let R { (P, Q): P, Q e E}. Then it is clear that these four properties are satisfied.
Let us assume, momentarily, that E is any finite set of elements endowed with a set

R {ri )iz, satisfying properties (i)-(iv). Given any point P e E, let r’, rle, rt
e be

the pencil of lines passing through P. Then as straightfoward consequences ofthese four
properties we have the following equalities:

(I) [-’)t/=o r {e},
(IX) tO ti=0 r/.e E.

Furthermore, ifwe assume that each line has, say, n + points (cf. (iv)), then it can
be easily seen from (I) and (II) that the cardinality ofE is n(t + 1) + 1; hence, the number
(t + 1) oflines incident to any point remains constant.

Now, to find the density we associated with any point P e E, let us denote by Sr the
total weight of line _r, i.e., Sr Qr WQ, and let Si, for 0, ..., t, be the weights of
the lines passing through P.

From (I) and (II) it is clear that the following equality holds:

(1) , Si= twe+ T
i=0

where T ]eE we is the total-weight of the space E, a parameter which can be easily
obtained from the weights of the rays. (Indeed, by adding both terms of (1) over all E,
we obtain T (1/(t + 1)) reR Sr.)

Hence, solving (1) for we yields

(2) we=(1/t)( S)-(1/t)T.
i=0

Therefore, (2) furnishes afast inversionformula for evaluating the unknown weights
assigned to each point of E. It is also very close to that used in BPT [5]. The main
difference resides precisely in the notion of ray itself. Indeed, lines in our projective
geometry are difficult objects from those of the s-dimensional Euclidean space (see Fig.
2 in 3).

3. An application: limited angle planar computerized tomography. In this section
we develop, from the above theoretical framework of tomography in a projective space
(PSCT), the heuristic for an applied technique.

Given a projective space PG(2, p), we can construct a complete set MI,
Mp- of orthogonal latin squares [3], [7]. This complete set of such p p matrices
Mk IMP.] can also be obtained by means of the expressions m + k.j, where
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(k =3)

(k =0)

2 2 2 2 2

3 3 3 3 3

0 0 0 0 0

2 3 4

3 4 0., 2

4 0 /(,.!.) 2 3

2 3 4 O_

3 4 0

3 4 0

3 4 0

3 4 0

3 4 0

FIG.

=< k =< p 1, -< i, j -< p, and "+" and "." denote the operations on the field
K. We shall add to the set the "canonical squares" M [m.] and Mp [m,], where
m, for all j, and m, j for all i, which will be useful for introducing lines of slope 0
and , respectively. Figure shows a complete set of orthogonal squares for p 5.

In this context, given a set E consisting of p2 points arranged as a p p square,
each matrix Mk will define on E the set ofparallel lines having slope k. More specifically,
ifwe overlap the square Mk on E, a ray is defined as the set ofthose points ofE receiving
the same value. The set of points encircled in each square of Fig. determines a line
with the given slope k, once this matrix is overlapped on E. The whole set of encircled
lines constitutes the pencil through allocation (4, 2).

Now, Fig. 2 illustrates the difference between lines in BPT and PSCT.
We now show how to apply the preceding theory in "reconstructing" a square.
Example. Let M be the matrix shown in Fig. 3, and assume it is a "black box" of

which we can only know the sum of the assigned values along some directions.
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0 -3 2 -1 4

5 0 -2 4

3 -3 4 0

0 4 -1 3 -2

5 5 5 5 5

FIG. 3

TABLE

Slope

Accumulated values
("attenuation")

0 2 3 4

4 8 9 16 15 12

In order to find out, for instance, the value assigned to location (4, 2) (which in this
case is 4) we consider the pencil passing through (4, 2). These lines are precisely those
encircled in Fig. 1. Thus, when scanning along each of these lines we find the values
exhibited in Table 1.

Hence, according to formula (2),

w(4,2)= (1/2)(4 + 8 +9 + 16+ 15+ 12)-(1/2)T.

By scanning along a complete set of parallel lines (and adding the values) we obtain
T 44. Thus, w(4,2)= (1/2)64 -(1/2)44 4.

Finally, in testing this planar CT model, the scanning field can be considered an
n n matrix whose entries are the unknown densities. For all practical purposes this
matrix will represent a grid overlapped over the real object, whose norm is small enough
so that we can assume its elements are of uniform density. In a computer screen, each
element of this grid will consist of a few pixels.

Once we assign densities to the elements ofthe grid, i.e., once we have a mathematical
phantom, we proceed to reconstruct the image by scanning with beams of p parallel
bands (p =< n, p the power of a prime) irradiated in each of the p + directions. To
reconstruct the image, the preceding theory yields a matrix consisting ofp p "points,"
each of uniform density.

When we deal with this reconstruction procedure, a very interesting problem arises,
namely, to determine the pattern ofcrosses ofEuclidean lines when overlapped to projective
lines. This is an open problem.
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EIGENVECTORS OF DISTANCE-REGULAR GRAPHS*
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Abstract. The objective of this work is to find properties of a distance-regular graph G that are expressed
in the eigenvectors of its adjacency matrix. The approach is to consider the rows of a matrix of orthogonal
eigencolumns as (coordinates of) points in Euclidean space, each one corresponding to a vertex of G. For the
second eigenvalue, the symmetry group ofthe points is isomorphic to the automorphism group of G. Adjacency
of vertices is related to linear dependence, linear independence, and proximity of points. Relative position of
points is studied by way of the polytope that is their convex hull. Several families of examples are included.
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1. Introduction. In this paper, we find properties of a distance-regular graph that
are reflected in properties ofthe eigenvectors ofthe adjacency matrix. This class is chosen
because of convenient algebraic properties. In a recent paper [9], C. Godsil uses similar
ideas to bound the diameter ofa distance-regular graph in terms ofeigenvalue multiplicity.
To some extent, the techniques used here were inspired by those of Terwilliger 14]. In
this Introduction, we present definitions and a key lemma. Throughout, the graph G is
assumed to have vertex set V ( l, 2, n}.

DEFINITION. A partition of the vertex set of a graph G into V1, V_, Vt is a
coloration if, for each and j, each vertex h in V,. is adjacent to the same number, bij, of
vertices in V. The square matrix B [bo] is called the coloration matrix ofthe partition.

A matrix-theoretic definition is this. Let X be the incidence matrix of the partition;
that is, X has a one in the/,j-position if vertex is in V. or a zero otherwise. Then the
partition is a coloration if and only if AX XB for some B, where A is the adjacency
matrix of the graph. If the condition is fulfilled, then B is in fact the coloration matrix.
Note that every row ofX is a row of the identity, and no column is empty; thus X has
independent columns. A general reference for colorations is [5, Chap. 4].

DEFINITION. A graph G is distance-regular if, for each vertex of G, the distance
partition starting at i,

V0 i}, V j: dist (i,j) k}
is a coloration, and the coloration matrix B is independent of i.

The coloration matrix B of a distance partition in a distance-regular graph has d +
rows and columns, where d is the diameter of G. The triangle inequality in the graph

guarantees that B is tridiagonal, and the implied connectedness makes the entries next
to the diagonal nonzero. Furthermore, a distance-regular graph must be regular, ofvalence
o, say, and the sum of the entries in each row of B is O. We follow the notation of [2]
for the elements of B (although the matrix called B there is the transpose of this):

0 b0 0 0
CI al b 0 0

B 0 C2 a2 b2 0 0

0 0 0 0 0 ca

Received by the editors July l, 1987; accepted for publication (in revised form) December 4, 1987. This
work was supported by the Office of Naval Research under grant N00014-85-K-04097.
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A familiar example of a distance-regular graph is the skeleton of a cube shown in
Fig. 1. The coloration matrix of the distance partition is

0 3 0 0
0 2 0B=

0 2 0
0 0 3 0

If G is any graph on n vertices, the distance matrices Ao, A, Ad, where d is
the diameter of G, are defined by the requirement that Ak have a one in the i, j-position
ifdist (i,j) k and a zero otherwise. Obviously, A0 I andA A, the adjacency matrix.
The following theorem about distance-regular graphs is well known (see [2, p. 140]).

THEOREM A. IfG is a distance-regular graph, then the distance matrices Ao, A ,
Adform a basisfor the algebra ofpolynomials in the adjacency matrix A A.

For any symmetric n n matrix A, if a is an eigenvalue of multiplicity m, there is
an n rn matrix Z satisfying AZ aZ, ZZ Ira. We call such a matrix, composed of
orthonormal eigencolumns associated with a, a complete eigenmatrix. Then the projector
associated with a is L ZZ, which satisfies (see, e.g., [10, p. 196]) AL aL, L2 L,
and rank (L) m. IfA is the adjacency matrix of a distance-regular graph, Theorem A
guarantees that there are coefficients Yo, Yl, "’", Yd, such that

(1) L yoAo +yA + + YdAd,

because L is a polynomial in A. As the following lemma shows, the coefficients have a
further significance in this case. This lemma is implicit in [2, Thm. 21.4, p. 143].

LEMMA 1. Let A be the adjacency matrix ofa distance-regular graph G, let a be an
eigenvalue with multiplicity m, and let L be the associated projector. Then is an eigen-
value ofthe coloration matrix B, and the column matrix y [Y0, Y, Yd], containing
the coefficientsfrom (1), satisfies By ay and Yo m/n.

Proof Let X be the incidence matrix of the distance partition starting at vertex i,
and consider column of L (e is column of an identity matrix whose dimension is
dictated by context):

Lei yoei + yAei + + ydAde
yoXe + yXe2 + + yuXeu+

1 8

3 7

FIG.
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Now AXy aLeg aXy XBy. Since X has independent columns, we conclude that
By ay. The second conclusion is proved by taking traces of both sides of (1). [3

2. Symmetry of point sets.
DEFINITION. Let C be an n m matrix of coordinates of n not necessarily distinct

points in m-dimensional Euclidean space such that CrC I. The symmetry group of C,
denoted by orth (C), is the set of m m matrices R satisfying the condition CR PC
for some permutation matrix P. This definition is based on one of Coxeter [4, p. 253].

THEOREM B. The set orth (C)forms a group oforthogonal matrices. Furthermore,
the set perm (CCr), composed ofthe permutation matrices that commute with CCr, is
also a group and contains precisely those permutations Pfor which the equation CR
PC has a solution R. Indeed, the mapping P - CrPC is a group homomorphism ofthe
second group onto the first, whose kernel is the group of permutations P that satisfy
PC C.

Proof Parts ofthe proofwill be found in [8]; the remaining parts are routine.
We wish to apply the ideas of the theorem above to the case where C Z, the

complete eigenmatrix associated with the second eigenvalue of a distance-regular graph.
When interpretation in terms ofthe graph is desired, we speak ofthe vertex corresponding
to row of Z and/or to the point in Euclidean space whose coordinates are found in that
row. We need several technical lemmas.

LEMMA 2. Let G be a connected graph, and let a be its second eigenvalue. Then
either >= 0 or else G is a complete graph.

Proof This lemma is a minor variant on a theorem of Smith [13] cited in [5,
p. 163].

LEMMA 3. Let B be the coloration matrix of a distance partition of a distance-
regulargraph G, let a be its second eigenvalue, and let y [y0, Y Yd]"a corresponding
eigenvector with Yo > O. Then Yo > Yl > Yi, 2, ..., d.

Proof If G is a complete graph, then d and the result is trivial; from here on,
assume that d is at least 2. Since B is tridiagonal, it is easy to show that Y0 cannot be zero
and (from the first row of the equation By ay) that y (a/o)yo < Yo. Now consider
row of the equation By ay. Recall that the sum of the nonzero entries in any row is
0, and use this fact to replace the diagonal entry. Then row reads

ciYi- + (P i- bi)Yi + biYi + ayi,

which is algebraically equivalent to

(2) (P a)Yi d- Ci(Yi- Yi) bi(Yi- Yi + 1).

We know that Y0 is greater than Yl, which is nonnegative. Then, using in (2),
we see that y > Y2. In general, if Yi is nonnegative and less than y;_ , then Yi+ is less
than Yi. Thus, the y’s decrease until they reach a negative minimum. An argument
developed in [6] and continued in [12] shows that the sequence of y’s can change sign
only once. Therefore the claimed inequalities are confirmed.

LEMMA 4. Let G be a distance-regular graph, and let a be the second eigenvalue of
its adjacency matrix A. If Z is a complete eigenmatrix associated with a, then Z has
distinct rows.

Proof Rows and j of Z are equal if and only if c’Z 0, where c ei ej. This
is true if and only if crZZr 0, or crL 0--that is, if rows and j of L are equal.
However, from (1) we see that row of L has Y0 in column i, while row j has some Yk,
k > 0, in column i. By Lemma 3, these numbers are different.
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THEOREM 1. Let G be a distance-regular graph, and let Z be a complete eigenmatrix
ofthe adjacency matrix A associated with the second eigenvalue a. Then the symmetry
group orth (Z) is isomorphic to the automorphism group ofG.

Proof Lemma 4 shows that the rows of Z are distinct, so orth (Z) is isomorphic to
perm (ZZr) perm (L) by Theorem B. Now consider (1). According to Lemma 3, the
coefficient of A A is greater than any of the subsequent coefficients. Therefore, a
permutation matrix that commutes with L must also commute with A. On the other
hand, L is a polynomial in A, so any matrix that commutes with A must also commute
with L. Thus, perm (L) perm (A), and the latter is well known to be isomorphic to the
automorphism group of G. ff]

This theorem sharpens results of Babai and Godsil [8] for the class of distance-
regular graphs. A convenient example is supplied by the cube in Fig. 1, whose second
eigenvalue is 1, with multiplicity 3. A complete eigenmatrix associated with 1, shown
below, is made up of the coordinates of the vertices of a cube. Frucht [7] showed that
the group of the skeleton of the cube is precisely what we have called orth (Z), thus
confirming the results of the theorem:

[1 -1 -1 -1 -1

[ -1 -1 -1 -1Z=/8 -1 -1 -1 -1

3. Rows of an eigenmatrix. Theorem reveals a significant way in which the rows
of an eigenmatrix reflect properties of the distance-regular graph to which it belongs. In
this section, we find other properties of the graph that are tied to properties of the rows
of an eigenmatrix. In all the theorems of this section, we assume that G is distance-
regular, a is its second eigenvalue, the multiplicity of a is m, Z is a complete eigenmatrix
associated with a, and L ZZr is the associated projector.

THEOREM 2. Let wf efZ be the ith row of Z. Then, for any vertex of G, the
minimum of wi wj II, :/: j, is achieved at precisely those vertices j that are adjacent to
iinG.

Proof The square of the quantity to be minimized is

Wi ][2 _[_ Wj
2 2wfwj.

However, we know that wfwj is the/,j-entry of ZZr L. From (1), we see that this
quantity is 2y0 2yr, where r dist (i, j). By Lemma 3, this is minimized when r 1,
which is the conclusion of the theorem. [3

In [9], Godsil proves the same theorem (his Lemma 5.4) and also a lemma (his
Lemma 5.3) that generalizes Lemma 4 above. The proofs used here are independent of
Godsil’s.

Theorem 2 tells us that proximity ofthe rows ofZ corresponds exactly to adjacency
in G. The next theorem connects linear independence of rows to mutual adjacency.

THEOREM 3. Let G 4: Kn, and let U be a set ofq mutually adjacent vertices of G.
Then the corresponding rows ofZ are linearly independent matrices.

Proof. First note that the set of rows in question, namely wi
r for in U, contains q

distinct elements, by Lemma 4. Moreover, they are independent ifand only ifthe matrices
Lei, in U, are independent. Now, the column matrix Lei has, by (1), a Y0 in entry and
a y in entry j, if and j are adjacent. Thus, the submatrix ofL whose row and column
indices are in U has Y0 on the diagonal and y elsewhere, forming the q q matrix (e is
a column of ones):

yoI+ y(eeT- I) (Yo y)I+ yee7"
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with eigenvalues y0 yl (multiplicity q 1) and Y0 + (q 1)yl (multiplicity 1). The
former is nonzero by Lemma 3. The latter can be zero only if Yl is negative, which is
impossible by Lemma 2, since G

COROLLARY. Let G 4: Kn be distance-regular. If G contains a q-clique, then the
multiplicity ofthe second eigenvalue is at least q.

This corollary improves, for the second eigenvalue, the lower bound given in [14]
for the multiplicity of any eigenvalue (other than p) of a distance-regular graph of girth
3. While Theorem 3 identifies some independent rows of Z, Theorem 4 will identify
some dependent rows.

THEOREM 4. If is any vertex of G, and Z is a complete eigenmatrix associated
with any eigenvalue a ofA, then the rows ofZ corresponding to and its neighbors are
dependent.

Proof Row of the adjacency matrix is era Zj@i ef (where @ means "adjacent
to"). Thus row of the equation AZ aZ reads

j@i

which certainly implies dependence.

4. Convex polytopes. Godsil [8] suggested studying the m-polytope P(c0 that is the
convex hull ofthe points whose coordinates are the rows ofa complete n m eigenmatrix
Z associated with an eigenvalue a of A. In the case of a distance-regular graph, all the
rows wf have the same norm, so all the distinct rows will be extreme points of their
convex hull. (We use the term "extreme point" instead of the more usual "vertex,"
reserving the latter for graph usage.) Our reference for convex polytopes is [3].

A facet F of such a polytope P is the intersection ofP with a hyperplane

H(u; 3") {xTr:xru=7} (7>=0)

subject to the following conditions: (1) all points x ofP satisfy xru =< 3’; (2) xru 3" for
at least m extreme points; (3) the afflne dimension ofF is m 1. The extreme points of
the facet are the extreme points of P for which equality holds. For any eigenvalue
p, we have erZ 0; hence 0 is an interior point, and 3" is positive.

In terms ofthe eigenmatrix Z, a hyperplane H(u; 3’) defining a facet can be identified
by the condition: Zu <= 3"e with equality for at least m independent rows of Z. In this
case we call f Zu a facet vector of P. Obviously, a facet vector of P(a) is also an
eigenvector of A associated with a and is independent of the choice of the eigen-
matrix Z.

THEOREM 5. Let G 4: Kn be a distance-regular graph, and let Z be a complete
eigenmatrix associated with a, the second eigenvalue ofA. IfG contains a q-clique, and
q is the multiplicity ofa, then the rows ofZ corresponding to a q-clique are extremepoints
ofafacet ofP(a), and thatfacet is a simplex.

Proof. Lemma 4 guarantees that the rows ofZ are distinct. Let Ube a set of vertices
that form a q-clique, and letf be the sum of the columns of L ZZT whose indices are
in U. Then entry off is f,. Y0 + (q 1)y 3’ if is in U, but fi =< qYl < 3" if is not
in U. Clearly 3" is positive (see Lemma 2 and the proof of Lemma 3), and the rows of Z
corresponding to vertices of U are independent by Theorem 3; thus f is a facet vector.
Now P(a) is q-dimensional, and its facets are (q 1)-dimensional. Since the facets we
have constructed have q extreme points, they must be simplices.

THEOREM 6. Let G be a distance-regular graph, and let Z be a complete eigenmatrix
associated with a, the second eigenvalue ofA. Let U be a set composed ofa vertex and
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all its neighbors. Then the rows ofZ corresponding to U are not the extreme points ofa
facet ofthe polytope P(a).

Proof Let rr be row of A cd: r has -a in entry and ones in the entries
corresponding to neighbors of i. Then rrZ 0, and consequently rrf 0 for any facet
vectorf But iff for all j in U, then rrf o 4 O, so no such facet vector can
exist.

COROLLARY. Let U be a set composed ofall the neighbors ofa vertex i. Then the
rows ofZ corresponding to U are not the extreme points ofa facet ofP(a).

Proof With r as above, supposef is a column vector such thatJ for all j in U.
Then rrf4 O, so fcannot be a facet vector.

5. Antipodal graphs.
DEFINITION. A distance-regular graph is antipodal if, for each vertex i, there is a

unique vertex i’ whose distance from is the diameter d of the graph.
This definition differs from that of [2, p. ]. By way of an example, note that all

the platonic solids except the tetrahedron have antipodal skeletons.
LEMMA 5. Let Vo, V, ..., Va be the distance partition startingfrom vertex ofa

distance-regular graph G. Then Va is a singleton { i’} ifand only ifthe distance partition
startingfrom i’ is given by V’k Va-k,for k O, 1, d.

Proof Suppose the distance partition starting from some i’ is given by V,
Va-k, k O, 1, d. Then {i’} V) Va.

Suppose next that Va { i’}, and let j be a vertex in V, so that dist (i, j) k. By
distance-regularity, j is adjacent to at least one vertexj+ in Vk + l, which is adjacent to
at least one vertex jk + z in V+ 2, etc. Thus we may construct a path from j to i’, the sole
vertex in Va, having length d- k. This path must be minimal, for otherwise the triangle
inequality is violated. Thus Vk is contained in V_. The reverse containment follows
by a symmetric argument.

LEMMA 6. Let be a vertex in an antipodal distance-regular graph G, and let
dist (i, i’) d, the diameter ofG. Ifj is any vertex ofG, then dist (i, j) + dist (j, i’) d.

Proof The proof follows from the proof of Lemma 5.
THEOREM 7. Let G be distance-regular with distance coloration matrix B. Then B

is centrosymmetric ifand only ifG is antipodal.
Proof A centrosymmetric matrix is one that commutes with the permutation ma-

trix S that has ones on the secondary diagonal; in terms of the elements of B, centro-
symmetry means that ci bd-/and ai ad-i for 0, 1, d. Biggs [2, p. 140] gives
the formula

ki= bob bi- /cc2 ci

for the number of vertices in set Vi of a distance partition. It is easy to prove that cen-
trosymmetry implies that ki kd-i, and in particular, that kd 1.

If G is antipodal, let and i’ be at distance d, Xi and let Xi, be the indicators of the
distance partitions starting at and i’. Then the identity XiS Xi, follows immediately
from Lemma 5. From the coloration equation AXi XiB we have

AXiS XiBS

AXi, Xi,B XiSB.

Then, because the columns ofXi are independent, BS SB follows.
LEMMA 7. Let G be distance-regular and antipodal. Then AaAk Aa-,for k O,

1,...,d.
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Proof The distance matrix Ad has a in the/,j-position if and only if dist (i, j)
d. Thus, Ad is a permutation matrix that interchanges each vertex with its antipode.
Now, row of the product AdAk is row i’ of Ak, so it has a in entry j if and only if
dist (j, i’) k, which means that dist (i, j) d- k, by Lemma 6. V1

THEOREM 8. Let G be distance-regular and antipodal. Then (i) the interchange of
each vertex with its antipode is an automorphism ofG; (ii) the polytope associated with
the second eigenvalue ofG admits central inversion as a symmetry; (iii) thefacets ofthis
polytope occur in parallel pairs.

Proof (i) As observed in the proof of Lemma 7, the distance matrix Ad is a per-
mutation matrix that interchanges each vertex with its antipode. Since Ad is a polynomial
in A, it commutes with A and thus represents an automorphism of G.

(ii) Now let P Ad. We need to show that PZ -Z, or equivalently that PL
-L, where L ZZr. By (1) and Lemma 7,

AaL yoAa+ ylAa- + + yaAo.

Now, the eigenvector y ofB is unique when normalized by Y0 m/n. Because S commutes
with B, any eigenvector of B is also an eigenvector of S: Sy +y. From Lemma 3, we
know that Yd < 0, SO Sy -y, or yk --Yd- for k 0, 1, -.., d. Thus PL -L, as
required.

(iii) Iff is a facet vector, then Pf= -f is one also.

6. Examples. In this section we list some distance-regular graphs and families of
graphs for which the polytopes associated with the second eigenvalue can be determined.
For each graph, the following information is needed: the coloration matrix B, its eigen-
vectors in the form of a square matrix Y, the spectrum of A in the style of [2] with
eigenvalues above their multiplicities, and the number of vertices in each set of the
distance partition as a column k.

(1) G Kn, the complete graph. The essential information is shown below:

B= Y= k=
n-2 -1 n-1

spec(A)={ n-ll n-l-1 }.
The eigenvector information shows that each column of the projector L has (aside from
a normalizing factor of 1/n) an n in the diagonal position and a -1 in all other
positions; that is, L (HI eer)/n. A complete eigenmatrix Z is composed of n
mutually orthogonal columns, each orthogonal to e. Since all off-diagonal elements
of L ZZr are the same, the n rows of Z are equidistant. Thus the polytope P(-1)
is a simplex.

(2) G g2m mg2, m >-- 2. Suppose that edges 1, m + 1}, {m, 2m} are
deleted from the complete graph on 2m vertices. The resulting graph is distance-regular
with diameter 2 and is described by the following information:

B= 2(m-2) Y= 0 -1 k= 2(m-l)
0 2(m-l) 0 -1 m-1

2m-2 0 -2 }spec(A)=
m m-1
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In G, each vertex is a member of 2m- different m-cliques and no larger clique. By
Theorem 6, the vertices of each clique correspond to the extreme points of a facet of
P(0). From the eigenvector information, we can see that a complete eigenmatrix associated
with the eigenvalue 0 is

Since the rows of Z are the coordinates of the m-dimensional cross-polytope (see
[4, p. 122]), which has exactly the facets described, we conclude that the description of
P(0) is complete.

(3) G Km,m, the complete bipartite graph. We require that m >= 2, so that the
diameter is 2. The essential information is

B= 0 m-1 Y= 0 -1 k= m
0 m 0 -1 m-1

m 0 -m}spec(A)=
2m-2

Assume that the two parts contain the vertices 1, 2, , m and m + 1, m + 2, , 2m,
respectively. Then the adjacency matrix A and the projector associated with zero are

A= T L=--
ee 0 m 0 mI- ee

Each column of mL contains zeros in m entries, m in one entry, and -1 in the
remaining m entries. Thus, the product of mL by the column

is an eigenvector with -2(m 1) in two entries and in the remaining 2m 2 entries.
Since the multiplicity of zero is 2m 2, this product is a facet vector, and the facet is a
simplex, which is "opposite" a pair of adjacent vertices, and m + j. Clearly there are
m such facets.

Any facet must contain at least 2m 2 vertices. However, by Theorem 5, no facet
can contain a vertex and all its neighbors. Therefore, we have found all the facets of
P(0), which is consequently simplicial.

(4) Gm L(Km), the line graph of Km. This graph is also known as a triangular
graph because the number of vertices is the triangular number tm m(m 1)/2. We
require that m >_- 4, so that the diameter will be 2:

B= m-2 m-3 Y= m-4 -(m-3)
0 4 2m- 8 -4 2

2m-4 m-4 -2 } [spec (A)=
m- m(m- 3)/2

k=
(m- 2)(m- 3)/2

It is helpful to think of the vertices as unordered pairs, {a, b}, a 4: b, a, b 1,
m. Then {a, b} is adjacent to {a, x} for any x 4: b. Indeed, we see that the set of all
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vertices of the form {a, x}, x # a, form an (m 1)-clique. By Theorem 5, these are
extreme points of a facet that is a simplex, and there are m of these. Closer inspection
shows the facet vector to have m 2 in the m entries corresponding to the vertices
of a clique and -2 in the remaining (m 1)(m 2)/2 entries. Since m >= 4, the negative
of this vector is the facet vector of a different facet, supplying m more facets.

To find further facets of P(m 4), note that the negative of the column of L
that corresponds to a vertex {a, b} has (see Y above) the same positive number in the
(m 2)(m 3)/2 places corresponding to vertices at distance 2 from a, b and lesser
numbers in the rest. If (m 2)(m 3)/2 >= m 1, that is if m >= 6, such a column
is a positive multiple of a facet vector. This construction produces n m(m- 1)/2
new facets.

There are two interesting special cases. First, G4 is the skeleton of the octahedron,
which is also the special case rn 3 of item 2. We have found the eight facets, in four
parallel pairs. Second, G5 is the complement of Petersen’s graph. The facets, which are
three-dimensional, are five tetrahedra paired with five octahedra. By direct computation,
it has been shown that there are no more facets. For Gm, m >- 6, it is not yet known
whether we have found all the facets.

(5) G Qd, the d-dimensional cube. The graph is distance-regular with diameter
d. The spectrum consists of the numbers d- 2i, with multiplicity d!/i!(d- i)!, for
0, 1, ..., d (see [2, pp. 138, 145]). In [11] it is shown by induction that the polytope
P(d- 2) is the d-dimensional cube itself. The information about the coloration matrix
of G given in [2, p. 138] shows these graphs to be antipodal, and, of course, they admit
central inversion as a symmetry.

Acknowledgment. The author thanks the reviewer for a most careful reading and
for suggesting several improvements in the proofs.
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INFLATION MATRICES AND ZME-MATRICES THAT COMMUTE
WITH A PERMUTATION MATRIX*
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Abstract. Centrosymmetric matrices are matrices that commute with the permutation matrix J, the matrix
with ones on its cross-diagonal. This paper generalizes the concept ofcentrosymmetry, and considers the properties
of matrices that commute with an arbitrary permutation matrix P, the P-commutative matrices. In particular,
it focuses on two related classes ofmatrices: inflation matrices and ZME-matrices. The structure ofP-commutative
inflators is determined, and then this is used to characterize the P-commutative ZME-matrices. Centrosymmetric
matrices in these classes are presented as a special case.
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1. Introduction. The concept of a matrix that commutes with a fixed permuta-
tion matrix is a natural generalization of the concept of a centrosymmetric matrix, a
matrix which commutes with the n n permutation matrix J given by J [6,,n-,/ l],
where 60. is the Kronecker delta. The square matrix ,4 is called a P-commutative matrix
if ,4P P,4, or equivalently if p-l,4p ,4. If p(i) denotes the permutation map on

1, 2, n} corresponding to the n n permutation matrix P, then ,4 is P-commutative
if and only if,40 ,4p,)ptJ) for =< i, j -< n. In particular, by P J, the n n matrix ,4

is centrosymmetric if and only if,40. ,4n-g/ l,n- /1 for all and j.
Centrosymmetric matrices have arisen in the study of symmetric Toeplitz matrices

[3], and in applications of Markov processes to genetics [4]. The basic properties of
centrosymmetric matrices are summarized in [6].

The literature devoted to Z-matrices and M-matrices is quite extensive. In a recent
paper [1 ], Friedland, Hershkowitz, and Schneider study a certain class of irreducible Z-
matrices each of whose positive integer powers is again a Z-matrix subject to certain
irreducibility conditions. The authors characterize this class, called the ZME-matrices,
in terms of sequences of certain matrices called inflators and a new matrix product called
inflation.

This paper studies the structure of the P-commutative members of the class of
ZME-matrices, where P is a permutation matrix, by determining the behavior of P-
commutative matrices under the inflation product and by determining the structure of
P-commutative inflators. The relation between P-commutativity and inflation is deter-
mined in 3 and 4, and the main results are Theorems 4.1 and 4.11. The structure of
P-commutative ZME-matrices is developed in 5 and 6, and the principal result is
Theorem 6.1.

2. P-commutative matrices. Let /n(C) denote the set of n n matrices over C.
If P is in ///n(C), let spec (P) denote the set of distinct eigenvalues of P. Let Eig (P)
{x C: Px c for some k in spec (P)}. The elements ofEig (P) are called P-commutative
vectors.

The following lemma summarizes well-known properties of permutation matrices.
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LEMMA 2.1. Let P be an n n permutation matrix. Then the eigenvalues ofP are
nth roots of unity. Further, P has n distinct eigenvalues ifand only ifP is irreducible, or
equivalently, ifand only ifthe permutation corresponding to P is an n-cycle.

THEOREM 2.2. Let A be in /n(C). Let P be an n n permutation matrix.
(i) IrA is P-commutative, then every eigenspace for A has a basis of vectors in

Eig (P).
(ii) IrA has n linearly independent eigenvectors which are in Eig (P), then A is P-

commutative.
(iii) IfP is irreducible, and ifA is P-commutative, then A is diagonalizable.
Proof These are standard results from matrix theory. The proofs of (ii) and (iii)

can be found in [5, pp. 264-265]. To prove (i), note that AP PA implies that P maps
an eigenspace ofA into itself. Let Vbe an eigenspace ofA. Since P is diagonalizable and
nonsingular, the linear transformation which is P restricted to V has a full set of linearly
independent eigenvectors which form a basis for V. U]

LEMMA 2.3. Let P be an n n permutation matrix. The set ofn n matrices which
commute with A form an algebra over C.

Proof This is an elementary result which can be directly verified.
The following result will be used repeatedly in subsequent sections.
THEOREM 2.4. Let A be in //m(C). Let P be an n n permutation matrix. Suppose

that A is a P-commutative matrix. Suppose that A has k distinct eigenvalues , 2,
kk. Then there exist k complex, P-commutative, idempotent n n matrices Ei and there
exist k complex, P-commutative, nilpotent n n matrices Z such that

k

(2.5) A (kE + Zi)
i=1

and EiE EiZ ZiE ZiZ 0 when 4: j. Finally, ifthe matrix A is diagonalizable,
then each Z is the zero matrix.

Proof From the standard theory of spectral decomposition of matrices (see [2, p.
100 ft.]) it is well known that every complex n n matrix A with k distinct eigenvalues
has a decomposition, as in (2.5), where the Ei are idempotent and the Zi are nilpotent,
where the Ei and Zi satisfy the various product relationships listed in the statement of
the theorem, and where Ei ri(A) and Zi si(A), where ri(x) and si(x) are certain
polynomials which divide the minimal polynomial of A. Since A is a P-commutative
matrix, and since the P-commutative matrices form an algebra, it follows that each Ei
and each Zi is a P-commutative matrix. Finally, it is known that ifA is diagonalizable,
then si(A) 0 for each i. Ul

COROLLARY 2.6. Let A be in /gn(). Suppose that A has real spectrum. Then the
matrices Ei and Zi given in the preceding theorem are real.

Proof Since the spectrum ofA is real, every factor of the minimum polynomial of
A is real; consequently the polynomials ri(x) and &(x) have real coefficients. Since A is
real, the result is clear. []

A strictly nonzero matrix (strictly nonzero vector) is a matrix (vector) each ofwhose
entries is nonzero. A strictly positive matrix (strictly positive vector) is a matrix (vector)
each of whose entries is positive.

LEMMA 2.7. Let U be a strictly nonzero n n matrix. Let P be an n n permutation
matrix. Then thefollowing are equivalent:

(i) U is a rank one, P-commutative matrix.
(ii) There exist strictly nonzero vectors u and v such that U uv and such that u

and v are eigenvectors for P corresponding to reciprocal eigenvalues.
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(iii) U is rank one, andfor every pair ofstrictly nonzero vectors u and v such that
U uv t, itfollows that u and v are eigenvectorsfor P corresponding to reciprocal eigen-
values.

Proof Lemma 2.7 (iii) (ii) and (ii) (i) are obvious. It remains to show that (i)
implies (iii). Suppose that u and v are strictly nonzero vectors such that U uv. Since
ptUp U, it follows that for all a and/3, u,vt Up(a)Vp(). Fixing/3, it is clear from the
strict nonzero condition on v that uo,[up(,)]- is a nonzero constant independent of a.
Call this constant 3’. Then Pu 3,-u. Then the strict nonzero condition on u implies
Pv ,’/v. That is, u and v are eigenvectors for P corresponding to reciprocal eigen-
values.

The following corollary is immediate.
COROLLARY 2.8. The matrix U in the preceding lemma is strictly positive if and

only ifu and v can be chosen to be strictly positive eigenvectors ofP corresponding to the
eigenvalue one.

3. Inflation. In this section, the concept of inflation introduced in [1] is discussed.
Let m and n be positive integers with m _-< n. An m-partition ofn is a partition of

the set { l, 2, ..., n} into an ordered collection of m nonempty, disjoint sets such that
the elements within each set are arranged in ascending order. Let II be the m-partition
of n given by the ordered collection B, BE, Bin. Let Q be an m m permutation
matrix. Let P be an n n permutation matrix. Let q(i) and p(i) be the permutations
corresponding to Q and P, respectively. The partition II is called a Q, P-commutative
partition if for each r with _-< r _-< m and for each in Br, the index p(i) is in Bq(r).
Finally, the partition II is called a centrosymmetric partition if P Jn.

Let rn and n be positive integers with rn _-< n. Let II be an m-partition of n given by
B, BE, Bm. Let v be a vector in Cn. Then H partitions v into m blocks. Let v<>
denote the subvector of v consisting of the entries of v which are indexed by Bj. Let U
be an n n matrix. Then H induces a block-partitioning of U. Let U<i.j> denote the block
of U consisting of the entries of U whose indices are in Bi B.

Let m and n be positive integers with m =< n. Let A be an m m matrix. Let U be
an n n matrix. Let H be an m-partition of n. Give U the block-partitioning induced
by II. The inflation matrix ofA by U with respect to H is the n n matrix denoted by
A U which is defined as follows [1, Def. 4.1]: For each a and /in { 1, 2, n},
there exist unique indices r and s such that a Br and/3 B; let (A U), ars Ua.

LEMMA 3.1. Let m and n be positive integers with m <= n. Let Q be an m m
permutation matrix. Let P be an n n permutation matrix. Let A be an m m Q-
commutative matrix. Let U be an n n P-commutative matrix. Let H be a Q, P-com-
mutative m-partition ofn. Give U the block-partitioning induced by H. Then A U is
a P-commutative matrix.

Proof Let II be given as in the definition ofa Q, P-commutative partition. Consider
the a,/3 entry ofA U. There exist unique r and s in { 1, 2, m} such that a Br
and/3 e B. Compute (A U), a,U a,(o,,tUpt,,pta since A and Uare, respectively,
Q- and P-commutative matrices. Since II is Q, P-commutative, p(a) Bq(o and p(/3)
Bq(s). Thus (A U)p(a),p03) aq(o,q() Up(a),p() (A U),e. That is, A U is a P-
commutative matrix.

LEMMA 3.2. Let m and n be positive integers with m <= n. Let A be in /’m(C). Let
U be in /’n(C). Let Q be an m m permutation matrix. Let P be an n n permutation
matrix. Suppose that U is a P-commutative matrix. Let II be a Q, P-commutative m-
partition of n. Let U be partitioned by II. Suppose that U has no zero blocks in this
partitioning. IfA U is P-commutative, then A is Q-commutative.
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Proof. Choose a and/3 in (1, 2, n}. Let r and s be the unique indices such
that c e Br and/3 e Bs. Since II is Q, P-commutative, p(c0 e Bqtr) and p(/3) e Bqo). Since
U is P-commutative and has no zero blocks, 0 4: U,a Upt,),pta). Since A U is P-
commutative and since II is Q, P-commutative, arsU, (A U),a (A U)pt,),pta)
aq(r),q(s)Up(a),p(o). Thus ars aq(r),q(s). Since a and 3 are arbitrary, it follows that the final
equality holds for all r and s. That is, A is a Q-commutative matrix.

4. Inflators and G(U). The following definition of a (normalized) inflator is Defi-
nition 4.3 of ].

Let m and n be positive integers with m -< n. Let II be an m-partition of n. Let U
be a strictly nonzero matrix in /n(C). The matrix U is called an inflator (associated with
II) if there exist a pair of strictly nonzero column vectors u and v in C such that the
following conditions hold for the subvectors of u and v corresponding to the partition
blocks of II:

(i) For each andj in { 1, 2, m}, U(i,j
(ii) For each j with <= j m, [v(j>]t[u(j>] 1. (Note that condition (i) implies

that U uvt.) An inflator U is called a normalized inflator if u and v can be chosen so
that they satisfy a third condition:

(iii) For each with <= <= m, [u(i)]*[u(i)] [I)(i)]*[i)(i)].
If there exists an m m permutation matrix Q and an n n permutation matrix

P such that the inflator U is P-commutative as a matrix and such that II is a Q, P-
commutative partition, then U is called a Q, P-commutative inflator. Finally, if U is a
centrosymmetric matrix and if II is a centrosymmetric partition, then U is called a
centrosymmetric inflator. (Note that in this case, the existence ofthe permutation matrix
Q is implicit.)

Let { Ui}= be a sequence of matrices such that U1 is the zero matrix, and
such that for each with < <= k, Ui is an inflator and the number of blocks in the
partition corresponding to Ui equals the order of Ui- 1. Then { Ui}/= is called an inflation
sequence. If for each >= 2, U; is a strictly positive matrix, then the sequence is a strictly
positive inflation sequence. Finally, if for < =< k, the matrices are normalized inflators,
then the sequence is called a normalized inflation sequence.

THEOREM 4.1. Let U be an inflator associated with the m-partition II of n, where
n >= 2. Let Q be an m m permutation matrix. Let P be an n n permutation matrix.
Then U is a Q, P-commutative inflator ifand only if II is a Q, P-commutative partition
and U uvt, where u and v are strictly nonzero eigenvectors for P corresponding to
reciprocal eigenvalues.

Additionally, if U is Q, P-commutative, ifp is the permutation corresponding to P,
and if X is the eigenvalue ofP such that Pu ku, then for each andj,

Uij kUi,p(j k-l Up(i),j Up(i),p(j

Proof If U is a Q, P-commutative inflator, then II is necessarily a Q, P-commutative
partition. So assume that II is a Q, P-commutative partition. Since U is a rank one,
strictly nonzero matrix, u and v exist with the desired properties by Lemma 2.7.

Conversely, if U is given in terms of u and v, then U is a strictly nonzero, rank one,
P-commutative matrix by Lemma 2.7. Since II is a Q, P-commutative partition, it follows
that U is a Q, P-commutative inflator with respect to II.

The relation among the entries follows immediately from PUP U, and from
Pu Xu and Pv X-Iv.

COROLLARY 4.2. Let U be a strictly positive inflator associated with the m-partition
II ofn where n >= 2. Then U is a centrosymmetric inflator ifand only if II is a centro-
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symmetric partition and U uvt, where u and v are strictly positive vectors satisfying
Ju u and Jv v.

Further, if U is such an inflator, then for each andj,

Uij-- Ui,n-j+ 1-’- Un-i+ l,j- Un-i+ l,n-j+ 1.

Proof Apply the preceding theorem with P J, and use Corollary 2.8.
Let U be an inflator associated with an m-partition of n. Define the matrix G(U)

by G(U) In (Im U). If U is the zero matrix, define G(U) I. The matrix
G(U) is the fundamental building block in the construction ofinflation-generated matrices.
Its properties are developed in [1, 5].

LEMMA 4.3. Let U be a Q, P-commutative inflatorfor some permutation matrices
Q and P. Then G(U) is a P-commutative matrix.

Proof Since Ik is Q-commutative, it follows by Lemma 3.1 that Ik U is P-
commutative. Now use Lemma 2.3.

LEMMA 4.4 Let { ui}ki- ki-be an inflation sequence. Let {Pi} -l be a sequence of
permutation matrices such that the order ofPi equals the order of Uifor each i. Suppose
thatfor each >= 2, U is a Pi-, Pi-commutative inflator. Suppose that U is n n. Let
ft { G(U) Ui / U" <= < k} U { G(U)}. Then the elements of2 are
all n n P-commutative matrices.

Proof This is an immediate consequence of the preceding lemma and repeated
applications of Lemma 3.1.

LEMMA 4.5. Let U be an n n inflator associated with II, an m-partition of n.
Suppose that G(U) is a P-commutative matrix for some n n permutation matrix P.
Then there exists an m m permutation matrix Q such that II is a Q, P-commutative
partition.

Proof Let p(i) be the permutation corresponding to P. Let II be given by B, B2,
Bm. Since G(U) commutes with P, so does I U by Lemma 2.3. Observe that
(I U)e :/: 0 exactly when a and/3 are both in Bi for some i. Similarly,

(I U)p()p(B) 0

exactly when both p(a) and p() are in Bj for some j. Since I U is P-commutative,
(I U), (I U)p(,)p(a) for all a and/3. Thus c and/3 are in Bi for some if and
only if p(a) and p() are in Bj for some j. Since a and/3 are arbitrary elements of Bi,
we conclude that for each i, p sends Bi to Bj for some j. That is, p acts on the sets in II
as a permutation. Hence there is a permutation q of { 1, 2, ..., m} such that Bq(r)
{p(ot): ot Br} for -< r =< m.

At this stage, it would be useful to prove the converse to Lemma 4.3: If G(U) is P-
commutative, then there exists a Q such that U is a Q, P-commutative inflator. This
assertion, however, is false. Indeed, as the next example will demonstrate, not even the
following, weaker assertion holds: If G(U) is P-commutative, then there exist a Q and a
Q, P-commutative inflator such that G(O) G(U).

Example 4.6. Let H be the permutation matrix

H= 0
0 0

Let o exp (i-/3). Let x be a normalized eigenvector for H corresponding to o. Let y
be a normalized eigenvector forH corresponding to o-1 3. Let u and v be the partitioned
vectors u (x yt)t and v ft. Let U uvt. Then U is a normalized inflator. Observe
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that G(U) [xx*] (R) [yy*]. Let P be the permutation matrix P H (R) H. Then

ptG(U)P Ht[xx *]Hr) Ht[yy *]H w[xx*] @ o[yy*] G( U).

Suppose that is an inflator such that G(O) G(U). Then since u and v are strictly
nonzero, at where a (ax flyt)t for some nonzero scalars and/, and where
) (a-lxt fl-lyt)t. It is now shown that there are no choices for a and such that
is P-commutative. Observe that if such a choice exists, then [Ptje](l,2) ((1,2)- That
is, Ht[otx-y*]H otx-ly *. Since xy* is strictly nonzero, this last equation implies
o2 1, a contradiction.

The problem in the preceding example is that the subvectors of u in the preceding
problem correspond to different eigenvalues ofP. More specifically, it will be shown that
if the subvectors of u determined by the cycles of q (the block permutation induced by
P) correspond to distinct eigenvalues of P, then cannot be found. Thus it is necessary
to study the cycle structure ofp.

Recall from the proofofLemma 4.5 that ifG(U) is P-commutative, then the permu-
tation p on ( 1, 2, n} corresponding to P induces a permutation q on { 1, 2, m}.
In particular, the nonzero blocks of P were precisely e(i,q(i)). It is the cycle structure of
q that is crucial. Suppose that q consists of k disjoint cycles. Label the cycles with the
numbers through k. Then P has a block-partitioning induced by q. Let e[i] denote the
submatrix ofP containing all blocks P(r,s) such that both r and s are in cycle of q. Note
that P is a permutation similar to the direct sum of Ptl through Ptkl. Let Uti,j denote
the submatrix of U containing all blocks U(r,s) such that r is in cycle of q and s is
in cycle j. Thus (ptuP)Ii,j] ei]U[i,j]etj] for -< i, j =< k. If u is a vector in Cn, let utq
be subvector of u consisting of all the blocks U(r) such that r is in cycle of q. Thus
[Pu]tq e[i]u[i] for =< =< k. Suppose that U satisfies U uv where u and v are
strictly nonzero. Then by Lemma 2.7, U is P-commutative if and only if there exists a
unique of modulus one such that

e[i]u[i] ,uti] and eli]Vii )-v[i]
for =< i=<k.

LEMMA 4.7. Let U uv be an inflator associated with an m-partition II ofn. Let
P be an n n permutation matrix. Suppose that G(U) is P-commutative. Let Q be an
m m permutation matrix such that II is a Q, P-partition, and let q be the permutation
corresponding to Q. Then there exist nonzero , 2, "’", km such that

(4.8) [Pt](q(i),i)ll(i ki ll(q(i))

and

(4.9) [U(i)]tp(i,q(i)) (ki)-l[)(q(i))]

for <= <= m. Further, ifq is decomposed into disjoint cycles, then

IIIrXrl
where r runs through the indices ofany cycle in the decomposition.

Proof Observe that pt[G(U)]P G(U) if and only if Pt[Im U]P =Im U,
that is, if and only if

[et](q(i),i)U(i,i)e(i,q(i)) U(q(i),q(i)

for each i. In terms of the vectors u and v,

(4.10) [et](q(i),i)lt(i)[l)(i)]te(i,q(i))-- U(q(i))[1)(q(i))]
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for =< -< m. Since u and v are strictly nonzero, this can only happen if and only if
there exist nonzero numbers kl, k2, km such that (4.8) and (4.9) both hold for
all i.

Choose a cycle in the decomposition of q. Without loss of generality, the cycle is
(1, 2, 3, h). Thus q(i) + (mod h). Then by repeated application of (4.8),

[Pt](1,h). .[Pt](3,2)[pt](2,1)U(l
The left-hand side of this equation is precisely [[pt]h](,)U(). Since [[pt]h](,) is a per-
mutation matrix, and since u() is nonzero, the product of the ,i must be an eigenvalue
for a permutation matrix.

THEOREM 4.1 1. Let U be an inflator associated with an m-partition II ofn. Suppose
that G(U) is P-commutative. Let Q be an m m permutation matrix such that II is a
Q, P-partition, and let q be thepermutation corresponding to Q. Suppose that q decomposes
into k disjoint cycles. For each j, let h(j) be the length ofthejth cycle in the decomposition
ofq. Then thefollowing are equivalent:

(i) There exists an inflator (: associated with II such that G(U) G((_:) and such
that (: is P-commutative.

(ii) There exists a unique, normalized inflator (: associated with II such that G(U)
G((:) and such that (: is P-commutative.

(iii) There exists a constant such that for each j with <= j <= k, ) equals the
product ofthe Xr where r runs through the indices in the jth cycle ofq, and where the r
are given by Lemma 4.7.

Proof Suppose that U and " are inflators such that G(U) G(). Express U and
by U ut) and b where all of the vectors are strictly nonzero. Note that

G(U) G(/)) if and only if U(r,r) O(r,r) for -< r -< m. Since the vectors are strictly
nonzero, this is equivalent to requiting that there exist nonzero constants a, a2, "",

O/m such that l(r) OlrU(r) and (r) (O/r)-ll)(r) for all r with _-< r =< m.
By Lemma 2.7, U is P-commutative if and only ifP 3’ and P 3,-, where

3’ is a nonzero scalar, that is, if and only if Ptt ,/ and f)tp X-)t for some nonzero
scalar , and equivalently, if and only if

(4.12)

and

[P ](q(i),i)U(i)"-- k(q(i)

(4.13) [l)(q(i))]tP k-l[)(q(i))]
hold for all with _-< m. Express the subvectors of and in terms of the ar’S and
the subvectors of u and v, and then use the fact that G(U) is P-commutative to apply
(4.8) and (4.9). Then (4.12) and (4.13) are equivalent to

ki ai U(q(i)) kOlq(i)U(q(i))
and

hi
-1

ot l)(q(i))= k-l(aq(i))-ll)(q(i))
for all i. Since u and v are strictly nonzero, is P-commutative if and only if

(4.14) kiOi.i(Olq(i))-1 k

for all with -< =< m.
Pick j with -< j -< k. Since and q(i) must lie in the same cycle of q, and since q

is a bijection on { 1, 2, m}, it follows that if the product of the terms kioli(Olq(i))-1 is
taken over all in the jth cycle, then the product equals the product of the k as runs
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through the indices ofthejth cycle of q. Thus, if t)is P-commutative, then (4.14) implies
that the product of the k as runs through the indices in the jth cycle of q must be
exactly ),h(j). Hence (i) implies (iii).

Suppose that condition (iii) is satisfied. In proving (ii), it suffices to show that the
a; can be chosen so that (4.14) holds and so that U is normalized.

Consider the jth cycle of q. Without loss of generality, j 1, and the cycle is
(1, 2, 3, ..., h). Then q(i) + (mod h) for each in the cycle. By (iii), it follows that

)kh l)k2)k

Let a be defined by

Then

a [[v<,>l*v<>l’/4[[u<,>l*u<>l-’/4.

[/(1>]*/(1 (Ogl)2[U(I>]*U(I>

For 2 & & h, define a by (4.14):

i+

It remains to show two things: first, that a h-hhah, SO that (4.14) holds for each
in (1, 2, 3, ..., h), and thus that is P-commutative; and second, that [a<o]*a<o
[<0]*0> for each in (1, 2, 3, ..., h) so that the inflator 0 is noalized. To see the
first, obsee that repeated applications of (4.14) yield

-lhh= -lXh(Xh- lh-lh -2" "’3211)=1.

To see that the latter is true for 2, 3, ..., h, compute

[(/)]*(i) [aiu(i)]*[aiu(i)]

[X-Xi-ai-u(i>]*[X-Xi ai-

xl-[ai_ (xi_ u<i>)]*[ai- (xi-

Xl-2[ai- u(i- >]*[a_ u(i-

where the second-to-last equality is a consequence of (4.12). Since X has modulus one
from Lemma 4.7, it follows that

for 2, 3, ..., h. A similar argument yields

[<>]*<i> [<>]*<>
for 2, 3, h. Finally, [ff<>]*<> [<>]*v<> implies is noalized. By Lemma
4.16 of [4], given an inflator U, there is a unique noalized inflator such that
G(U) G(O). Finally, it is clear that (ii) implies (i).

Remarks. Since H is a Q, P-paition, the inflator is P-commutative if and only
if it is a Q, P-inflator. The preceding proofshows that if is a noalized, P-commutative
inflator, then a and can be chosen so that

II<ai>ll I1<i>11 II<qo>ll I1<,>11



416 JEFFREY L. STUART

for every with =< -< m. The proof also contains the following algorithm used to
construct from U. Choose a transversal from the disjoint cycles of q. For j in such a
transversal, let aj be given by

otj-- [[I)(j)]*I)(j)]I/4[[U(j)]*U(j)]-I/4.
Now define the remaining ai via (4.14).

COROLLARY 4.15. Let U be an inflator. Let P be a permutation matrix. Suppose
that G( U) is P-commutative. Let Q be the permutation matrix induced by P, and let q be
the permutation corresponding to Q. Then U is a Q, P-inflator if either ofthefollowing
conditions holds:

(i) The cycle decomposition ofq consists ofa single cycle.
(ii) U- cW, where cl and where W is strictly positive.
Proof If (i) holds, then condition (iii) of the previous theorem necessarily holds. If

(ii) holds, then U can be expressed as U [’x][Ty]t, where x and y are strictly positive,
and where 72 c. IfLemma 4.7 is applied to -rx, [P ](q(i),i)X(i) kiX(q(i)) for each i. Since
P is a permutation matrix, and since x is strictly positive, it follows that ,i must be
positive. Then the product of the ,i as runs through a cycle in q must be a positive
number of modulus one. That is, the product must equal one for each cycle in q. Thus
(iii) of Theorem 4.11 holds with

5. ZME-matrices. A ZME-matrix is a matrix all ofwhose positive (integer) powers
are Z-matrices, and all of whose odd, positive powers are irreducible. A ZMO-matrix is
a ZME-matrix all of whose even, positive powers are completely reducible with index
of reducibility greater than one. A ZMA-matrix is a ZME-matrix all of whose positive
powers are irreducible. An MMA-matrix is a matrix all of whose positive powers are
irreducible M-matrices. Note that an MMA-matrix is necessarily a ZME-matrix.

In [1], Friedland, Hershkowitz, and Schneider prove the following results (see
[1, Lemma 3.1; Thms. 3.6, 6.12, 6.18; Cor. 6.25, 6.28]).

THEOREM 5.1. Let A be a ZME-matrix. Then A has real spectrum and is diagonal-
izable. Further, if the distinct eigenvalues ofA are al, ot2, ak labeled so that they
satisfy otl < ot2 < < otk, then lot l[ =< ot2 and otl is a simple eigenvaluefor A. Finally,

(i) A is a ZMO-matrix ifand only ifotl -ot2;

(ii) A is a ZMA-matrix ifand only ifotl > -ot2;

(iii) A is an MMA-matrix ifand only ifot >= O.
kTHEOREM 5.2. Let { Ui}i= be a strictly positive inflation sequence. Suppose that

Uk is n n. Let E G(U3 Ui + Ukfor <- < k, and let E G(Uk).
Let 2 {Ei: <- <= k}. Then the elements of f are pairwise orthogonal, idempotent
n n real matrices such that Yi- E In Further, A in ’,() is a ZME-matrix with
spectrum otl, Ot2, Otk satisfying [otll -< Ot2 and ot < ot2 < < Otk, ifand only ifA
can be expressed as

k

(5.3) A
i=1

where the Ei form a set 2 arising from an inflation sequence. Finally, ifA is a ZME-
matrix then A has a unique strictly positive inflation sequence consisting ofnormalized
inflators.

THEOREM 5.4. Let A be an n n ZME-matrix with spectrum ot, ot2, otk
satisfying [ot[ _-< ot2 and ot < ot2 < < otk. Suppose that t is the multiplicity ofot in
the spectrum ofA. Let rn n #. Then there exists an m-partition II ofn and a strictly
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positive, normalized inflator U associated with II such that

A CU+ akG(U).

Further, G( U) is the spectral projector for A corresponding to ak, and C is an rn rn
ZME-matrix with spectrum a, a2, a_ . Finally, the inflator U is uniquely deter-
mined by the condition that it is the normalized inflator such that G(U) is the spectral
projectorfor a.

6. Main results: P-commutative ZME-matrices.
THEOREM 6.1. Let A be in dlIn(). Let P be an n n permutation matrix. Suppose

that A is a ZME-matrix. Thefollowing are equivalent:
(i) A is a P-commutative matrix.

(ii) Each ofthe spectral projectors ofA is a real, P-commutative matrix.
(iii) A has a normalized, strictly positive inflation sequence { Ui}i= for which there

}/= such that for >= 2, Ui is a Pi-l, Pi-exists a sequence ofpermutation matrices {Pi
commutative inflator, and such that P P.

Proof of (i) (iii). Use induction on the number of distinct eigenvalues in the
spectrum ofA. Let c1, a2, , ak be the distinct eigenvalues ofA, in order ofincreasing
magnitude. If k 1, then by Theorem 5.2, A has an inflation sequence consisting of
U [0] which is clearly P-commutative.

Suppose that k > 1. Since A is a centrosymmetric ZME-matrix, it follows that the
spectral projectors for A are P-commutative matrices by Theorem 2.4. By Theorem 5.4,
A can be expressed as C U + aG(Uk), where U is the normalized inflator which
is uniquely determined by the condition that G(Uk) is the spectral projector for c. Since
G(Uk) is the spectral projector for ck, it follows that G(U) is a P-commutative matrix.
By Corollary 4.15, it follows that G(U) G(7), where is a normalized, Pk_ 1, P-
commutative inflator. By uniqueness, U Uk. Since U is strictly positive, it follows by
Lemma 3.2 that C is a Pk_ l-commutative ZME-matrix. By induction, C has an inflation
sequence { Ui}ifl consisting of normalized, Pi-, Pi-commutative inflators. Since the
multiplicity of a in the spectrum of A is (n m), it follows that m < n, and thus

kUi}i= is an lntlaton sequence for A with the desired properties.
Proof of (iii) (ii). Suppose that A is given as in Theorem 5.2. The matrices Ei

defined in Theorem 5.2 are precisely the spectral projectors ofA. Thus it suffices to show
that each Ei is a real, P-commutative matrix. Since A has real spectrum, it follows from
Corollary 2.6 that the spectral projectors are real matrices. By Lemma 4.4, it follows that
each Ei is P-commutative.

Proof of (ii) (i). Since A is a linear combination of its spectral projectors, and
since the P-commutative matrices form an algebra, the result is clear. [2]

Remark. Since powers of P-commutative matrices are P-commutative, it follows
that ifA is a P-commutative ZME-matrix, then every positive integer power ofA is a P-
commutative Z-matrix.

COROLLARY 6.2. LetA be in /ln(). Suppose thatA is a ZME-matrix. Thefollowing
are equivalent:

(i) A is a centrosymmetric matrix.
(ii) Each ofthe spectral projectors ofA is a real, centrosymmetric matrix.
(iii) A has a normalized, strictly positive inflation sequence { ui}ki-_ for which there

exists a sequence ofpermutation matrices {Pi} ki- such that for >= 2, Ui is a Pi , Pi-
commutative inflator, and such that Pk J,.

Note that for centrosymmetric matrices, (iii) does not hold with every Pi equal to
the permutation matrix J of the appropriate order. Indeed, as the following example
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shows, there exist ZME-matrices A such that A is centrosymmetric, but such that every
inflation sequence for A contains an inflator which is not centrosymmetric.

Example. Let U [0]. Let U2 uu t, where u 1/5(3 4)t. Let U3 vv t, where
v (1/V 3/5 4/5 1/f)t. Let II2 {1, 2}. Let 1-13 1, 4}, {2, 3}. Observe that ifII3 is
a Q, J4-commutative partition, then Q must be the 2 2 permutation matrix 12 since
the permutation p corresponding to J4 has cycle structure (1, 4)(2, 3). Let A be any ZME-
matrix for which { Ui} i= is an inflation sequence. It is easily verified that A is centro-
symmetric. Suppose that Wi} i= is another inflation sequence for A. It can be shown
that W2 must be positive diagonally similar to V2. Since such a transformation preserves
the diagonal entries of U2, V2 cannot be centrosymmetric. Alternatively, note that G(W3)
G(U3). From the structure of G(U3), it follows that the 2-partition of 4 that corresponds
to V would have to be either 1, 4}, {2, 3 } or {2, 3 }, { 1, 4}. Neither of these is a J2,
J4-partition.

Acknowledgments. The author thanks Professor James Weaver of the University
of Western Florida for introducing him to the subject of centrosymmetric matrices, and
for raising the questions that led to the original version of this paper, which treated
centrosymmetric matrices. The author also thanks an anonymous referee for suggesting
that the paper be extended to the subject of P-commutativity, and for suggesting the
introduction of Lemmas 2.7 and 4.5 (in their centrosymmetric versions) to shorten the
proofs of Theorems 4.1 and 4. 1.

REFERENCES

S. FRIEDLAND, D. HERSHKOWITZ, AND H. SCHNEIDER, Matrices whosepowers are M-matrices or Z-matrices,
Trans. Amer. Math. Soc., 300 (1987), pp. 343-366.

[2] F. R. GANTMACHER, The Theory ofMatrices, Chelsea, New York, 1959.
[3] I. J. GOODE, The inverse ofa centrosymmetric matrix, Technometrics, 12 (1970), pp. 925-928.
[4] R. G. KHAZANIE, An indication of the asymptotic nature of the Mendelian Markhov process, J. Appl.

Probab., 5 (1968), pp. 350-356.
[5] P. LANCASTER, Theory ofMatrices, Academic Press, New York, 1969.
[6] J. R. WEAVER, Centrosymmetric (cross-symmetric) matrices, their basic properties, eigenvalues and eigen-

vectors, MAA Monthly, 92 (1985), pp. 711-717.



SIAM J. MATRIX ANAL. APPL.
Vol. 9, No. 3, July 1988

(C) 1988 Society for Industrial and Applied Mathematics
014

ALGORITHMS FOR MATRIX TRANSPOSITION ON BOOLEAN
N-CUBE CONFIGURED ENSEMBLE ARCHITECTURES*

s. LENNART JOHNSSON AND CHING-TIEN HO

Abstract. In a multiprocessor with distributed storage the data structures have a significant
impact on the communication complexity. In this paper we present a few algorithms for performing
matrix transposition on a Boolean n-cube. One algorithm performs the transpose in a time pro-
portional to the lower bound both with respect to communication start-ups and to element transfer
times. We present algorithms for transposing a matrix embedded in the cube by a binary encoding,
a binary-reflected Gray code encoding of rows and columns, or combinations of these two encodings.
The transposition of a matrix when several matrix elements are identified to a node by consecutive
or cyclic partitioning is also considered and lower bound algorithms given. Experimental data are
provided for the Intel iPSC and the Connection Machine.

Key words, matrix transpose, Boolean cubes, personalized communication, routing, data en-
coding

AMS(MOS) subject classifications. 65F30, 68P99, 68Q20, 68Q25

1. Introduction. Matrix transposition is a permutation frequently performed
in linear algebra. It is useful in the solution of systems of linear equations by a va-
riety of techniques. For instance, the solution of partial differential equations by the
Alternating Direction Method (ADM) is typically carried out by transposing the data
between the solution phases in the different directions. Such data transposition may
also be beneficial with respect to performance for the ADM on Boolean n-cube config-
ured architectures, even though multidimensional arrays can be embedded in Boolean
cubes preserving proximity [12], [13]. Another example where data transposition may
be advantageous is the solution of Poisson’s problem by the Fourier Analysis Cyclic
Reduction (FACR) method. Matrix transposition can also be used to realize arbitrary
permutations [21], [20].

In this paper we focus on matrix transposition on Boolean n-cube architectures.
The transpose can be formed recursively as described in [19], [1], [8], [15]. H. S. Stone
[19] describes a mapping to shuffle-exchange networks for the case with one matrix
element per node. We consider the case with multiple matrix elements per node
and focus on the pipelining of communication operations and the optimal use of the
communication bandwidth of the Boolean n-cube. In [8], [9] we describe and analyze
the complexity of a transpose algorithm for a two-dimensional mesh and present a few
algorithms for the transposition of matrices embedded in the cube by binary or Gray
code encoding of the row and column indices. In this paper we present a transpose
algorithm that is of lower complexity in the case of concurrent communication on
multiple ports, and present experimental data for the Intel iPSC and the Connection
Machine [3].

We first introduce the notation and data structures used in this study, then present
algorithms for the transpose operation for one-dimensional and two-dimensional parti-
tionings. Implementation issues particular to the actual machines used, but important
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for the interpretation of the experimental results presented, are addressed after the
description of the algorithms. A summary and conclusion follows.

2. Preliminaries. Let A be a P Q matrix. Throughout the paper, we assume
that P 2p and Q 2q. The number of bits required for the encoding of the matrix
elements is m p + q. The transpose AT of A is defined by the relation aT (u, v)
a(v, u), where aT (u, v) is the element in row u and column v of AT, and a(u, v) is the
element of A in row u and column v. Let the binary encoding of u be (Up-1 Up-2... uo)
and the binary encoding of v be (vq-lva_2... vo). Then the address of element a(u, v)
is naturally defined to be (Up_ Up_2"" uova- va_2"" vo) (win- win-2"" To), or
(ullv) w for short, where "11" is the concatenation operator for binary numbers.

DEFINITION 1. The matrix transposition operation is the permutation loc(up_l
Up-2 uova_vq_2 vo) loc(va_iva_2 VoUp_Up_2 uo), where loc(w) is the
memory location of element w.

Note that we arbitrarily assumed that the p highest-order dimensions are used
for the encoding of row indices. We use this assumption throughout this paper, but
any other subset of p dimensions could have been used.

With the assumption above, the p highest-order dimensions encode row indices
before the transposition and the q highest-order dimensions encode column indices
after the transposition. A vector transposition requires no data movement. For
the matrix transposition it is sometimes appropriate to consider a square array of
2 max(p, q) dimensions.

DEFINITION 2. A P Q matrix with P > Q is extended to a square matrix by
introducing virtual elements corresponding to P- Q columns. The extension is made
similarly if P < Q.

The extension can be made by adding columns corresponding to high- or low-order
dimensions of the column address space, or by mixing columns of virtual elements
with columns of real elements. Whichever alternative is preferable depends on the
particular transposition algorithm, and data assignment scheme (described later).

DEFINITION 3. A shuffle operation, sh on a set of elements with ad-
dresses w, w E {0, 1,..., 2m- 1} encoded in binary representation (wm-lWm-2"’" To)
is a permutation defined by a one step left cyclic shift, loc(wm-lWm-2"" "To)
IOC(Wm-2Wm--3"’" WOWm-1), W {0, 1,’’ ",2m- 1}. An unshuffle operation, sh- is
defined by a one-step right cyclic shift. 8hk sh o 8hk-1 is a k step left cyclic shift.

Clearly, sh o sh- I, where I is the identity operator. Also, 8hk(w)
sh-(m-k)(w).

LEMMA 2.1. Let A be a 2p 2q matrix. AT - shPA, or AT - 8h-qA.

COROLLARY 2.2. On a shuffle-exchange network of N 2n nodes, n -p +
q, and bidirectional communication links, the matrix transposition requires at most
min(p, q) communication steps.

A shuffle-exchange network has all the connections corresponding to the sh op-
eration, and connections from every even node to the succeeding odd node.

DEFINITION 4. Let w (Wm-iWm-2""wo) and z (Zm-Zm-2""zo). Then
Hamming(w z) m-1i=o (wi @ zi), where @ is the exclusive or operation.

LEMMA 2.3. For m even there exists at least one w such that Hamming(w, 8hlw)
m, and for m odd Hamming(w, shlw)- m 1. In general, for k shuffles

m

maxHamming(w, shkw)
m, gcd(m,kl" is even,

w m gcd(m, k), m
gcd(m,k) is odd.
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Proof. For m even, let w (0101...01). Then Hamming(w, shlw) m. For m
odd, let w (0101... 010). Then Hamming(w, shlw) m- 1. Note that w and shlw
contain the same numbers of O’s and l’s. Since one of them is odd, the Hamming
distance between w and shlw is at most m- 1. For k shuffles, the bits can be divided
into gcd(m, k) groups of bit strings of length gcd(rr,k). The lemma follows. [3

COROLLARY 2.4. For m even maxw Hamming(w, 8hm/2w) m.
LEMMA 2.5. For 0 < k < m, maxw Hamming(w, shkw) >_ k.
Proof. Since m > k we have

m k m k
gcd(m, k) > gcd(m, k)

or
gcd(m, k)

> 1 + gcd(m, k)"

This means m- gcd(m, k) _> k. Lemma 2.3 completes the proof. [:1

DEFINITION 5. Let x (xn-Xn-2"’" Xo), xi E {0, 1}, for all i E {0, 1,..., n-l}
be the address of a node in a Boolean n-cube. Then node x is connected to nodes in
the set { (Xn-lXn-2"’"-2-... xo)l for all/e {0, 1,..., n- 1}}.

A Boolean n-cube has N 2n nodes, and each node n neighbors. The diameter
is n and the number of links is 1/2nN. There exist n paths between any pair of
nodes (x, y). Of these paths Hamming(x, y) paths are of length Hamming(x, y) and
n- Hamming(x, y) paths are of length Hamming(x,y)/ 2 [18]. We will use this
property in devising transposition algorithms with multiple paths between source and
destination processors for minimization of the data transfer time.

LEMMA 2.6. Matrix transposition on a Boolean n-cube requires at least a8 many
communication steps as the transposition on a shuffle-exchange network.

Lemma 2.6 is immediate from Lemma 2.5.
In general, the number of matrix elements may be larger than the number of

processors, and several matrix elements must be allocated to the storage of individual
processors. We assume that the matrix elements are distributed evenly among the
processors. For n < max(p, q) there is a choice between one- and two-dimensional
partitioning. For either kind of partitioning the matrix elements can be assigned to
processors cyclicly, or consecutively [8], [9], or by a combined assignment scheme.

DEFINITION 6. In a one-dimensional cyclic partitioning on N processors, row u

(column v) is assigned to processor u mod N (v mod N) and in a one-dimensional con-
secutive partitioning row u (column v) is assigned to processor [u/[-J ([v/[J).

COROLLARY 2.7. In an n-cube the n lowest-order bits of the binary encoded row

(column) index determines the processor to which a row (column) is assigned in the
cyclic partitioning. In the consecutive assignment the n highest-order bits determines
the processor assignment, if the number of rows (columns) is a power of 2.

The dimensions that are of higher- (lower-) order than the real processor ad-
dress field are used for cyclic (consecutive) assignment. The notions of cyclic and
consecutive assignment are relative to a given real processor address field.

In the two-dimensional partitioning we let Nr 2nr < P denote the number
of partitions in the row direction and let Nc 2nc <_ Q denote the number of
partitions in the column direction. The total number of partitions is Nr Nc <_ N
(nr / nc <_ n). In the cyclic partitioning matrix element (u, v) is assigned to partition
(u mod Nr, v mod Nc) and in the consecutive partitioning it is assigned to partition

([u/[J, [V/[N--J (Fig. 2). For a matrix partitioned by cyclic assignment the
nr lowest-order bits of the matrix row index determines the processor row index.
Analogously, the nc lowest-order bits of the matrix column index determines the
processor column index. In consecutive storage, the nr highest-order bits in the
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P1 P2

Cyclic Consecutive

FIG. 1. Cyclic and consecutive one-dimensional partitioning.

matrix row index determine the processor row index and the nc highest-order bits of the
column index determine the processor column index, since P and Q are powers of two.

The cyclic and consecutive assignment schemes are illustrated in Figs. 1 and 2
with respect to the matrix elements.

DEFINITION 7. The part of the address field that does not correspond to real
processors defines virtual proce88ors.

The cyclic and consecutive assignment schemes with respect to the address space
is as follows: One-dimensional cyclic column partitioning:

Ztp_lZtp_2 Vnj.U0 Vq--lVq--2 Vnc Vnc--1
vp rp

One-dimensional consecutive column partitioning:

Ztp_lttp_ UO Vq--lVq--2 Vq--nc Vq--nc--1

vp rp vp

For the cyclic two-dimensional assignment the address field is partitioned as

ttp--lUp--2"’’Ztn ’/.tnr--l’’’dO Vq--lVq--2 Vnc Vnc--1 Vo)
vp rp vp rp

and for the consecutive assignment the address field is partitioned as

ttp--lZtp--2 Vat,Up--nr Up--nr--1 UO Vq--lVq--2 Vq--ne Vq--ne--1

rp vp rp vp

where vp denotes the dimensions of the address space used for virtual processor ad-
dresses and rp denotes the dimensions used for real processor addresses. The number
of dimensions used for the consecutive, or cyclic mapping is m- nc (or m- nr) in
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P1 P2 P1 P2 P1 P2

P3 P4 P5 P3 P4 P5 P3 P4 P5

P P4 P5 P P4 P5 P P,I P5

P6 P7 P8 P6 P7 P8 P6 P7 P8

P1 P2P1 P2P1 P2

P P4 P5 P P4 P5 P P4 P5

P6 P7 P8 P6 P7 P8 P6 P7 P8

P,t

P6 P7 P8

Cyclic Consecutive
FIG. 2. Cyclic and consecutive two-dimensional partitioning.

the one-dimensional case and m- nr- nc in the two-dimensional case. For column
partitioning, nr 0, 0

_
nc

_
n. For row partitioning, nc O, 0 <_ nr <_ n.

The cyclic and consecutive storage forms are two extreme cases of real processor
assignment. We refer to the general case as combined assignment. Any subset of
dimensions of the address space can be used for real processor addresses. As an
example of combined assignment we consider the storage of a banded matrix for the
equation solvers in [7], [11]. The nonzero elements of the matrix, the right-hand
sides, and the solution vectors can be stored in a rectangular array by conventional
row/column storage of the matrix, or by row/diagonal organization. Here we do
not discuss the techniques for band matrix storage and their consequences for the
solution procedure. For illustration we simply assume that the relevant elements are
stored in an array of P 2p rows and Q 2q columns. Then, for a two-dimensional
partitioning with 2nc processors in both the row and column directions, blocks of size
2q-nc 2q-n elements may be stored in the same processor, and blocks assigned
cyclically with respect to the row addresses, i.e., the address field is partitioned as

(Ztp_lp_2 VfI1.Uq Uq--1 Uq--nc ltq--ne--1 UO Vq--1 Vq--nc Vq--nc--1

vp rp vp rp vp

The total number of real processor dimensions is 2nc. For the row assignment the
nc contiguous dimensions of the address field used for real processor addresses divides
the address space into two parts: q- nc dimensions used for consecutive assignment,
and p-q dimensions used for cyclic assignment. For the concurrent elimination of
multiple vertices the matrix is partitioned into S block rows. With S 2s the s
highest-order bits of the matrix row addresses are used for real processor addresses.
With the previous assignment for each such block the address field is partitioned as

(p--1 "’’Ztp--s lip--s--1 Ztq ltq_ Ztq_ne Ztq_ne_ zt0 Vq--1 Vq--ne Vq--ne--1 Vo).
rp vp rp vp rp vp

Hence, in this case the dimensions used for real processor addresses forms two fields.
The number of dimensions for real processors in the row direction is s / nc, and
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the total number of real processor dimensions is s / 2nc. The notions of cyclic and
consecutive partitioning are now conditioned on the part of the real processor address
fields.

We now turn to the communication required for matrix transposition. Consider
a one-dimensional partitioning such that p q > nc n and cyclic partitioning
by columns before the transposition. Then every processor sends 2m-2n elements to
every other processor. All-to-all personalized communication [5], [14] is required. To
see this fact, note that there are 2m-n virtual processors per real processor, and that
the address field prior to the transposition is partitioned as

?p--lp--2 ?0 Vq--lVq--2 Vn Vn--1 VO).
vp rp

After the transposition the partitioning is

Vq--lVq--2 VO p--lUp--2 n ?n--1 0)
vp rp

which, in the original address field, is

Vt)/.Un Un--1 UO Vq--lVq--2

vp rp vp

Hence, the row address field in the initial allocation is partitioned into 2n partitions
for each column, and each such partition sent to a unique processor for the matrix
transposition. The address fields for real processors before the transposition and after
the transposition are disjoint.

If q < n _< p and the initial assignment is by columns, then only 2q processors are
used before the transposition, but all 2n processors are used after the transposition.
The number of virtual processors per real processor before the transposition is 2p, and
after the transposition is 2"-n. The row address field is divided into 2n partitions.
The address fields for real processors before and after the transposition are disjoint.
The transposition is accomplished by all 2q processors holding matrix elements sending
a unique set of data to each of the 2n processors. The communication is some-to-
all personalized communication. The reverse operation is all-to-some personalized
communication. In the extreme case such as transposing a vector, it is one-to-all or all-
to-one personalized communication. In a two-dimensional partitioning with the same
number of processors assigned to rows and columns, and the same assignment scheme
(cyclic or consecutive) for rows and columns, the address fields for real processors
before and after the transposition are the same. The communication is between
distinct pairs of processors.

One of the reasons for not using all processors before or after a transposition is
that the number of dimensions for the row or column address field is smaller than
the number of processors dimensions assigned to that address field. Virtual elements
can be introduced to simplify the analysis. Virtual processors define local storage
addresses.

Let ) be the set of dimensions used for real processors, and ) the set of di-
mensions used for virtual processors: ]- {dli- 0,1,...,rp- 1} and )- {dli-
O, 1,...,vp- 1},wheredi,dE{0,1,...,m}. Furthermoret)-and(2)-
{0, 1,...m- 1}. The number of dimensions used for real processor addresses is
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TABLE 1
The processor address for matrix element (up_ up-2 uo, Vq_ Vq-2 vo with consecutive and cyclic

encodings.

EnG./Part. Consecutive Cyclic
binary, row (Up-lUp-2 Up-n) (Un--lUn-2 UO)

binary, column (Vq_iVq_2 ""%-n) (vn-vn-:’"vo)
Gray, row (G(Up-lUp-2... Up-n)) (G(Un-lUn-2"’" uo))

Gray, column (a(vq-lVq-2 ""Vq-n)) (a(Vn-lVn-2 ...vo))

TABLE 2
The processor address .for matrix element (up_ Up-2 ...uo, Vq_ 1Vq-2... vo with two examples of com-

bined encoding.

EnG./Part. Combined
Contiguous Noncontiguous

binary, row (up-iup-i-x ""up-i-n+x) (up-1 "up-su,-8-1 ""uo)
binary, column (Vq-iVq-i-i...vq--n+i) (vq_i...vq-sv,_-l...vo)
Gy, ow (G(u___..._,_+)) (G(_..._)G(__...o))

Gray, column (e(vq-ivq-i- ...vq-i-n+)) (G(vq_x ""Vq-e)G(vn-- ""vo))

[[ rp, and the number of dimensions used for virtual processors is vp
(rp + vp m). Denote the set of dimensions of the matrix encoding assigned to real
processors before the transposition by b and the set of matrix dimensions used for
real processors after the transposition by a. Let r b fq a. Clearly, for any
one-dimensional partitioning ,r .

So far we have assumed that the matrix elements are embedded in the set of
processors by a binary encoding. Such an embedding does not preserve proximity.
A binary-reflected Gray code [16] encoding of row and column indices preserves adja-
cency. This code is referred to as the Gray code in the following and the encoding of w
is G(w). The conversion from one kind of encoding to the other can be accomplished
in n- 1 routing steps with additional local data rearrangement. The paths in the
routing can be made to be edge-disjoint [8].

Adjacency is of no concern for virtual processor addresses in a storage with uni-
form access time, but may be of significance for interprocessor communication, in
particular for Boolean cube configured multiprocessors. It is possible to restrict the
Gray code encoding to the real processor address field. For instance, in the consecutive
assignment the stripes/blocks can be assigned to processors by a Gray code encoding,
while the elements within the stripes/blocks are ordered in the binary order.

If we consider binary and Gray code encoding of the processor address field,
and consecutive, cyclic, or combined assignment with a consecutive or split address
field, a total of 16 matrix embeddings result for a one-dimensional partitioning. The
conversions between any two of the 16 assignment schemes are equivalent, i.e., all-to-
all personalized communication, in terms of the global communication, if r and
I)al- Ibl- I1. Table 2 shows the real address fields and their encoding in terms
of the matrix dimensions for consecutive and cyclic assignments. Table 2 shows the
encodings for two examples of combined assignment. The general case, for which n
arbitrarily chosen dimensions are used for real processor addresses, is treated in [4].
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For the architecture we assume that the communication is packet oriented with
a communications overhead T, a transmission time per element tc, and a maximum
packet size of Bm elements. A communications overhead is incurred for each commu-
nications link traversed. For a bit-serial architecture, such as the Connection Machine,
the overhead is only incurred once through pipelining. With the operating system for
the Intel iPSC on which our experiments were carried out v 5 msec, tc 1 #sec/byte
and Bm 1 kbytes. For the algorithm description and analysis we consider two cases
with respect to communication capabilities: communication restricted to one port at
a time, one-port communication, and concurrent communication on all ports, n-port
communication. One-port communication is a good approximation of the capabilities
of the Intel iPSC. Furthermore, we assume bidirectional communication, i.e., that a
processor can send and receive data concurrently on the same port. Therefore, one
send or one receive operation takes the same time as one exchange operation of two
adjacent nodes through the same link for both one-port and n-port communications.

3. Generic algorithms.
3.1. One-to-all personalized communication. In [14] we devised and ana-

lyzed algorithms for one-to-all and all-to-all personalized communication. One-to-all
personalized communication can be performed in a time within a factor of two of the
lower bound by routing according to a Spanning Binomial Tree (SBT) with one-port
communication [17], [2], [5]. Before the communication the source node holds all PQ
data elements. After the communication, every processor holds PQ/N data elements.
The communication time for SBT routing and scheduling all data for a subtree at

n PQonce [5] is T (1- -)PQtc + -i=l[2,B,]r which is minimized for Bm > P--q

Train (1- -)PQtc + hr. The lower bound Ttb >_ max((1 -)PQtc,n’) >_
-)PQtc +((1 nr).

With n-port communication routing according to an SBT results in a time com-
plexity of an order higher than the lower bound. Half of the nodes of an SBT are in
one of the subtrees of the root node, and the minimum transmission time is 1/2PQtc.

(1 -)PQt n’) >The lower bound for n-port communication is 7)b _> max(
7((1--)PQtc / nv). One routing strategy optimal within a small constant factor
is to use a Spanning Balanced n-Tree (SBnT) [5], [14], [6]. The communication time
for SBnT routing and scheduling data for each subtree in a reverse breadth-first order
is

T

which has a minimum of

Train
1 (1-n )PQtc+nTfor () 1 PQ vPQBm >_ mva - .

n3/2.

The speed-up of the transmission time of the SBnT routing over the SBT routing is
n The maximum packet size is reduced approximately by a factor of n.a factor of .

In the SBnT routing the node set is divided into n approximately equal sets. An
alternative routing for n-port communication, is to divide the data set () for each
node into n equal parts and route the parts according to SBT’s rotated with respect
to each other if mod n 0.
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DEFINITION 8. A graph is rotated with respect to another graph if all its
addresses are obtained through the same number of shuffle operations, 8hk for some
k, of the addresses of the other graph.

DEFINITION 9. A graph is a reflection of another graph if all its addresses are
obtained through a bit-reversal of the addresses of the other graph.

Note that in the case of the SBT, a reflected SBT can be obtained by complement-
ing trailing zeros instead of leading zeros. The minimum time for one-to-all personal-
ized communication using n distinctly rotated spanning binomial trees and scheduling
data for each subtree in a reverse breadth-first order is Train (1 -)PQtc / nT

[5]. This complexity is of the same order as that of the lower bound. The minimum

time is achieved for Bm _> X/,.P-P A similar algorithm of the same complexity was

also derived independently by Stout and Wager [21], [20].
For PQ k < n the SBnT routing has a lower time complexity for elementN

transfers. For k SBT’s the transfer time for optimally rotated spanning binomial
trees is

2n/-1 pQ
(2n 1) 2-A-/k : 1 ---tc

and for optimally reflected and rotated spanning binomial trees the minimum transfer
time with concurrent communication on all ports is

2n/k-1 + 1 PQ
(2n-l) 2n/k_ l N tc.

For k 2 reflection yields a maximum of / 1 element transfers over any edge (and
a minimum of x/). Rotation yields a maximum of + element transfers over

any edge. For k 2 the optimum rotation is by steps. In general, the optimum
n steps for k < n if n is a multiple of k.rotation is by

3.2. All-to-all personalized communication. For all-to-all personalized com-
munication a simple exchange algorithm scanning through the dimensions of the cube
for one-port communication requires a time

T n-tc + n
Bm2N

which has the minimum

Tmin=nP_Qtc+v for Bm > PQ
\ 2N ] 2N

[17], [8], [15], [14], [2]. In each communication elements are exchanged. The
exchange algorithm routes elements from a node to all other nodes according to an
SBT. The SBT’s rooted at different nodes are translations of each other. A tree rooted
at node s is a translation of the tree rooted at node zero, if the addresses of the nodes
in the tree rooted at node s are obtained through a bit-wise exclusive-or operation,
x @ s, for every node x of the tree rooted at node zero. In the exchange algorithm
the dimensions of the cube can be scanned in an arbitrary order. Starting with the
highest-order dimension of the real processor address and virtual processor address
before the communication, a single block is communicated in the first transfer. The
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number of blocks doubles for each step of the exchange algorithm, and the block size
is reduced by a factor of 2.

This exchange algorithm can be explained in terms of the address space of the
data set subject to all-to-all personalized communication. Let the data assignment
before and after the communication be

Before

After

Wm--lWm--2 Wrp Wrp--1 WO)
vp rp

(Wm--lWm--2 Wo Wo--lWo--2 Ws--rp Ws--rp--1 WrpWrp--1 WO).
vp rp vp

Then, in the ith exchange step real processor dimension rp-i-1 and virtual processor
dimension s- i- 1, i E {0, 1,..., rp- 1} are involved in the exchange.

Exchange step i"

(Wm--lWm--2 Ws Ws--1 Ws--i+l Ws--i Ws--i--1 Wrp--i+l Wrp--i Wrp--i--1 WO).
vp rp vp rp

The data volume in each exchange remains constant, since the number of virtual
processor dimensions remain constant. But, the exchange dimension partitions the
virtual address space into an increasing number of smaller blocks for increasing i.
A shuffle operation on the virtual addresses between each exchange operation would
allow the exchange operation to always work with single block exchanges. The shuffle
operation implies extensive local data movement.

As an alternative to a local shuffle operation, in order to minimize the number of
communication start-ups, blocks can be moved to a buffer, and a number of blocks
sent in the same communication. For the Intel iPSC moving data to a buffer requires
a significant time, and there exists a block size less than the buffer size for which the
copy time is greater than the start-up time. We devised an optimal buffer scheme
that is presented in connection with the discussion of our experiments on the Intel
iPSC.

DEFINITION 1 0. The "Standard Exchange Algorithm" on 21 dimensions per-
forms an exchange of data between dimensions g(i) and f(i), where the sequences
{g(i)} and {f(i)}, i E {0, 1,...,1- 1}, are disjoint and both monotonically increas-
ing, or decreasing, as a function of i. The exchange is made on data such that
Wg(i ( Wf(i) 1.

For instance, g(i) s-i- 1 and f(i) rp-i- 1 for the above example. If p q,
g(i) rn- 1 -i, f(i) q- 1 -i, and 21 m, then the standard exchange algorithm
realizes a matrix transposition. There is no particular need to restrict the exchanges to
proceed from higher- to lower-order dimensions, or lower- to higher-order dimensions
on both virtual and real processor dimensions. By allowing exchanges on arbitrarily
paired real and virtual processor dimensions various forms of data conversions can be
accomplished. We will give a few examples later (for a general discussion see [4]).

DEFINITION 1 1. The "General Exchange Algorithm" on 2l dimensions performs
an exchange between dimensions g(i) and f(i), where (g(i), f(i)) is an arbitrary pair
of dimensions such that g(i) g(j), f(i) f(j), i j, for all i,j {0, 1,...,/- 1}.
An exchange is made on data such that wa(i) @ wf(i) 1.

Note that the sets {g(i)} and {f(i)} are not necessarily disjoint and the sequences
g(0), g(1),..., g(l 1) and f(0), f(1),..., f(t 1) are not necessarily increasing or
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decreasing. The general exchange algorithm can be applied to the bit-reversal permu-
tation as described in 7 and the k shuffle operation described in [4].

With n-port communication pipelining can be employed in the exchange algo-
rithm, but the algorithm so modified is suboptimal. However, routing based on span-
ning balanced n-trees, or rotated spanning binomial trees, and scheduling of data for
subtrees in either postorder, or reverse breadth-first order, only requires a time of
Train P2NNtC + nT [14]. A similar algorithm of the same complexity was also derived
independently by Stout and Wager [21], [20]. This complexity is again within a factor
of 2 of the lower bound

(PQ)I(PQ )max ---tc nr > - --tc + nT

3.3. All-to-some personalized communication. We only consider the case
where . and Ibl Ial. If Ibl Ial I1, then the communication is
all-to-all personalized communication. The general case for which . -7(: is treated
in [4]. If the number of real processor dimensions used before the transposition is
greater than the number used after the transposition, i.e., if lb --Ia k > 0, then
the transposition implies k steps of all-to-one personalized communication and Ial
steps of all-to-all personalized communication. Data accumulation takes place during
the k steps of all-to-one personalized communication. If I)al- I)bl k > 0, then
there are k steps of one-to-all personalized communication and Ibl steps of all-to-all
personalized communication. The k steps of one-to-all personalized communication
imply data splitting.

THEOREM 3.1. The steps of all-to-one and all-to-all personalized communica-
tion used to realize all-to-some personalized communication can be performed in any
order. Performing the all-to-all personalized communication first minimizes the data
transfer time. For some-to-all personalized communication performing the one-to-all
personalized communication first minimizes the data transfer time.

The theorem simply states that data accumulation shall be performed last and
data splitting first. The theorem can be proved by considering the communication
complexity of inserting the k steps all-to-one (one-to-all) personalized communication
among the all-to-all personalized communication.

Let k I(lb]- I)al)l and min(lbl, Ial). If the minimized algorithm is
executed, for the k steps of all-to-one or one-to-all personalized communication there
are 2 distinct subcubes in which the operation takes place concurrently. Each such
subcube is of dimension k. Also, the all-to-all personalized communication takes place
within subcubes of dimension l, and there are 2k such subcubes.

The complexity estimates for k I(l bl- I al)l steps of accumulation/splitting
and min(Ig ], steps of all-to-all personalized communication are given in
Table 3.3. Note that n, k 0 yields the complexity of the all-to-all personalized
communication, and 0, k n yields the complexity of the one-to-all or all-to-one
personalized communication. In general, it is a 2t-to-2t+k (or 2t+k-to-2t) personalized
communication.

4. Matrix transposition. We have defined matrix transposition as a set of
shuffle operations. This definition is convenient on certain processor networks, and for
parts of the analysis. Matrix transposition implies an exchange of the row and column
address fields. This exchange can clearly be accomplished by the standard exchange
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TABLE 3
Estimated communication time for some-to-all personalized communication.

Comm. cap. Time
_pQ )tc

__
(l BmPQ k-1 pQone-port T (12 + ik--- 2+’-’ 2k+/+l + Ei--0 f Brn2k+t-i ])T

PQ k-1n-port T- (2,Q+t Ei=O 2k+l-i 1--

algorithm, if p q. If this is not the case, then virtual elements can be introduced to
square up the matrix. A standard exchange algorithm can be formulated as follows:

For i := q- 1 downto 0
forall ui @ vi 1

exchange elements {(ullv)} and
endforall

endfor

LEMMA 4.1. Let p q, uj vj, .for all j E {0, 1,..., i 1, i + 1,..., q 1},
ui v-; then Hamming((u Iv), (v In)) 2.

COROLLARY 4.2. If the number of processors is equal to the number of matrix
elements, 2m, then matrix transposition performed through a sequence of exchanges
requires 1/2m exchanges, each requiring communication over a distance of two.

Corollary 4.2 gives an upper bound equal to the lower bound of Corollary 2.4.
With a one-dimensional partitioning of the matrix, ’ regardless of the assign-

ment schemes before and after the transposition. In the two-dimensional partitioning
may be empty, but it can also be equal to the full processor set .
LEMMA 4.3. /f the exchange algorithm is used for transposition and g(i), f(i) e

b, then the communication is between real processors at distance 2. If g(i) b,
f(i) ]b, or g(i) . ]b, f(i) ]b, then the communication is between real processors
at distance 1. Otherwise, the exchange operation is a local data movement.

5. One-dimensional matrix partitioning. If there are data elements for ev-
ery real processor both before and after the data rearrangement, then the matrix
transposition is all-to-all personalized communication. Each node sends - elements
to every other node. The communication is all-to-all personalized communication re-
gardless of whether or not the scheme for assigning elements to processors is the same
before or after the transposition.

If the exchange algorithm is used for all-to-all personalized communication then
the exchange operations takes place either between a virtual processor and a real pro-
cessor or two virtual processors in the same real processor. With the same number of
processors being used before and after the transposition and one-port communication
the exchange algorithm is optimum within a factor of 2.

For matrix transposition by the exchange algorithm [9] presented next it is as-
sumed that the matrix is partitioned consecutively by rows and that processor i
initially holds the elements of the ith block row. After the transpose operation it
will hold the elements of the ith block column. Note that the number of rows in a
block row is different from the number of columns in a block column, unless P Q.
However, the number of elements in a block row and a block column are the same.
For the transpose operation the block row of each processor is partitioned by columns
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into N same-sized blocks. The transpose is formed by processor i exchanging its jth
block with the ith block of processor j. The data array in each processor holding
the elements of a block row is two-dimensional, unless the number of rows is equal
to the number of processors, and the local data array after the transposition is also
two-dimensional, unless the number of columns is less than or equal to the number
of processors. To complete the transposition after the interprocessor communica-
tion is completed, this two-dimensional data array can be transposed further locally,
explicitly, or implicitly by indirect addressing.

/* Transposition by the Standard Exchange Algorithm: */
for j := n- 1 downto 0

if (bit j of my-addr O) then
exchange blocks 1/2N to N- 1 of my blocked array

with my neighbor in dimension j
else

exchange blocks 0 to 1/2N- 1 of my blocked array
with my neighbor in dimension j

endif;
shuffle my blocked array;

endfor

The loop can also be performed with the loop index running in the opposite order,
but then the first operation in the loop shall be an unshuffie operation, which replaces
the shuffle operation at the end of the loop.

For n-port communication the exchange algorithm is no longer optimal. An SBnT
algorithm as described below yields a communication complexity that is optimum
within a factor of 2.

/* Transposition by an SBn T Algorithm: */
/* Let the format of msg be (source-addr, relative-addr, data). */
/* base(j) the minimum number of right rotation of j which yields */
/* the minimum value among all rotations of j. */
for all j my-addr do

form msg for processor j (my-addr, my-addr (9 j @ 00... 01b0... 0, data)
and append to output-buf [b], where b is the base of my-addr @ j.

loop n times
send concurrently for all n output ports.
receive concurrently for all n input ports.
for each j do, 0 < j < n

for each msg of input-buf [j] do
if relative-addr 0 then

put the data into the 8ource-addrth block
of the target array

else
form relative-addr "= relative-addr @ (0-.. 01p0... 0) in

the msg and append to output-buf [p], where p is
the bit position of relative-addr which is the
nearest 1-bit to the left of the jth bit cyclically.

/* Note: jth bit is always 0 here. */
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endif
endfor

endfor
endloop

In the case where only a few processing nodes contain data before or after the
transformation it is of the form some-to-all or all-to-some personalized communica-
tion. In the extreme case it is one-to-all or all-to-one personalized communication.
Virtual elements can be introduced such that the same number of real processors
are used before and after the transposition. Real processors with virtual elements
participate in the exchange operations by receiving data. Virtual elements need not
be communicated. The number of real elements being communicated in an exchange
operation is not constant, in general, when virtual elements are introduced.

COROLLARY 5.1. In a one-dimensional partitioning such that I]bl Ileal there
exist elements that must traverse Ibl dimensions.

The communication complexity for these cases is summarized in Table 3.3.
LEMMA 5.2. One-dimensional transposition can be combined with change of

data assignment scheme in using the standard exchange algorithm.
COROLLARY 5.3. The conversion of the storage form of a matrix stored in

21gbl _< 2n processors from any one of the following storage forms:
consecutive row
consecutive column
cyclic row
cyclic column
combined cyclic and consecutive row storage
combined cyclic and consecutive column storage

to any other of these forms requires communication from each of the processors to
21al 1 other processors, if .

COROLLARY 5.4. The conversion between the cyclic and consecutive storage
forms implies all-to-all personalized communication, if P > N2 for partitioning by
rows and Q > N2 for partitioning by columns.

For both the SBT and SBnT algorithms presented above it is assumed that the
partitions are embedded in the cube by a binary encoding. For Gray code encoding
of partitions and binary encoding of virtual processors, we can first perform a trans-
formation locally such that block w is moved to block location G(w), and then carry
out the above algorithms. The two operations can also be combined as described in

6.2.

6. Two-dimensional partitioning. In the two-dimensional partitioning with
cyclic assignment and the same number of dimensions for rows and columns the
address field is partitioned as follows:

For consecutive assignment the partitioning is

Up--no Up--no--1 UO Vq--lVq--2 Vq--nc Vq--nc--1

rp vp rp vp

In either of these cases 2" b a. This case is the basic two-dimensional
matrix transposition. The communication is between pairs of processors. In [8], [9]
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we show that the transposition of a matrix embedded in the cube by a binary code
or Gray code encoding implies the same communication. The algorithm in the above
references uses a single path from source to destination for every source/destination
pair. We will describe a simple extension using two paths for every source/destination
pair, and an algorithm using multiple paths. We refer to the three algorithms by the
names Single Path Transpose (SPT), Dual Path Transpose (DPT), and Multiple Path
Transpose (MPT). Note that by Corollary 2.4 the maximum distance matrix elements
need to traverse is n 2n.

With a mixed assignment before and after the transposition, such as consecutive
for rows and cyclic for columns

(Up--lUp--2"’’p--nr Up--nr--1 "’’Uo Vq--lVq--2"’’Vnc Vnc--1 "’’Vo),
rp vp vp rp

the set 2’ may no longer equal the entire processor set. In fact, if q- nc >_ nr and
p- nr > nc then 2’ and it is an all-to-all personalized communication. Between
these two extremes the communication is discussed in [4].

6.1. Transposition with communication only between distinct source/
destination pairs of processors. We consider the transpose operation for binary
encoding first. Define tr(x) to be the function which maps the address of partition
(address of assigned processor) x (xrllxc) to the address of the transposed partition,
i.e., tr(x) (XcllXr). Let H(x) Hamming(xr,Xc). Then Hamming(x, tr(x))

n and n is even, i.e., that there2H(x). In the following we assume that nr nc -are equally many row and column partitions.
The Single Path Transpose (SPT) algorithm [9], [15] uses one path from pro-

cessor x to processor tr(x). Paths for different xs are edge-disjoint, and pipelining
of communications can be employed to reduce the communication complexity. The
Dual Paths Transpose (DPT) algorithm is a straightforward improvement of the SPT
algorithm in that two directed edge-disjoint paths are established from each source
processor to its corresponding destination processor. In the Multiple Paths Transpose
(MPT) algorithm, we partition the processor addresses into sets such that all mem-
bers of a set have equivalent properties with respect to an relation operator (defined
later). We show that the paths associated with any two source processors belonging
to different sets are edge-disjoint. We then prove that all the paths of the processors
in the same set share the same set of edges, but we use them during different cycles.
An algorithm similar to the MPT algorithm was also derived independently by Stout
and Wager [20], [21].

6.1.1. The Single Path Transpose (SPT) algorithm. With the same as-
signment scheme for rows and columns, and the same number of processors assigned

n (n must be even) the communication is restrictedto rows and columns, nc nr -to distinct source/destination pairs. The Single Path Transpose (SPT) algorithm [9],
[15] is a special case of the standard exchange algorithm.

LEMMA 6.1. In a two-dimensional partitioning such that the same number of
dimensions are used for real processor addresses before and after the transposition
and the same assignment scheme used before and after the transposition there exist
elements that must traverse rp 2nc dimensions.

In the SPT algorithm for the same number of real processors for rows and columns,
and the same assignment scheme for both rows and columns both before and after
the transposition, data is exchanged between processors with addresses that differ in
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dimensions g(i), g(i) ], g(i) < q, and f(i), f(i) ],q <_ f(i) < rn in the ith
exchange step. The implied routing corresponds to directed edge-disjoint paths from
each node x to tr(x). For each source-destination pair there is a single path. This
path only goes through the appropriate dimensions of the real processor addresses
corresponding to the bits of x that need to be complemented to become the destination
real address tr(x). The routing order for the dimensions is the same for all nodes, for

-1)instance, highest- to lowest-order for both row and column encoding, i.e., g(
n 1), ( gf( g n 2), f(n 2),’", (0), f(0). The length of the path of node x is

2H(x). The first packet for each node on the antidiagonal arrives after n routing
steps and additional packets every cycle thereafter. The total number of routing
steps is N + n- 1. The nodes which are not on the antidiagonal can either finish
the transposition earlier in a "greedy" manner, or synchronize with the antidiagonal
nodes, i.e., the packet with the same ordinal number of all the nodes uses the same
dimension (or idles) during the same step. The total transposition time T is ([sP--g] +
n- 1)(Btc +v). The optimal packet size Bopt is v/PQv/N(n 1)tc and the minimum

time is Train -(PNtc + v/(n- i)v).
6.1.2. The Dual Paths Transpose (DPT) algorithm. The SPT algorithm

can be improved by establishing two directed edge-disjoint paths between x and tr(x)
for all x’s. In addition to the paths used in the SPT algorithm, a second path is
defined by permuting processor row and column dimensions pairwise to yield a routing

n n_ 1) f(n-2) g(-2)’" f(0)g(0). The twoorder selected from f( 1), g(
directed paths for a particular x are edge-disjoint (as observed in [10] for the solution of
tridiagonal systems on Boolean cubes). Moreover, the two directed paths for any x are
edge-disjoint with respect to all paths for other x’s. This second path can be used to
reduce the time for data transfer by splitting the set of data PN--Q into two equal parts.
The path lengths are already minimal in the SPT algorithm. The communication

complexity is ([PQ (Btc+V), is /2N(n-1)tc2BN +n- 1) which minimized for B Bopt PQv

and Train (Ntc+v/(n 1)T) 2. The speed-up is approximately 2 for PNtc >> nv,
i.e., for Boolean cubes small relative to the problem size. Note that for the SPT
algorithm it suffices that each node supports a total of n concurrent send or receive
operations, whereas for the DPT algorithm n send operations concurrently with n
receive operations are required for each node. Unidirectional communication suffices
for the SPT algorithm, but bidirectional communication is required for the DPT
algorithm.

6.1.3. The Multiple Paths Transpose (MPT) algorithm. For the Multiple
Paths Transpose (MPT) algorithm we define 2H(x) paths, labeled 0, 1,..., 2H(x) 1,
between nodes x and tr(x). The_ paths differ in the order in which the dimensions
are routed. All paths originated from the same node have the same length. Let
all(x)-1, all(x)-2, ", a0, g(x)-l, fill(z)-2, ", 0 be the sequence of dimensions
that need to be routed in descending order. We describe a path as a sequence of
dimensions:

Ol(p+H(x)-l)modH(x), (p+H(x)-l)modH(x), Ot(p+H(x)-2)modH(x), (p+H(x)-2)modH(x),
..,Cp,p, VpE(0,1,’",H(x)-

path p
(j+H(x)- mod g(x), t(j+H(x)- mod H(x), (jTH(x)-2)modH(x), Ol(j+H(x)-2)modH(x),

..,j,aj, j=p-H(x) VpE{H(x),H(x)+l,...,2g(x)-l}.
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For example, if x (100Ill0100), then xr 1001, Xc 0100, H(x) 3 and tr(x)
(x=llx) (01001[1001). The distance between x and tr(x) is 6. The six paths are
defined as follows:

path 0 7, 3, 6, 2, 4, 0
path 1 4, 0, 7, 3, 6, 2
path 2 6, 2, 4, 0, 7, 3

path 3 3, 7, 2, 6, 0, 4
path 4 0, 4, 3, 7, 2, 6
path 5 2, 6, 0, 4, 3, 7.

Path 0 starts from the source node (10010100) and goes through nodes (00010100),
(00011100), (01011100), (01011000), (01001000) and reaches the destination node
(01001001). Path p can be derived by a right rotation of two steps of path (p- 1) mod
H(x), if 0 < p < H(x). For H(x) < p < 2H(x), path p can be derived by a right
rotation of two steps of path ((p- 1) mod H(x)) / H(x) and also by permuting row
and column dimensions pairwise of path p mod H(x). Note that path 0 is the same as
the path defined in the SPT algorithm. Paths 0 and H(x) are the two paths defined
for node x in the DPT algorithm.

DEFINITION 12. Let x’,x" be two nodes with x’ (xrllxc) and x"= (xrllxc).
Define a relation "ad between x and x such that x "ad Xtt if and only if xr + xc

xr" / xc, i.e., x and x are on the same antidiagonal. Note that if x "ad x and
Xtt "ad Xttt then x "ad Xttt.

DEFINITION 13. Define edge(x, p, e) to be the function which returns the eth
directed edge of path p of node x, with e _> 1. We also define Edges, OddEdges,
EvenEdges and Paths as follows:

Edges(x, e) {edge(x,p,e)l/p E {0, 1,..., 2H(x) 1}},
OddEdges(x)= U Edges(x,e),

v odd e

EvenEdges(x) U Edges(x, e),
v even e

Paths(x) OddEdges(x) U EvenEdges(x).

DEFINITION 14. Define Nodes(x, e) to be the function which returns the set of
nodes upon which the directed edges in Edges(x, e) terminate. Define OddNodes(x)
and EvenNodes(x) to be the set of nodes on which the set of directed edges OddEdges(x)
and EvenEdges(x) terminate, respectively.

OddNodes(x) U Nodes(x,e),
v odd e

EvenNodes(x) U Nodes(x, e).
v even e

DEFINITION 15. Let x, x be two nodes. Define a relation s such that x "s x
if and only if x’ "ad Xtt and x’ @ tr(x’) x" tr(x"). Note that if x’ 8 x" and
x" "s x" then x "s xm.

z’@ tr(x’) x"@ tr(x")implies g(x’) g(x"), but g(x’) g(x") does
not imply x’ @ tr(x’) x" @ tr(x"). There exists x’,x" such that x’ ad x" and
x’@ tr(x’) : x" tr(x"), for instance (00111111) and (01011110). Also there exists
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x’,x" such that x’ 7Cad x" and x’@ tr(x’) x"@ tr(x"), for instance (001][111) and
(00011110).

DEFINITION 1 6. A se of paths defined upon a se of nodes Z is said o be
(t, n)-disjoint, t < n, if a packe hat can be transmitted in unit ime can be sent ou
on every path from every node z Z during cycles i n + 1, i n + 2, ..., i n + t,
for all i > 0, wihou rouing conflicts, i.e., messages originating from different nodes
will no be routed over he same edge during he same cycle.

Note ha he (t, n)-disjoint definition does no imply tha the paths from he
differen source nodes are edge-disjoint, unless t n.

To describe the MPT algorithm we first prove the following properties.
1. Paths p andp of node z are edge-disjoin, for all pl, pz {0, 1,..., 2H(z)- 1},

Pl P2.
2. If X’ 7Cs X" then Paths(x’) f’l Paths(x") .
3. The set of all paths for the nodes in the set induced by the relation "8 is

(2, 2H(x))-disjoint, where x is in the node set.
LEMMA 6.2. Paths pl and p2 of node x are edge-disjoint, for all pl,p2

{0, 1,..., 2H(x)- 1}, Pl # P2.
Proof. It follows from the facts that all the paths are pointing away from the

source node and no two paths traverse the same dimension during the same step.
LEMMA 6.3. IfH(x’) > O, then the set of node OddNodes(x’) andEvenNodes(x’)

have the following properties:
x’ 7ad x", H(x") H(x’)- 1, for all x" E OddNodes(x’);
x’ ad x’, x’@ tr(x’) x"@ tr(x") (which implies H(x") H(x’)), for all
x" EvenNodes(x’).

Proof. In traversing an edge in OddEdges(x), we complement one of the H(x) bits
of the high- (low-) order bits, which differ from the corresponding low- (high-) order
bit. In traversing an edge in EvenEdges(x), we complement the low- (high-) order
bit of the corresponding high- (low-) order bit that was complemented in traversing
the preceding odd edge. Let x’, x", and x"’ be nodes along the same path such that
x’= (Y’llz’) e Nodes(x, 2h), x"= (y"[[z") e Nodes(x, 2h + 1) and x"’= (y"’[[z’")
Nodes(x, 2h / 2), for all h {0, 1,..., H(x) 1}. From the definition of paths either
y" y’ + 2k, z" z’ or y" y’, z" z’-2k for some k satisfying y 0,
z 1; or y" y’- 2k, z" z or y" y, z" z -4- 2k for some k satisfying
y 1, z 0. These conditions imply y’ + z’ - y" + z", i.e., x’ 7Lad Xtl, and
Hamming(y",z") Hamming(y’,z’)- 1, i.e., H(x") g(x’)- 1. Furthermore,
y"’ y’ + 2k, z"’ z’- 2k for some k satisfying y: 0, z 1 or y"’ y’- 2k,
z’" z’ + 2k, for some k satisfying y 1, z 0. Hence, y’ + z’ y’" + z’", i.e.,
X! ’ad X"’. Also, y’ @ z’ y’" @ z’", i.e., (y’l[z’)@ (z’[[y’) (y"’[[z’")@ (z’"l[y’"),
which implies x’ @ tr(x’) z’" @ tr(x’"). [3

COROLLARY 6.4. x’ "s x", for all x" EvenNodes(x’).
LEMMA 6.5. I] x’ #d X", then Paths(x’) t3 Paths(x") .
Proof. It is sufficient to prove Paths(x’)gl Paths(x") by proving

EvenNodes(x’) EvenNodes(x") and EvenNodes(x’) f30ddNodes(x") .
From Lemma 6.3, EvenNodes(x’) "d x’, EvenNodes(x") "ad ". Since x’
x", we have EvenNodes(x’) 7Qd EvenNodes(x"), which implies EvenNodes(x’)
EvenNodes(x") .

To prove EvenNodes(x’) gl OddNodes(z , we consider three cases.
1. If H(x’) H(x"), then, by Lemma 6.3, H(y’) H(y")+ 1, where

y’ EvenNodes(x’), y" OddNodes(x"). Therefore, EvenNodes(x’)
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OddNodes(x") .
2. If H(x’) > H(x"), then H(y’) > H(y"), where y’ E EvenNodes(x’), y"

OddNodes(x’). Therefore, EvenNodes(x’) N OddNodes(x") .
3. If H(x’) < H(x"), we show that EvenNodes(x")N OddNodes(x’) instead

by a similar argument as in case 2.
LEMMA 6.6. If x’ ""ad Xtt and x’ 7cs x", then Paths(x’) fq Paths(x") .
Proof. Assume EvenNodes(x’)fEvenNodes(x") -fi . Then there exists one node y

such that y EvenNodes(x’) and y EvenNodes(x"). By Corollary 6.4, y "s x’, y
x", i.e., x s x" which is a contradiction. So, EvenNodes(x) EvenNodes(x") .
Also by Lemma 6.3, y’ 7ad y", for all y’ EvenNodes(x’) and y" OddNodes(x"),
which means EvenNodes(x’) OddNodes(x")=. Hence, Paths(x’) Paths
(x") . D

LEMMA 6.7. If x’ 7s x" then Paths(x’) N Paths(x") .
Proof. The proof follows from Lemmas 6.5 and 6.6. D
LEMMA 6.8. The set of paths defined for the node8 in the same set induced by

the relation .. is (2, 2H(x))-disjoint.
Proof. We first prove that the paths of the nodes defined by the relation .-s are

(1, 2H(x))-disjoint. The proof is by induction on the routing cycles. During cycles 1
and 2, the routed edges are clearly disjoint by Lemma 6.3. Assume that during cycles
2n- 1 and 2n, n > 0, the routing is also edge-disjoint. If n H(x), then all the
routing is complete. During the next two cycles the routing is restarted and there
is no edge conflict. If n # H(x), then consider the 2H(x) edges directed into some
node y at distance 2n from x as well as the 2H(x) edges directed out from node y.
Let O/H(x)_I, OH(x)_2,""" t9/0,/H(x)-I, fill(x)-2,"" ", fl0 be the corresponding 2H(x)
dimensions in descending order. If an edge used during cycle 2n- 1 is in dimension
ak (i.e., the edge used during cycle 2n is in dimension ilk), then the edges used
during the following two cycles are in dimensions Ol(k_l)modH(x and (k-1)modH(x),
respectively. If the edge used during cycle 2n-1 is in dimension/k, then the edges used
during the following two cycles are in dimensions (k-1)modH(x) and Ol(k_l)modH(x),
respectively. Hence, the edges used during the following two cycles are all distinct
and it follows that the paths are (1, 2H(x))-disjoint.

To show that the paths are (2, 2H(x))-disjoint it suffices to show that the set of
edges used during odd cycles (odd edges) are disjoint from the set of edges used during
even cycles (even edges). Let x be any node in the set defined by the relation
That the set of edges used during odd cycles are disjoint from the set of edges used
during even cycles follows from the property that odd edges are directed from node x
to node y and even edges are directed from node y" to node x, where x "s x "s x,
xsyandx7sy. [:1

Figure 3 shows an instance of a set induced by the relation s on a 6-cube.
Note that H(x) 3 for x in this set. The nodes in the same set form a logical
H(x)-dimensional cube, where each logical link represents an exchange operation of
two dimensions. Hence, a logical link contains two disjoint paths of length 2. By
Lemma 6.7, the corresponding physical edges of the logical link will only be shared by
nodes in this set. Notice that x and tr(x) are at maximum distance from each other
in the logical H(x)-cube. Figure 4 shows the six (2H(x)) edge-disjoint paths from
node x (000111) to node tr(x) (111000). The labels on the edges are dimensions
of the edges.

PQFor the routing, the data from node x is split into 4H(x) packets of size [H(x)
each. The packets are sent during the first two cycles. The first 2H(x) packets will
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FIG. 3. The logical H(x)-cube formed by nodes in the same induced set of the relation "s.

2 5 1 0 3

4 1 3 0 5 2

1 4 0 3 2 5

3 0 5 2 4 1

FIG. 4. S/z (2H(x)) edge-disjoint paths from node x (000111) to node tr(x) (111000).
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arrive at the destination node, tr(x), after 2H(x) cycles, and the second set during
the next cycle. The total transpose time is

(n--+AaP-Ntc if n > PQtc(n + 1)r + 2n " 8Nr

3r + ]--t otherwise.

The transpose time decreases as a function of H(x) for 1 <_ H(x) _< V 8N and

/PQtc P, tcincreases for y SN < H(x). The transpose time for H(x) 1 and H(x) 8Nr are

the same. The maximal packet size is 4P----N The maximal packet size can be reduced
by splitting the data into 2H’x)J * 4H(x) packets. The total transpose time either

remains unchanged (if 7 8N or is reduced. In fact the data sent from node x can
be split into 4kH(x) packets instead of 4H(x) packets. The whole routing completes
in2kg(z)+lcycles, nence, T=(2kg(x)+l)(r+ 4kH(x)) g(z) e{1,2,

,/PQte 2Ptc nd Train (+V 2N Notice that Train is vlidThe optimal k is 2H() NT

only when & _> 1, which implies Pt2Nr >- n.

THEOREM 6.9. The total matrix transpose time by the MPT algorithm i8

if n >_ CPN-r approximately,

if V 2N7- < n < approximately and -.I "if V 2Nr < n approximately and

/eQtff n V 2N

and the optimum packet size is

PQIN(n+4)
Bopt

V2Ntc

PQten and n >,r even N

n and n >for odd vPQt’2N*
.for n < 2Nr

THEOREM 6.10. The matrix transposition time is at least max(nT, P2-N tc).
Proof. The minimum number of start-ups is determined by the longest distance,

which is n. Nodes on the main antidiagonal are at distance n. For a lower bound on the

required time for data transfer consider the upper right q q submatrix. There

are - nodes. Each node has to send PN--Q data to some node outside the submatrix.
There are two links per node that connect to nodes outside of the submatrix, i.e., a
total of - links. Hence, the data transfer requires a time of at least P--N t.

For Gray code encoding on both row and column indices, we can apply exactly
the same transpose algorithm. For a binary encoding of row and column indices,
matrix element (u, v) is stored in processor w (ullv) and matrix element (v, u)
is stored in processor tr(w) (vllu). For Gray code encoding of row and column
indices, matrix element (u, v) is stored in processor (G(u)llG(v)) and matrix element

(v, u) is stored in processor (G(v)llG(u)). The two-dimensional transpose algorithms
described above are indeed permutation algorithms defined by (ullv) (vllu), for
all u E {0, 1,... ,P- 1}, v E {0, 1,..., Q- 1}. It follows that the permutation will
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transpose the matrix. In general, if row and column indices are encoded in the same
way, the transpose algorithm only depends on the processor addresses, not on the
row and column indices of the matrix elements in the processors. For N < PQ, the
argument applies to matrix blocks instead of matrix elements.

6.2. Transposition with change of assignment scheme. If the number of
processors in the row and column direction are not the same, or if a different as-

signment strategy is used for rows and columns, or if the assignment scheme after
the transpose is different from that before the transpose, then the communication
is no longer confined to distinct pairs. If ])bl Ial Il and 2" , then the
communication is all-to-all personalized communication. In general, for .r # the
transposition/rearrangement is composed of different types of operations. This case
is treated further in [4].

For a nonsquare matrix virtual elements can be introduced. Virtual elements need
not be communicated, and the complexity of the transposition is reduced accordingly,
but the basic algorithms apply.

To illustrate a two-dimensional transposition with change of assignment scheme,
such that 2" , we consider the transposition of a matrix stored consecutively
with respect to both rows and columns before the transposition, and stored cyclically
with respect to both rows and columns after the transposition. We also assume that

nr nc and that p, q >_ 2nr. The partitioning of the address field before and after
the transposition and change of assignment scheme are

Before" (Up--lUp--2"’’Up--nc Up--nc--l’’’Uo Vq--lVq--2"’’Vq--nc Vq--ne--l’’’Vo),
rp vp rp vp

After (vq_ vq_ 2 vnc vno vo ,UP-...1 up_2 Un, U’c 1"’" UO).
vp rp vp rp

We consider three exchange algorithms that differ only in the way dimensions
are paired, and the order in which the exchanges are performed. Let exchange-
row(M, 8, Nr) denote the sequence of exchange operations between Nr block rows

(within a column subcube of Nr processors) as defined by the standard exchange
algorithm described in pseudocode before, except for a minor modification. The ini-
tial local array of length M is partitioned into 2SNr blocks. The jth block is sent
to processor j mod Nr, for all j E {0, 1,... ,2Nr- 1} during the execution of the
exchange algorithm. Each processor sends 2s blocks to every other processor. For the
exchange algorithm for the transposition of a one-dimensionally partitioned matrix
described earlier, M P--g s O, Nr N. Each processor sends only one block to
every other processor. Exchange-row(M, s, Nr) operates within each column subcube.
Exchange-column(M, s, Nc) is defined analogously.

The parameter s defines the offset from the high-order dimension of the virtual
processor address field for the first exchange in the standard exchange algorithm. From
the discussion of the standard exchange algorithm it is clear that an offset of s divides
the local array into 2s+l blocks for the first exchange The blocks are of size PQ

2s+N
for a P Q matrix partioned evenly among N real processors.

For the transposition with change of assignment scheme we consider the following
three algorithms:

1. Convert from consecutive-row partitioning to cyclic-row partitioning, i.e.,
ezchange-row( P-N, P 2nr, Nr); then convert from consecutive-column parti-
tioning to cyclic-column partitioning, by employing ezchange-column(P-N, m--
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n- nc, Nc); then transpose the matrix globally and locally.
2. Transpose the local matrices concurrently; then convert from consecutive-row

partitioning to cyclic-row partitioning, i.e., exchange-row( P---N P 2nr, Nr);
then convert from consecutive-column partitioning to cyclic-column parti-
tioning, i.e., exchange-column(Pg,m- n- nc,Nc); then transpose N local
matrices each of size 2p-2n" 2q-2n concurrently in all N real processors.

3. Convert from consecutive-column to cyclic-column partitioning between rows
(within each column subcube), i.e., exchange-row(P-N, m- n- nc, Nr); then
convert from consecutive-row to cyclic-row partitioning between columns
(within each row subcube), i.e., exchange-column(PN, p -n, Nc). A local
p- 2nr shuffle operation is necessary if p > 2nr.

The algorithms can be illustrated in terms of operations on the address field. For
simplicity let it be partitioned as (UlUU3VV2V3), where u, u3, Vl, and v3 all define
subfields of nr dimensions. Ul and vx are the real processor address fields before the
transposition, u3 and v3 the real fields after transposition and change of assignment
scheme.

ALGORITHM 1"

(Ul2U3VlV2V3) (UlU2U3VlV2V3) (UlU2"._.3VlV2V__3)’-+ (VlV2V3ItlII,2U3).
ALGORITHM 2:

(?lU2U3VlV2V3) (UlV2V3VlI2u3) (l$1v2V3VlI$2u3)--
(Ul v2v__3Vl ?27__3) --+ (Vl v2v3ulu2u3).

ALGORITHM 3:

(721’2U3VlV2V3) (V3’a2’a3V_lV2 It -’ (V3U2Vl ’a__3V2U -"* (V3Vl V2’a_3’ U2 ).

The underline denotes the real processor address field. Note that the last form in
Algorithm 3, (vavvuau U2 ), denotes the same assignment scheme as (VlVVaU uua).
The steps of the three different algorithms are illustrated in Fig. 5 in terms of the
matrix. The number in the figure denotes (row-indexlleolumn-index).

The first algorithm requires 2n communication steps, the second only n steps.
However, the second algorithm requires a complete local matrix transpose before the
interproeessor communication phase, and the transposition of a number of smaller
matrices after the communication. The third algorithm also requires n communication
steps, but no transposition is required prior to the communication. A local p- 2nr
shuffle operation is required if p > 2n. Note that the order between the exchange-row
and exchange-column operations can be reversed.

Conversion between eyelie and consecutive assignment in the row or column direc-
tion is equivalent to a number (N or N) of independent one-dimensional conversions.
Conversion in both dimensions is equivalent to all-to-all personalized communication
if Q _> Nc and P >_ Nr2.

6.3. Combining transpose and Gray code/binary code conversion. For
the transpose of a matrix with the row index encoded in binary code and the column
index in Gray code, a binary-to-Gray-code conversion can first be done for each column

n 1 steps [9] then the Gray-to-binary-code conversion forsubcube concurrently in
n 1 steps followed by the n-step transposeeach row subcube concurrently in another g

algorithm. The two conversions and the transposition commute. The total number of
routing steps is 2n- 2. However, the number of routing steps can be reduced to n, if
the SPT algorithm is used for the transposition by combining it with the conversion
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FIG. 5. Three different algorithms to transpose a matrix from two-dimensional consecutive partitioning to
two-dimensional cyclic partitioning.

operations. Pipelining can be applied. For simplicity, we describe the nonpipelined
n itera-version. As for the SPT algorithm, the combined algorithm is composed of

tions. Each iteration contains two routing steps In iteration i E {0, 1,... n 1},2
bits -i- 1 of the row and column indices are changed by sending data through the
corresponding dimensions. With the rows encoded in binary code and the columns
in Gray code, matrix block (u, v) is stored in processor (ullG(v)) and matrix block
(v, u) is stored in processor (vllG(u)). The direct transpose permutation is defined
by exchanging data between processor (u{Ie(v)) and processor
where G-I( is the inverse Gray code.

During the first iteration, the upper right block (Oxn-xn-3""x II1x-2x-3
xo) and the lower left block (lxn_Xn_3...x.llOx_2x_3 ""Xo) are exchanged in
two steps. Neither row nor column conversions for the two encodings affect iteration
0, because the Gray and binary codes have identical most significant bits. During the
second iteration, the Gray code encoding of the column indices forces a horizontal
exchange within the blocks for the second half of the block rows. The binary code
encoding of the row indices forces a vertical exchange for the second half of the block
columns. The transpose operation requires an antidiagonal exchange within all four
blocks. The combined permutation pattern is shown in Fig. 6.

In general, the Gray code encoding of the columns causes a horizontal exchange
within all the odd block rows with block rows numbered from 0. The binary code
encoding causes a vertical exchange within all ith block columns such that the parity
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column index
conversion

row index
conversion

block
transpose

direct
transpose

FIG. 6. Transpose of a matrix stored by binary code encoding of row index and Gray code encoding of
column index.

of the binary encoding of i is odd. This can be proved from the conversion from binary
code to Gray code proceeding from the most significant bit to the least significant bit
(instead of a "low-order to high-order bit" conversion sequence [9] ). Figure 7 shows
the four iterations with n 8, in which c means clockwise rotation and cc means
counterclockwise rotation. The algorithm is presented below.

/* The second argument of "send" and "recv" represents the cube dimension */
/* and "buf" contains the data to be transposed initially. */
even-block-row :- true;
even-parity-block-column :- true;

n 1 downto 0 doforj := y
n bit j) ofcase (even-block-row, even-parity-block-column, bit j / y,

(TT00), (TTll), (FF01), (FF10)"
recv (tmp, j + ); send (trap, j);

(TT01), (TT10), (FF00), (FFll), (TF01), (TF10), (FT00), (FTll)"
send (buf, j + ); recv (buf, j);

(TF00), (TFll), (FT01), (FT10)"
send (buf, j); recv (buf, j + );

endcase
even-block-row :- (bit j + y
if (bit j 1) then

even-parity-block-column :-- not even-parity-block-column;
endif

endfor

The above algorithm was implemented on the Intel iPSC. The results are shown
in Fig. 13 in 8.2.1, which discusses experiments.

To transpose a matrix stored by binary encoding of row and column indices
into a transposed matrix with row and columns encoded in Gray code, a combined
conversion-transpose algorithm similar to the one above can be applied to accomplish
the task in n routing steps. The algorithm above needs only to be modified such
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FIG. 7. Transpose of a matrix stored by mixed encoding of rows and columns in an 8-cube.

that the column operations are controlled by even-block-columns (instead of even-
parity-block-columns). Similarly, to transpose a matrix with both row and columns
encoded in Gray code into a transposed matrix with rows and columns encoded in
binary code, the control of the row operations is changed from even-block-rows to
even-parity-block-rows.

7. Using matrix transposition for other permutations. For Z , and
Ibl Ial n, matrix transposition is an all-to-all personalized communication.
An arbitrary permutation on an n-cube can be realized by all-to-all personalized
communication twice, if the size of messages to be permuted is the same for all
processors and at least N (per processor) [21], [20]. Since transposing a matrix with
two-dimensional partitioning and nc nr is & permutation, we can also realize it by
performing all-to-all personalized communication twice. However, the communication
complexity is higher than that of the best transpose algorithm for the two-dimensional
partitioning either for one-port communication, or for n-port communication.

The correspondence between cube dimensions for the standard exchange algo-
rithm applied to matrix transposition is f(i) i, g(i) i+, for all i E {0, 1, n_n__2 1 }.
By changing the exchange dimensions such that f(i) i, g(i) n- 1- i, for all
i E {0 1,... n 1} a bit-reversal permutation is realized by the general exchange
algorithm. A bit-reversal permutation is defined by

(Xn--l Xn--2 Xo) +-- (XOXl Xn--1).

DEFINITION 17. Define dimension permutation to be a permutation such
that processor (Xn-lX,-2"" Xo) sends its data to processor (x(,-l)X(n-2)’"X(o)),
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FIG. 8. Realizing dimension permutation by performing log n steps of parallel swapping.

where 5 is a {0, 1,..., n- 1} to {0, 1,..., n- 1} permutation function.
DEFINITION 18. Define parallel swapping to be a dimension permutation such

that the permutation function 5 satisfies 5(5(i)) i, i.e., either 5(i) i or 5(i) j,
5(j) i, i j, for all i E {0, 1,...,n- 1}

LEMMA 7.1. Any dimension permutation can be realized by performing parallel
swapping [log2 n] times (note that n is the number of dimensions).

Proof. First assume n is a power of 2. Arbitrarily partition the set of dimensions
into two same-sized subsets, called $1 and $2, respectively. Let k be the cardinality
of the set {ili e $1,5(i) e $2 }. Clearly, the cardinality of the set {ili e S, 5(i) $1}
is also k. Exchanging the k dimensions in $1 with the corresponding k dimensions in
$2 can be done in one parallel swapping step. After this parallel swapping, there are
two same-sized subsets which only require internal permutation. This permutation
can be performed concurrently for the two subsets. Therefore, log n steps of parallel
swapping suffice to realize the dimension permutation. For arbitrary n, we can add
virtual elements such that the number of dimensions in the address field becomes a
power of 2.

Figure 8 shows an example of permuting eight dimensions by three steps of parallel
swappings. Notice that k shuffle/unshuffle operations (left/right rotation k steps) fall
in the dimension permutation class. There are n! possible dimension permutations
among N! arbitrary permutations.

8. Experiments and implementation issues.
8.1. One-dimensional partitioning. The Intel iPSC effectively allows com-

munication on only one port at a time. Hence, we choose to implement the one-
dimensional transpose using the exchange algorithm. In our implementation we do
not perform local shuffle operations in order to arrange the data to be exchanged into
one block for the sake of reducing the number of start-ups, since the copying time
on the Intel iPSC is significant. Copying 1024 single precision floating-point numbers
(4 kbytes) takes about 37 milliseconds according to our measurements. The local ar-
ray is partitioned into 2 same-sized blocks during step j of the exchange algorithm.
The odd or even blocks can either be sent directly to minimize the copy time, or copied
into a buffer to reduce the number of start-ups. Figure 9 presents the measurements
for unbuffered and buffered communication for rearrangement of consecutive to cyclic
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FIG. 9. Measured times on the Intel iPSC for the transse of a matrix, one-dimensional partitioning (or
for conversion of consecutive to cyclic one-dimensional partitioning), encoded in binary code.

partitioning.
The complexity of the unbuffered communication is easily found to be

T n--tc + N+
PQ PQ2BmN]min{nlg2[BPmQN]) BmN

T,

With buffered communication, messages may initially be larger than the buffer size,
in which case they are sent directly. Small messages are buffered and the time for
communication is

T (min PQ PQ
min fN, PQ(n’lg[BmN1) I 1 +rain(N, P ) ,2BraN BcopyN Bran

[ PQ PQ,BmNl max (O,n -lg [Bc--ypyNl) )
+ n--t + m O, n log

BcopyN tcopy,

where Bcopy is the array size beyond which it is preferable with respect to performance
to send without copying into a buffer. The complexity of the unbuffered communi-
cation grows linearly in the number of processors, i.e., exponentially in the number
of cube dimensions, as shown in Fig. 9. The buffered communication grows linearly
in the number of cube dimensions. For a low growth rate it is important to have a
large buffer, to reduce the number of start-ups, and fast copy. With the times for
copy of floating-point numbers and communication start-ups on the Intel iPSC the
copy of 64 single-precision floating-point numbers (256 bytes) takes approximately
the same time as one communication start-up. Hence, it is beneficial with respect
to performance to send blocks of length at least 64 floating-point numbers without
buffering. Figure 10 shows the improvement in performance with optimum buffering
compared to the unbuffered communication. Note that for sufficiently small cubes (or
large data sets) the time required by the two schemes coincide.
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FIG. 10. The effect of optimum buffering on performance for matrix transpose on the Intel iPSC.

On the iPSC, it is also possible to realize the all-to-all personalized communication
by calling the iPSC router 2(N- 1) times. However, the measured times of this are
always inferior to that of the optimum buffering algorithm. The difference is from a
factor of 5 to two orders of magnitude depending on the matrix size and cube size as
observed in [13].

8.2. Two-dimensional partitioning.
8.2.1. The Intel iPSC. We have implemented algorithm SPT as a step by step

procedure. Pipelining is not possible. Moreover, on the Intel iPSC it is necessary to
rearrange two-dimensional arrays into one-dimensional arrays before sending. Since
the copy time is significant we arrive at an estimate for the time of a two-dimensional

P(transpose of T (P-Ntc / [SmgV)n + 2P--g tcopy. The growth rate is proportional
to the number of matrix elements. There is an exponential decay as well as a linear
increase in the number of cube dimensions. Figure 11 shows measured values for the
copy time, the communication time and the total time for a 2-cube and a 6-cube. As
expected, the copy time for the 6-cube is lower than that for the 2-cube. Also, the
communication time is essentially determined by the number of start-ups, which for
the 6-cube remains the same for PQ <_ 64 kbytes.

Figure 12(a) shows the total transpose time as a function of the number of cube
dimensions and matrix size. For small matrices the number of communication start-
ups dominates and the total time increases with the number of cube dimensions, but
as the matrix size increases the transpose time decreases with increased cube size.

On the Intel iPSC it is also possible to carry out the transpose operation by a
direct send to the final destination. Figure 12(b) gives the times measured for matrix
transpose using the routing logic alone. As the cube size increases the two-dimensional
transpose algorithm yields a significantly better performance than the transpose time
offered by the routing logic.

The time for matrix transposition with simultaneous conversion from Gray code
to binary code conversion is shown in Fig. 13. It is assumed that rows and columns
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FIG. 11. Performance meozurements for a two-dimensional matrix transpose on the Intel iPSC.
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FIG. 12. Measured times for a two-dimensional matrix transpose on the Intel iPSC us/n# the SPT
algorithm without pipelining (a) and using routing logic (b).
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FIG. 13. Measured times of transposing a matrix stored by mixed encoding of rows and columns by the
naive and combined algorithms on the Intel iPSC.

have different encoding schemes. The figure compares the 2n-2 steps naive algorithm
and the n steps combined algorithm.

8.2.2. The Connection Machine. We have also implemented the matrix trans-
pose operation on the Connection Machine. It has a bit-serial, pipelined communica-
tion system. The recursive algorithm does not exploit this feature, but the routing
logic does. Figure 14 shows the transpose time using the routing logic. Each processor
holds one matrix element (32 bits). Figure 15 shows the transpose times for various
number of matrix elements per processor, and for various number of processors. Fig-
ure 16 shows the transpose times for two fixed sized matrices on various sizes of the
Connection Machine.

9. Comparison and conclusion. It is of interest to compare the times for
matrix transpose based on a one-dimensional partitioning and a two-dimensional par-
titioning. We now compare the complexity estimate for the two-dimensional transpose

---tc + BraN
T n+2---tcopy

with that for the one-dimensional transpose

Tld (min(n, log[BPmQN])[2BPm%l+ min (N, BcopyPQN)- min (N, PQBmN /
PQ PQ

+ n--tc + max O, n log
BcopyN tcopy.

We have assumed that one exchange takes the same time as one send or one
receive for one-port communication throughout the paper. With this model, the
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Matrix transpose on the Connection Machine

,t ,,, ,,,I
5 I0 15

Log, (Number of Processors)
One floating-point number (32 bits) per processor

FIG. 14. Matrix transpose on the Connection Machine. One element per processor.

10
Matrix transpose on the Connection Machine

N 16K
N 4K

N=IK
N 25@

,,I
10 20 30

Number of bytes per processor
Number of processors N

0 4O

FIG. 15. Matrix transpose on the Connection Machine. Multiple elements per processor.
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Matrix transpose on the Connection Machine5 ’"i ’i

4

xSK bytes

K bytes

, !,,
0 5 10 15

Logs (Number of processors)
Number of bytes per procesors * number of processors

constant

FIG. 16. Matrix transpose on the Connection Machine as a function of the machine size.

time for data transfers for the one-dimensional transpose is half of that of the two-
dimensional transpose. If copy time is negligible, i.e., the time to copy Bm data is
much less than a start-up time, then the number of start-ups for one-dimensional
transpose is a factor of to 1 of that for the two-dimensional transpose. The factor

-2 applies for 2P--N _> Bin. By considering the copy time, we have two extreme cases.
If - _> Bin, the number of start-ups for the one-dimensional transpose is half of
that for the two-dimensional transpose. If - < Bcopy, it can be shown that the
number of start-ups for the one-dimensional transpose is at most twice that for the
two-dimensional transpose. In general, it can be shown that the number of start-ups

Bmfor the one-dimensional transpose is a factor of 1/2 to 2Bcooy + 1/2 (which is 2.5 for the
Intel iPSC) of that for the two-dimensional transpose.

If the communication is restricted to one send or one receive at a time, the time
for data transfers and the number of start-ups increase by a factor of two for the one-
dimensional transpose. However, the complexity for the two-dimensional transpose
remains the same. Therefore, the complexity of the two-dimensional transpose will
be lower, or the same, as that of the one-dimensional transpose by a factor of 1 to
B" + 1 Figure 17 gives the experimental result on the Intel iPSC.Bcopy

With concurrent communication on multiple ports the transfer time for the two-
dimensional partitioning decreases exponentially in the number of cube dimensions,
but for the optimum packet size the number of start-ups is higher than for the one-
dimensional partitioning. From the complexity estimates (one-dimensional partition-
ing)

Tld PQ
rain 2--tc + nr
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103

Matrix Transpose, 1-dim & 2-dim partitioning

1-dim, 6-cube

4 6 8

Logs P, (matrix P by P)
solid line 1-dim part., dashed line 2-dim part.

plus for 4-cube, circle for 6-cube.

FIG. 17. Comparison of the matrix transpose operation of one- and two-dimensional partitioned matrices
on the Intel iPSC.

and

2d

(n + 1)T + n+l P_gtc2n

n nW6 P___Qtc(- - 3)T -- 2n+8 N

n 2)r n5-4 PQtcY -" -]- 2nq-4 Y

(47+

/PQteif n > V-Nr approximately,

V
/

V
/ n is even,if PQ, tc2NT < n

__
PQtcN approximately and y

if Otr < n tr approximately and g

if n < /Pt
V 2Nr

The optimum packet size is

PQ

Bopt
iPer
Nte

n > /fPQtfor even n and 2Nr

n and n > ,/PQtcfor odd V
for n < ,/PQtc

V 2Nr

n >_ JPQteNr the one-dimensional partitioning always yields a lower com-For
plexity than the two-dimensional partitioning. The difference is about one start-up

PQtc the break even pointtime unless the cube is very small. For V 2Nr < n <_ Nr
(ignoring copy) can be computed to be

r

log2 r

where 1/2 < c < 1 and r pQtcr For n --< iP--2Nr the one-dimensional partitioning
always yields a lower complexity than the two-dimensional partitioning.

In summary, if the copy time is ignored and communication is restricted to one
port at a time, then the one-dimensional partitioning always yields a lower complexity
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than the two-dimensional partitioning. If the copy time is included then the two-
dimensional partitioning yields a lower complexity for a sufficiently large cube. With
concurrent communication on all ports the Spanning Balanced n-Tree (SBnT) routing
can be used for the one-dimensional partitioning, and the copy times for one- and two-
dimensional partitioning should be comparable. The one-dimensional partitioning

/PQtc /PQtcyields a lower complexity for a cube dimension n satisfying n > VN or n < 2Nr

In comparing the Intel iPSC with the Connection Machine we conclude that the
latter performs a transpose about two orders of magnitude faster.

Acknowledgments. The authors express their appreciation for the comments,
made by one of the referees, which helped to improve the presentation of the results
over the original version of this paper.

REFERENCES

[1] J. O. EKLUNDH, A fast computer method for matrix transposing, IEEE Trans. Comput., 21 (1972),
pp. 801-803.

[2] G. C. FOX AND W. FURMANSKI, Optimal communication algorithms on hypercube, Tech. Report,
California Institute of Technology, July 1986.

[3] W. D. HILLIS, The Connection Machine, MIT Press, Cambridge, MA, 1985.
[4] C. HO AND S. L. JOHNSSON, Dimension permutation on Boolean cubes, Tech. Report, Dept. of

Computer Science, Yale Univ., New Haven, CT, to appear.
[5] , Distributed routing algorithms for broadcasting and personalized communication in hypercubes, in

1986 International Conf. on Parallel Processing, IEEE Computer Society, 1986, pp. 640-
648. Tech. Report YALEU/DCS/RR-483, May 1986.

[6] , Spanning balanced trees m Boolean cubes, Tech. Report YALEU/DCS/RR-508, Dept. of
Computer Science, Yale Univ., New Haven, CT, January 1987.

[7] S. L. JOHNSSON, Band matrix systems solvers on ensemble architectures, in Algorithms, Architecture,
and the Future of Scientific Computation, Univ. of Texas Press, Austin, TX, 1985. (Tech.
Report YALEU/DCS/RR-388, Yale Univ., New Haven, CT, May 1985).

[8] , Communication efficient basic linear algebra computations on hypercube architectures, J. Parallel
Distributed Comput., 4 (1987), pp. 133-172. (Tech. Report YALEU/DCS/RR-361, Yale
Univ., New Haven, CT, January 1985).

[9] , Data permutations and basic linear algebra computations on ensemble architectures, Tech. Re-
port YALEU/DCS/RR-367, Dept. of Computer Science, Yale Univ., New Haven, CT,
February 1985.

[10] , Odd-even cyclic reduction on ensemble architectures and the solution tridiagonal systems of equa-
tions, Tech. Report YALE/DCS/RR-339, Dept. of Computer Science, Yale Univ., October
1984.

[11] , Solving narrow banded systems on ensemble architectures, ACM Trans. Math. Software, 11
(1985), pp. 271-288. (Tech. Report YALEU/DCS/RR-418, Yale Univ., New Haven, CT,
November 1984).

[12] , Solving tridiagonal systems on ensemble architectures, SIAM J. Sci. Statist. Comput., 8 (1987),
pp. 354-392. (Tech. Report YALEU/DCS/RR-436, Yale Univ., New Haven, CT, November
1985).

[13] S. L. JOHNSSON AND C. HO, Multiple tridiagonal systems, the alternating direction method, and
Boolean cube configured multiprocessors, Tech. Report YALEU/DCS/RR-532, Dept. of Com-
puter Science, Yale Univ., New Haven, CT, June 1987.

[14] ., Spanning graphs for optimum broadcasting and personalized communication in hypercubes, Tech.
Report YALEU/DCS/RR-500, Dept. of Computer Science, Yale Univ., New Haven, CT,
November 1986. To appear in IEEE Trans. Computers.

[15] O. A. MCBRYAN AND E. F. V. DE VELDE, Hypercube algorithms and implementations, SIAM J.
Sci. Statist. Comput., 8 (1987), pp. s227-s287.

[16] E. M. REINGOLD, J. NIEVERGELT, AND N. DEO, Combinatorial Algorithms, Prentice-Hall,
Englewood Cliffs. NJ, 1977.

[17] Y. SAAD AND M. H. SCHULTZ, Data communication in hypercubes, Tech. Report
YALEU/DCS/RR-428, Dept. of Computer Science, Yale Univ., New Haven, CT, Octo-
ber 1985.



454 S. L. JOHNSSON AND C.-T. HO

[18] , Topological properties of hypercubes, Tech. Report YALEU/DCS/RR-389, Dept. of Com-
puter Science, Yale Univ., New Haven, CT, June 1985.

[19] H. S. STONE, Parallel processing with the perfect shuttle, IEEE Trans. Comput., 20 (1971), pp. 153-
161.

[20] Q. F. STOUT AND B. WAGER, Intensive hypercube communication I: prearranged communication
in link-bound machines, Tech. Report CRL-TR-9-87, Computing Research Lb., Univ. of
Michigan, Ann Arbor, MI, 1987.

[21] , Passing messages in link-bound hypercubes, in Hypercube Multiprocessors 1987, M. T. Heath,
ed., Society for Industrial and Applied Mathematics, Philadelphia, PA, 1987.



SIAM J. MATRIX ANAL. APPL.
Vol. 9, No. 4, October 1988

(C) 1988 Society for Industrial and Applied Mathematics
001

CLASSIFICATIONS OF NONNEGATIVE MATRICES
USING DIAGONAL EQUIVALENCE*

DANIEL HERSHKOWITZ, URIEL G. ROTHBLUM:I:, AND HANS SCHNEIDER

Abstract. This article studies matrices A that are positively diagonally equivalent to matrices that, for
given positive vectors u, v, r, and c, map u into r, and where AT map v into c. The problem is reduced to
scaling a matrix for given row sums and column sums, and applying known results for the latter. Further
classifications that use these results are investigated.

Key words, diagonal equivalence, nonnegative matrices, classification of nonnegative matrices
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1. Introduction. The problem ofexamining matrices that map a given n-dimensional
vector into a given m-dimensional vector underlines many important issues in linear
algebra. For example, the assertion that the row sums and/or the column sums of a
matrix A are given by vectors r and c, respectively, means that A maps e into r and/or
that A T maps e into c, where e denotes the vector of appropriate dimension all ofwhose
coordinates are 1. Also, the statement that a square matrix A has a fight eigenvector u
and a left eigenvector v corresponding to a nonzero eigenvalue ,, means that A/, maps
u into u and that AT/, maps v into V. Another example is the statement that the null
space of a matrix A contains the vector x, which means that A maps x into the zero
vector.

The purpose ofthis paper is to study matrices that are positively diagonally equivalent
to nonnegative matrices A that map u into r, and where AT map v into c for given positive
vectors u, v, r, and c. We show that, in general, the set ofsuch matrices can be represented
as the set of matrices that are positively diagonally equivalent to nonnegative matrices
having prespecified row sums and column sums. We then use a known characterization
of the latter class to obtain a characterization of the former class. We also characterize
matrices in the intersection, as well as in the union of these classes, over all possible
choices of the vectors u, v, r, and c for which these sets are nonempty. We also obtain
a special characterization for the eigenvector problem, where m n, u r, and v c.

2. Notation and definitions.
Notation 2.1. Let tn and n be positive integers. We denote by
(n, the set { 1, 2,..., n};
R +m, the set of all nonnegative rn n matrices;
R?, the set of all positive n column vectors;
en, the n column vector all of whose components are 1.
Notation 2.2. For a set a we denote by al the cardinality of c.
Notation 2.3. Let A be an tn n matrix and let c and be nonempty subsets of

(rn and (n, respectively. We denote by A a [/] the submatrix ofA whose rows and
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columns are indexed by the elements of a and/3, respectively, in their natural order.
Also, we denote by a’ and ’ the sets (n) \a and (n)\, respectively.

Notation 2.4. Let x be an n column vector and let a
_

(n). We denote by x,
the subvector ofx whose coordinates are indexed by the elements of a.

Notation 2.5 Let m and n be positive integers, let u c e R and let v, r e R/o

We denote

Fmn(U v,r c)={AeR=n+o’Au=r, vXA=cr},
Smn(r,c)=Fmn(en,em, r,c).

In the case that m n we denote

En,(u,v)=Fn,(u,v,u,v).

Remark 2.6. Observe that Smn(r, c) is the set of all m n nonnegative matrices
with row sums rl, "", rm and column sums c, ..., Cn. The set Enn(U, I)) consists of
all n n nonnegative matrices with eigenvalue 1, where u and v are the corresponding
fight and left eigenvectors.

Notation 2.7. Let u be a vector. We denote by Uthe diagonal matrix whose diagonal
elements are Ul, , un. Similar relations hold between v, r, c and V, R, C respectively.

DEFINITION 2.8. A diagonal matrix is said to be positive diagonal if it has positive
diagonal elements.

DEFINITION 2.9. Let A and B be m n matrices. We say that A and B are positively
diagonally equivalent if there exists positive diagonal matrices D e R/m and E e R
such that A DBE.

Notation 2.10. Let u,c R and let v, re R g’. We denote the set of all
B R+m such that B is positively diagonally equivalent to some A Fmn(U, v, r, c) by
F*mn(U, 1), r, c). Also, we use the following notation"

S*mn(r,c)F*mn(e,em, r,c).

and in the case that m n

E*n( u, v)=- F*n( U, V, U, V).

Notation 2.11. Let A and B be m n matrices. We denote by A B the Hadamard
product ofA and B, viz., the m n matrix C such that cij aijbij, (m), j (n). In
particular, this notation applies when A and B are vectors. Obviously, the Hadamard
product is commutative.

DEFINITION 2.12. An m n matrix A is said to be chainable if it has no zero row
or column, and if for every pair of nonempty proper subsets a and/ of (m) and (n),
respectively, A a l 0 implies A a’l #’] q: 0.

DEFINITION 2.13. Let m and n be positive integers, let al, "’", ap be nonempty
pairwise disjoint subsets of (m) such that tA,P. a (m), and let , ..., tp be
nonempty pairwise disjoint subsets of (n) such that tA_-/i (n). An m n matrix
A is said to be a (rectangular) direct sum ofA[al[],’", A[aplp] if A[ai[j]
0 for all i, j e (p), q: j.

We comment that every rectangular matrix having no zero row or zero column is
a (rectangular) direct sum of chainable matrices A[ai, i] for some sets a, ap that
partition (m), and for sets ,..., p that partition (n).

3. The classes Fm*n(U, 1), r, c), S*mn(r, c), and En*n(U, v).
LEMMA 3.1. Let A R +m, let u, c Rn+ and let v, r R Then A Fmn u 1), r, c)

ifand only if VAU Smn r v, Co u).
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Proof The statement A Fm,( U, v, r, c) means

(3.2) A Ue, Rem, eXmVA eX, C,
while the statement VAU Sm,(ro v, Co u) means

(3.3) VA Uen VRem, eXmVAU eXCU.
The equivalence of (3.2) and (3.3) is clear. I-1

COROLLARY 3.4. Let u, c R? and let v, r R. IfFmn( U, v, r, c) is nonempty
then vTr cTu.

Proof. The result follows directly from Lemma 3.1 and the corresponding standard
result concerning the transportation problem.

COROLLARY 3.5. Let A Rm"/o, let u, c
F*mn(U, v, r, c) ifand only ifA S*mn(r. 1, Co u).

COROLLARY 3.6. Let A R"o and let u, v Rn+. Then A E*,(u, v) ifand only
ifA S*m,( U v, u v).

The following theorem is proved in [3 as Theorems 3.9 and 4.1. We state it here
in a slightly different way.

THEOREM 3.7. Let A R have no zero row or zero column let c R and let+0

r R. Then we have thefollowing:
(i) When A is chainable, then A S’ran(r, c) ifand only iffor every pair ofnon-

empty proper subsets and 3 of m and n we have

A[clC)]=O and A[c’lfl’]4:O=:, ri< , ci.

In this case, there exist unique (up to scalar multiplication) positive diagonal matrices
D and E such that DAE Sm,(r, c).

(ii) A S*n(r, c) ifand only ifA is a direct sum ofchainable matrices A ai l[3i],
1, ,p, such that

A[oti]i]Sl*aillOil(rai, coi), ir(p).

(iii) IfA S*mn( r, c) then there exists a unique matrix in Sm,(r, c) which is positively
diagonally equivalent to A.

Remark 3.8. Statement (iii) in Theorem 3.7 follows immediately from statement
(ii). Observe that in statement (iii) we do not assert uniqueness of the positive diagonal
matrices D and E such that DAE Smn(r, c), but the uniqueness of the matrix DAE.

We now use our results in order to generalize Theorem 3.7. The following result
also generalizes Theorem 3.10 of and Theorem 3.2 of 2 ].

THEOREM 3.9. Let A R+ have no zero row or zero column, let u, c R, and
let v, r R. Then we have thefollowing"

(i) When A is chainable then A F*m,( U, v, r, c) ifand only iffor every pair of
nonempty proper subsets and fl of(m) and (n) we have

A[clfl]=0 and A[c’lfl’]q:0vr<c,ue,.

In this case, there exist unique (up to scalar multiplication) positive diagonal matrices
D and E such that DAE Fm(U, v, r, c).

(ii) A F*mn(U, I), r, c) if and only ifA is a direct sum of chainable matrices
A [o/i 1i], 1, p, such that

A[oili] *Fl,ll,l(u,,v,,r,,c,), i(p).
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(iii) lfA F*m,( u, v, r, c) then there exists a unique matrix in Fm,( u, v, r, c) which
is positively diagonally equivalent to A.

Proof The assertion follows directly from Corollary 3.5 and Theorem 3.7.
In view of Corollary 3.4, statements (i) and (ii) of Theorem 3.9 can be combined

and restated as Theorem 3.10.
THEOREM 3.10. Let A R’"+o, have no zero row or zero column, let u, c R, and

let v, r R"g. Then A F*n( U, v, r, ) ifand only iffor every pair ofnonempty proper
subsets a and of(rn) and (n), respectively, we have

A[cl/3] =0 and A[a’l/3’]#0vXr,<c’,ue,,
TA[a[/3]=0 and A[al/3’]=Ovr,=ca,ue,.

4. The classes f’)F*., toF*., f)S*., USm*., fqE.*., and UE.
Notation 4.1. Let m and n be positive integers. We denote the following:

THEOREM 4.2. Let A Rm"+o. Then we have thefollowing:
(i) A - NF*mn ifand only ifA has no zero entries.
(ii) A toF*mn\f’)F*mn if and only ifA has at least one zero entry but there is no

zero row or zero column in A.
(iii) A tO F*mn ifand only ifA has at least one zero row or zero column.
Proof (i) Let A R+. If A has no zero entries then Theorem 3.10 immediately

implies that A f’)F*mn. Conversely, we show that if aij 0 for some (m) and j
(n), then A f’)F*mn. We choose u, c e R with ujcj and uTc 1, and v, r e R
with viri and vTr 1. Then for a { i} and/3 { j } we have that

I)T T,r ] > uTc-- ujcj ut,ct,.

Since A[a]/3] 0 it now follows from Theorem 3.10 thatA t F*m,(U, v, r, c).
(ii) Let A toF*m,\ f)F*m,. By (i), A has at least one zero entry. Since A belongs

to some F*m,(U, v, r, c), where u, v, r, c are strictly positive vectors, it follows that A has
neither a zero row nor a zero column. Conversely, ifA has a zero entry but no zero row
or zero column, then by (i), A fqF*m,. Moreover, A Fm,(en, em, r, c), where r and c
are, respectively, the strictly positive vectors of row sums and column sums ofA.

(iii) This equivalence follows directly from (i) and (ii).
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The next theorem shows that the classifications with respect to S*mn and F*mn
coincide.

THEOREM 4.3. We have fqS*mn fqF*m and tAS*m tAF*m.
Proof. Trivially, fqF*m fqS*mn and t-JS*mn

_
tAF*m. The reverse inclusions follow

immediately from Corollary 3.5.
Recall that a square matrix is said to be completely reducible iffor some permutation

matrix P, the matrix PAPT is a direct sum of irreducible matrices.
THEOREM 4.4. Let A R"o. Then we have thefollowing:
(i) A fqE*n ifand only ifA is completely reducible and the diagonal elements

ofA are positive.
(ii) A UE*nn\f3E*nn ifand only ifA is completely reducible, aii O for some

( n, and A has no zero row or zero column.
(iii) A t.J E*n ifand only if either A is not completely reducible or A has a zero

row or zero column.
Proof Since the conditions in (i)-(iii) are mutually exclusive and collec-

tively exhaustive, it is enough to prove the "if" part in each of the three assertions.
(i) Suppose that A is completely reducible with positive diagonal elements. Let

u, v R and let a and be nonempty proper subsets of (n. Suppose that

(4.5) A[a[] =0.

Also, suppose that

(4.6) A[a’[’] =0.

Since A has positive diagonal elements it follows from (4.5) that a f3 , i.e., a
_

’. We claim that a is a proper subset of ’. Suppose to the contrary that a ’. Then
(4.5) and (4.6) imply that A[’I] 0 and A[I’] =/= 0, contradicting the assumption
that A is completely reducible. Thus, 3’ a tA is a proper subset of (n) and, since
a f3 , we have

(4.7) vXu+vu=v"rU-r < I)Tu,

implying that

(4.8) vT Uo <VU VU V,U,.
Now suppose that (4.5) holds and that

(4.9) A [a’[/’] =0.

As before, (4.5) implies that a
_

B’. Similarly, (4.9) implies that a’
_

B, i.e.,/’
_

a. So,
a B’, and hence vu, v,ua,. It now follows from Theorem 3.10 that

A F*m,(U, v, u, v) E*,(u, v).

(ii) Suppose that A is completely reducible, that aii 0 for some (n), and that
A has no zero row or zero column. We choose u, v R with viui - and vXu 1.
Then for a fl { i} we have

l) Ta U > I)T U l) U I) T U
Therefore, by Theorem 3.10 and Notation 2.10 we have A g E*(u, v). We now have
to show that A tAE*n. Since A is completely reducible, it follows that A is a direct sum
of irreducible matrices. Furthermore, since A has no zero row or zero column, each of
these irreducible matrices is nonzero and thus has a positive spectral radius. It now
follows that we can find a matrix B which is positively diagonally equivalent to A, where
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B is a direct sum of irreducible matrices with spectral radii 1. By the Perron-Frobenius
theory for nonnegative matrices it follows that for some u, v e R we have Bu u and
I)T I)TB, i.e., B Enn(U, I)). Hence A E*n(u, v) UE*n.

(iii) In the case that A has a zero row or zero column the assertion is clear. Suppose
that A is not completely reducible. Then there exist nonempty subsets a and B of (n>
with a ’, such that A[IN] 0 and A[a’l’] # 0. Since a B’, for every u, v e
R we have vTU V,Uo,. By Theorem 3.10 it now follows that A E*(u,v). []

Our final observation shows that the requirement u v in E*n(U, v) or r c in
S*m(r, c) does not yield new classifications. Specifically, let

f’)E* 0 E*nn( U, u),
uR

THEOREM 4.10. We have

t.JE* .J E*n( U, u),
uR

fqS* f") S*n( r, r),
r-R.

t.JS* .J S*,( r, r).
rR.

f)S* NE* fqE*n,

US*n =UE* =t3E*n.

Proof For u Rg, let uI/2 be the vector in Rg with (ul/2))i (ui) /2, 1,.., n. Then Corollary 3.6 shows that S*n(U, u) E*,(u /2), ul/2)), implying that
fqE*

_
S* and t_JS* t.JE*. Next, the inclusions fqE*n

_
fqE* and t.JE*

_
t_JE*,

are immediate, and the inclusions fqS*
_

fqE*n and t.JE*,
_

t_JS* follow directly from
Corollary 3.6. Thus, the conclusions of our theorem have been established. E]
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LINEAR PRESERVERS OF THE CLASS OF HERMITIAN MATRICES
WITH BALANCED INERTIA*

STEPHEN PIERCE" AND LEIBA RODMAN

Abstract. Let H(n) be the n2-dimensional real vector space of Hermitian matrices. Assume n is even and
greater than or equal to 4. Let Tbe an invertible linear transformation on H(n) that maps the class ofinvertible,
balanced inertia (signature zero) Hermitian matrices into itself. Then for some real number c 4 0, and an
invertible matrix S, T(A) cS*AS or T(A) cS*A rS, for all A e H(n). T is also classified in the case where
n=2.
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1. Introduction. Let H(n) be the set of all n n Hermitian matrices considered as
a vector space of dimension n2 over the real numbers R. For nonnegative integers r, s,
such that r + s + n, we let (r, s, t) represent the inertia class of all A in H(n) such

that A has r positive, s negative, and zero eigenvalues.
We are particularly interested in the nonsingular balanced inertia class (k, k, 0) (so

that n 2k is necessarily even). Suppose T is an invertible linear transformation mapping
the class (k, k, 0) into itself. The purpose of this paper is to classify all such T.

In previous related work [HR], [JP1], [JP2 ], the authors classified all invertible
linear transformations T mapping the inertia class (r, s, t) into itself with the following
exceptions: (i) the positive definite and negative definite inertia classes (n, 0, 0) and
(0, n, 0); (ii) the nonsingular balanced inertia class (k, k, 0) with n 2k. In some cases,
the assumption of invertibility of T could be removed without disturbing the result. We
suspect this is always the case for nonsingular indefinite inertia classes when n >-_ 2. The
problem is significantly more complicated for the definite inertia classes. For a discussion
of results in this area see, for example, [C].

The following theorem is the main result of this paper. We assume n 2k.
THEOREM 1.1. Let T be an invertible linear transformation on H(n ), where n >= 4,

and assume that T( k, k, O) c k, k, 0). Then T is one ofthefollowingfour types (here
S stands for afixed invertible n n matrix)" (1) T(A) S’AS; (2) T(A) -S’AS;
(3) T(A)= S*ArS; (4) T(A)= -S*ArS.

Note that Theorem 1.1 fails for n 2. Indeed, for a fixed a C, let T be the linear
transformation on H(2) that multiplies a2 by a and a2 by . It is easy to see that if
a] > 1, then T is invertible and preserves the inertia class (1, 1, 0), but is not one of

the four forms satisfying Theorem 1.1.
As a byproduct we also obtain a characterization of the invertible linear transfor-

mations on H(n) that preserve the set ofmatrices with a k-dimensional isotropic subspace.
THEOREM 1.2. Let T: H(n -- H(n be an invertible linear transformation, where

n is even and greater than or equal to 4. Suppose that, for any A H(n) such that there
is a k-dimensional subspace V C with x*Ay O for all x, y V, the matrix T(A)
also enjoys this property (as before, k n/2 ). Then T is one ofthefour types described
in Theorem 1.1.
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Indeed, the class of A H(n) such that x*Ay 0 for all x, y V, for some k-
dimensional subspace Vc Cn, coincides with the closure (k, k, 0) of (k, k, 0). It is easy
to see (arguing by contradiction) that T( k, k, 0) c (k, k, 0) implies T(k, k, O) c
(k, k, 0). Indeed, assume A a_ T(k, k, 0), where the invertible linear transformation T
maps k, k, 0) into itself. Then A belongs to k, k, 0). On the other hand, (k, k, 0) is
an open set and T is an open map. Thus A belongs to the open set T(k, k, 0), which is
contained in (k, k, 0). As the interior of (k, k, 0) coincides with (k, k, 0), the matrix
A actually belongs to (k, k, 0). Now use Theorem 1.1.

The methods of this work are almost completely independent of [HR], [JP 1], and
JP2 ], although we do rely on one particular lemma in [JP2 ]. We depend heavily on
an examination of the Grassmannian G(n) consisting of the subspaces of Cn.

In the case where n 2, we have an entirely different problem. The conclusion of
Theorem 1.1 is no longer true as noted above. To state Theorem 1.3, we first define for
r, s e R, a linear map Dr, on H(2) by

u- iv b ru- sir b

As long as r[ and Is[ are greater than or equal to 1, Dr, preserves K(2), the set of
indefinite 2 2 Hermitian matrices. If r s, we will just write Dr.

Finally we note that the linear preservers ofK(2) preserve the negative cone of the
quadratic form ab u2 v2 obtained from the Hermitian matrix given above in the
definition of Dr,s. This quadratic form has signature (1, 3, 0), precisely as in the form
appearing in special relativity theory.

THEOREM 1.3. Let T be an invertible linear map on H( 2 ), which maps K(2 into
itself. Then T is a product of maps of the type given in Theorem 1.1 and maps of the
form Dr, with lr[, sl >-- 1.

2. The Grassmannian. in this section, we note some properties ofthe Grassmannian
G(n) consisting of all subspaces of Cn. We endow Cn with the standard inner product
(,) and the corresponding norm xll xl = / / Xn .

For V and Win G(n), we introduce the gap

o(v, w) P-Pwll,

where Pv is the orthogonal projector on Vand 11.11 is the operator norm, i.e., 11A is the
maximum singular value ofA. Now the gap 0 satisfies all the properties of a metric, thus
turning G(n) into a metric space.

PROPOSITION 2.1. With the metric O, G(n) is a compact (and hence complete)
metric space. Moreover, G(n) has precisely n + connected components, each con-
nected component being the set Gk(n) of all subspaces in Cn of a fixed dimension k,
O<=k<=n.

PROPOSITION 2.2. Let Vm G( n), m 1, 2, ..., and assume that

limmoO(V, Vm)=0

for some V G(n). Then V consists ofprecisely those vectors x Cn for which there is
a sequence { Xm }, m 1, 2, where Xm C" and limm- Xm X and Xm Vm for
m 1,2,-".

These two propositions are well known and appear in, e.g., [GLR or [GLR2].

3. Inertia classes. Recall that we are interested in the balanced inertia class
(k, k, 0), with n 2k, k > 1. First we note that the closure of (k, k, 0), (k, k, 0) is the
union ofall inertia classes with positive and negative inertia not exceeding k. Alternatively,
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A e (k, k, 0) if and only if there is a k-dimensional A-isotropic subspace, i.e., a subspace
Vc Cn such that (Ax, y 0 for all x, y e V.

PROPOSITION 3.1. Let A, B k, k, 0), with A invertible. Then A and B have a
common isotropic k-dimensional subspace ifand only if

(3.1) XA+#Be(k,k,O)

for all , # R.
Proof. The result is obvious if A and B have a common k-dimensional isotropic

subspace. Thus suppose (3.1) holds. Without loss of generality, we assume that the pair
A, B is in the canonical pair form with respect to simultaneous congruence (see [HJ] or
[T]). Briefly, denote by Jp(o/) the p p Jordan block with eigenvalue O/. Then A and B
are simultaneously direct sums ofequal-sized blocks ofthe form +-Pr and PrK, respectively,
where Pr is the r r permutation matrix satisfying Pu if + j r + 1; Pu 0
otherwise, and K is either Jr(a) for some real O/or Jr/2(a) (R) Jr/2(&) for some nonreal
O/. It is easy to see that, in the cases when K Jr(o with real O/and even r or K
Jr/2 (R) Jr/z(g) with nonreal O/, the matrices +-Pr and PrKhave a common r/2-dimensional
isotropic subspace. Thus we need only consider the cases when K Jr(o with real O/

and odd r. As A e (k, k, 0), it follows that the number of blocks Pr in A with odd r is
equal to the number of blocks Pr with odd r. This observation allows us to reduce the
consideration to the case when

r, (R) (R)’r,(R) (--’,)(R) (R) (--.P,,),
(:}.2)

where rl, "", rq, $1, Sq are odd and O/1, O/q,/1, /q are real (without loss
of generality assume O/1 <= <- O/q; {31 >= >- q). As we can easily see, condition
(3.1) for A and B given by (3.2) is equivalent to the fact that the number of positive
numbers in the list { k + O/1, ,,k + O/q,,-k +/31, -k +/3q} is precisely q for
every real k different from the -o/j s and/3 s. This can happen only if O/ -/3j for j
1, q. (Indeed, letting k -o/ + e with small e > 0 and k =/31 e with small e >
0, we conclude that O/1 +/31 0. Now apply induction on q.) Now the existence of a
common isotropic k-dimensional subspace for A and B is evident (assuming q for
the simplicity of notation. Letting r rl, s sl, we see that one such subspace is spanned
by the vectors el, "", e(r-1)/2, er+l, er+(s-l)/2, e(r+l)/2 + er+(s+l)/2, where ej is
the jth standard vector). []

For related results, see JR ], RU], or RR].
Now let T: H(n) -- H(n) be an invertible linear transformation such that T maps

(k, k, 0) into (k, k, 0). Then clearly T(k,k,O) (k,k,O).
PROPOSITION 3.2. Let A k, k, 0), B k, k, 0), and assume that A and B have

a common isotropic k-dimensional subspace. Then the same is true of T(A and T(B).
Proof By Proposition 3.1, hA + #Be(k,k,O) for all real X, #. Thus,

XT(A + #T(B) T( )tA + #B) (k, k, 0), and the proposition follows from Proposi-
tion 3.1.

For a given A (k,k, 0), let Z (A) c Gk(n) be the set of all k-dimensional A-
isotropic subspaces. Proposition 2.2 shows that Z(A) is closed in Gk(n).

For a given A (k, k, 0), let

D(A) { B6(k,k,O) IZ(A)nZ(B)4 }.
PROPOSITION 3.3. If T is as above, then T(D(A)) c D(T(A)).
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Proof Assume first that A e (k, k, 0). Let B D(A). By Proposition 3.2, T(B)
D(T(A)), and we are done. Next, suppose that A (k,k,O) is singular. Let B D(A)
and let Vbe a common isotropic k-dimensional subspace for A and B. Find a sequence
Am (k, k, O) such that V Z(Am) for all m and Am "- A as m - .For example, we may assume that

0 AI AmA=
A ’ A2 A "m A2m

where Alm, A2m are k k with invertible Alm and limm- Aim Ai, 1, 2.
Obviously, B D(Am) for all m. By the part of the proposition already proved,

T(B) D(T(Am)) for all m. Thus there is a common k-dimensional isotropic sub-
space Vm for T(B) and T(Am). By Proposition 2.1, choose a converging subsequence
Vmp-- V for some V. As T(Am)" T(A), Proposition 2.2 shows that V is iso-
tropic for T(B) and T(A). Since dim Vmp k, we also have dim V= k. Hence
T(B) D(T(A)). 1--1

4. More about the Grassmannian. With 2k n, consider the set Gk(n) of all k-
dimensional subspaces ofCn, topologized by the gap metric. We introduce the standard
structure of a real analytic manifold on Gk(n).

Let a be a selection of k indices a < < a from { 1, n }. Let V, be a subset
(chart) of G(n) defined as follows: V V, if and only if V is the column space of some
n k complex matrix Xv whose k rows with indices a form the k k identity matrix.
Note that Xv is uniquely defined by V. The set V, is open and dense in G(n). Define
the map

f,: V,-R2k2

by the property that f,(V) is the k k matrix formed by the rows ofXv other than the
rows a. Clearlyf is bijective and maps V homeomorphically onto R2k2. Observe that,
for any two selections a and/3, the setf( V, N Ve) is open in R2k; in fact, the complement
off(V, C) Va) is a real algebraic set. Also observe that the map

(4.1) fof"f(V Vo)--Rk

is real analytic in the 2k2 real variables representing a point in R2k. Note that Gk(n) is
the union of V for all selections a.

A set S Gk(n) will be called an analytic set if the following holds: For every V 6

Gk(n) and a chart V such that V 6 V, there exist an open neighborhood W off,(V)
and a real analytic function g: W-- R such that

X_ f-1(W)f"lS
if and only if g(f(X)) 0. Since (4.1) is real analytic this definition does not depend
on the choice ofthe chart V,. Clearly, an analytic set is closed (in the gap metric). Finite
intersections and unions of analytic sets are again analytic.

PROPOSITION 4.1. Let A k, k, 0). Then Z A is an analytic set.
Proof As Z (A) is a closed set in the gap metric, we must check the property that

appears in the definition of an analytic set only for V e Z(A). Let V, be a chart such
that V e V, and for notational simplicity suppose that a (1, ..., k). Then V is the
range (i.e., the column space) of
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for some k k matrix X0. Write

A= [A,l A2]A2 A22
then the range of I X] r Z (A) if and only if the Hermitian form

(4.2) [I X*]A[x/]=0.
Write the (p, q) entry ofX as xpu + iypq, p, q 1, k. Then the system of equations
(4.2) can be expressed in the form

gs(Xpq,ypq)=O, S 1, ,S0,

where gs(Xpq, ypq) is a polynomial whose coefficients are real polynomials in the entries
ofA. Now set

g Xpq ypq gs Xpq ypq 2

s=l

to satisfy the definition of an analytic set.
A continuous map T: Gk(n) Gk(n) will be called analytic if for any two charts

V, Ve the map

fTf2: f.(X)R
is analytic, where X { V V, ITV e Ve }. (The continuity of T ensures that X, and
hence f(X), are open sets; thus the analyticity of the map fTfS defined on f,(X)
makes sense.)

PROPOSITION 4.2. Let T be an n n invertible matrix. Then the map 7: Gk( n --Gk(n) defined by (V) { Txlx V} is analytic.
Analogously (using the charts) we define the analyticity ofa map T: U -- Rp, where

U is an open set in Gk(n), and of a map T: R -- Gk(n) (in all these cases continuity
of T is a prerequisite for analyticity).

A closed set S c Gg(n) is called a real analytic manifold if for every V e S and a
chart V, such that V e V there is an open neighborhood //of U such that //c V, and
real analytic functions gl, "’", g22 on f,(//) exist with the following properties:

det[Ogi(t)]
2k2

4:0, t=(t, tzk)ef(),
Otj ai,j

f(S)= { tef() g+ (t) gzk:(t)=O },

wherep is some integer. It easily follows that the numberp does not depend on the choice
of gl, gzg (subject to the properties mentioned above) and that p is constant for
every Vbelonging to a fixed connected component of S. The maximum ofthe numbers
p will be called the dimension of S.

It is a standard fact (see, e.g., [GN] or [W]) that any analytic set S can be represented
as the union of a finite number of real analytic manifolds. The maximal dimension of
these analytic manifolds will be called the dimension of S.

Let S Gk( n ). Define

I’ (S) {A H(n) there is a subspace VS which is A-isotropic
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The set F(S) can be alternatively described as follows. Consider H(n) Gk(n),
which is a real analytic manifold, and the set U of all pairs (A, V) Mn Gk(n) such
that V S and V is A-isotropic. It is easy to see that U is an analytic manifold; then I’ (S)
is the projection of U to the first component.

We can show that F(S) is a semianalytic set (see, e.g., [L]). That is, locally F(S)
is given as the set of solutions of a system of inequalities fl (A) >_- 0,... fs(A) >-- 0,
where thef(A) are real analytic functions of the entries ofA Hn. As any semianalytic
set is locally the union of a finite number of real analytic manifolds, we can define the
dimension of F(S) as the maximal dimension of a real analytic manifold contained
in F(S).

THEOREM 4.3. If S1, $2 c Gk(n) are analytic sets and dim SI < dim $2, then
dim I’(S1) < dim F(S2).

Proof Let V S, V2 $2, where V2 is such that the dimension of $2 coincides
with the dimension of $2 in a neighborhood of V2. It is sufficient to prove that the
dimension of F(W2 fq $2) is bigger than the dimension of I’(WIN S ), where W and
W_ are small neighborhoods of VI and V2, respectively. We can assume also that $1 and
$2 are analytic manifolds. This follows from the fact that any analytic set in Gk(n) is a
finite union of analytic manifolds. Applying an invertible linear transformation on C"
which maps V1 onto V2, we can assume that VI V2 V, and set W WE W.
Without loss of generality, assume that V is the column space of [Ik A0 T, where A0 is
k k invertible. Thus

{ [’]S= range
X(t)

{ [’]$2= range
Y(s)

X(t) depends analytically on a parameter in

where U (22 R ql is an open neighborhood of zero

Y(s) depends analytically on a parameter s in U2,

where U2 cRq2 is an open neighborhood of zero }.
Also X(0) A0; Y(0) A0; q < q2 and there are anal.ytic functionsfl X(U) --U, f2: Y(U2) - U2 such that fl (X(t)) for all t e U, and fz Y(s)) s for all s e

U2. We may assume that

UI {(Xl, ,xql, ,o)T-Rq2l--e<Xi<e},

Vz {(x,
and e > 0 is suitably small, so that UI U2. Since A0 is assumed to be invertible, we can
assume that Y(s) is invertible for all s e U2, and X(t) is invertible for all U.

Applying to S the invertible linear transformation (which is a real analytic function
oft U)

[, 0 ]0 y(t)X(t_)
teU,

we can assume that actually X(t) Y(t) for all t U. (This follows from the equality
F(X(S)) {X*AXIA I’(S)}, where Xis invertible.)

Let H(k) be the vector space of all k k Hermitian matrices, and let F(k) be the
vector space (over R) of all pairs of matrices (Z, Z2), where Z1 is k k Hermitian,
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and Z2 is any complex k k matrix. For any Y(s), s e U2, let Y(s) be the linear
transformation from F(k) to H(k) defined by

(s)(Z, Z2)=-Y(s)*Z Y(s)- Y(s)*Z-ZY(s)

Observe that

I

can be identified with the graph of the linear transformation Y(s)"

(4.3) I’ range
Y(s)

{(Z, I?(s)Z)IZf(k)}.

In this identification,

A=[A A12]A2 A22

from the left-hand side of (4.3) is identified with {(A22, AI2), A } on the fight-hand
side of (4.3).

Define the transformation

P: U2 -; L(F(k),H(k)),

where L(F(k), H(k)) stands for the set of all linear transformations from F(k) to H(k)
as follows:

F(s) (s), s- U2.
Then obviously F is real analytic. According to (4.3), the theorem will be proved if we
can show that j0 has a real analytic inverse/-1. (U3) - U3 for some neighborhood U3
of zero in R q2. By the implicit function theorem, it is sufficient to verify that

0P
j=l-." q2

s=0

are linearly independent (here x, Xq2 are the coordinates ofs Rq-). Computation
shows that

OF
(Z,Z2)=

OY(O)
ZY(O)+ Y(O)*Z

OY(O)+Z,+Z2
o Ox Ox Ox Ox

So, if some linear combination of

is zero, say

then, denoting

=0, ojR,

q2

U=a
j=l

OY(O)
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we have

U*(ZY(O)+ Z)+(Y(O)*Z + Z:) U= 0

for all Z and Z2. Choosing Z and Z2 so that ZY(O) + Z I, and choosing Z and
Z2 again so that Z Y(O) + Z ’ iI, we obtain U O. As 0Y(O)/dxj are linearly
independent,

COROLLARY 4.4. Let T: H(n) - H(n be a linear invertible transformation such
that T( k, k, O c k, k, O ). Then for every A e k, k, O we have

dim Z T(A >= dim Z(A).

Proof Suppose not; then dim Z (A) > dim Z (T(A)) for some A e (k, k, 0). By
Theorem 4.3 we have dim D(A) > dim D(T(A)). But dim D(A) dim D(T(A)), since
an invertible linear transformation preserves the dimension of semianalytic sets. Thus
dim D(A) > dim D(T(A)) contradicts Proposition 3.3. /--1

5. Deductions from Corollary 4.4. To make use ofCorollary 4.4 we need to compute
dim Z (A) for certain Hermitian matrices A.

LEMMA 5.1. IfA is an n n rank Hermitian matrix, then the dimension ofZ A
is 2k: 2k, where, as usual, 2k n.

Proof It is easily seen that V Z (A) if and only if dim V k and V c ker (A).
Thus Z (A) can be identified with the set of all k-dimensional subspaces in a (2k 1)-
dimensional complex space. The real dimension ofthis set is 2k(k 1) 2k2 2k. E3

Recall that we always count real dimension.
THEOREM 5.2. Let k >= 2 andA (1, 1, n 2). Then dim Z(A) 2k: 2k + 1.
Proof. Without loss of generality we may assume that A is diagonal with precisely

one l, precisely one -l, and n 2 zeros on the main diagonal. We shall consider only
the chart U,o, where c0 (1, k). Then Z(A) N U, can be identified with the
solutions X of the following equation:

[I Y*l(-Al ()A2)[] =0,

where all the matrices in (5.1) have been partitioned into k k blocks, A1 Ipl
-Iql Or, A: Ip2 q) -Iq2 @ 0r_, Pj + qj + rj n, j 1, 2, and P2 + ql P + q2 1.
Rewrite (5.1) in the form

(5.2) X*AEX=A
and observe that the necessary condition for solvability of (5.2) is that P2 >-- P and q2 >-
q2. Three cases can occur:

(5.3)

(1) P2 q2 1, p ql 0,
(2) p2=p 1, q q2=0,
(3) p2=p =0, q q2 1.
Consider case (1). Equation (5.1) takes the form

X* diag (1,-1,0, ,0)X=0.

Write X [x,a], a,/3 1, ..., k and set

-" [ xllx21 X12]
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Let XI (x13, Xlk) and X2 (x23, X2k). Then (5.3) amounts to solving si-
multaneously the following equations:

(5.4) * diag (1,- 1))= 0,

(.5, ,( x]-X2
--0,

(5.6) X {X XX2.
First we shall count the dimension of the set of solutions X to (5.4). Clearly (5.4) is
equivalent to

x 12= x2 12, Ix212= Ix== =,
.11XI2 .21X22 "-0.

First assume that x14=0. Then x2 =eUx22, cz(l{, and Xl2--X21Xl2/Xll-"
e-’x22. Thus

e-ax22 ]
is given by five real parameters XII X22 O/(Xll andx being arbitrary complex numbers).
Observe that

(5.7) ker* span
ei

A similar argument shows that when x22 q: 0, is given by five real parameters and
ker X* has the form (5.7). Finally, ifX q: 0, at least either Xll q: 0 or x22 q: 0. In view
of (5.7), the solution [X X2] r of (5.5) (where is considered as given) is given by
2(k 2) parameters in X1; then

(5.8) X2= eiaXl.
If (5.8) holds, then (5.6) is satisfied automatically. The total number of parameters to
describe the solution X of (5.3) is

5+2(k-2)+2(k-2)k=2k2-2k+

(the term 2 (k 2)k in the left-hand side describes the parameters in xij, >= 3, -< j =<
k, which are absolutely free).

Consider case (2). (Case (3) is obtained from case (2) by replacing A with -A and
will not be discussed. Then

(5.9) X * diag 1,0, ..., 0)S diag 1,0, ..., 0).

Write

Xll X12 ]x= x xJ’
where Xl is and X22 is (k 1) (k 1). Then (5.9) is equivalent to

Xll[ 2 1, X 2X12 0, .el iX12 0.

Thus X2 0, and the solutions X of (5.9) are described by one real parameter of
X and 2k(k 1) real parameters of X2 and X22. The total number of parameters is
2k(k- 1)+ 1= 2k(k- 1).
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THEOREM 5.3. Let A (k 1, k 1, 2). Then dim Z (A) >_- k2 + 1.
Proof. Let J be the k k matrix Ik- (R) O. Without loss of generality, we may

assume that A J ) -J. It is sufficient to prove that the set of solutions X of

(5.10) [I X*]
0

has dimension k2 d- 1. Write

X12]Y:x21 X22

whereX is (k 1) (k 1) and Xzz is 1. It is easily seen that (5.10) holds if and
only ifX is unitary and X2 0. Since the set of (k (k 1) unitary matrices is
(k 1) 2-dimensional, the total dimension of the set of solutions of (5.10) is (k 1) 2 +
2k k2 q- (the 2k dimensions appear because X21 and X22 are arbitrary). [2]

THEOREM 5.4. IfA e (k, k, 0), then dim Z(A) k2.
Proof. We can assume that A is a diagonal matrix with k ’s and k ’s on the

main diagonal. It suffices to consider the intersection of Z (A) with one chart in the
Grassmannian, say with the chart U,, where c (l, k). In other words, we must
compute the dimension of the set of solutions X of

(5.11) [I X*][ Jl0 j20][] =0’

where A J1 ) J2, and Jl and J2 are k k diagonal matrices with ’s and -1 ’s on the
main diagonal. Equation 5.1 l) is equivalent to

(5.12) X*J2X= -J.
Thus -J and J2 are congruent, and we may assume that J -J2. Now X satisfies
(5.12) if and only if X is an element of the J2-unitary group. The (real) dimension of
this group is k2 (see, e.g., X.2 in [H]), and we are done. E]

COROLLARY 5.5. Let T: H(n - H(n be an invertible linear transformation such
T( k, k, O) c k, k, 0). IrA k- l, k- l, 2), then T(A is singular.

Proof Since the set of singular Hermitian matrices is closed, it is sufficient to assume
that A e (k 1, k 1, 2). Now dim Z(A) >_- k2 + by Theorem 5.3, and by Corollary
4.4 we have dim Z(T(A)) >_- k2 + 1. In view of Theorem 5.4, the matrix T(A) must be
singular, if]

THEOREM 5.6. Let T: H( n) -- H( n) be an invertible linear transformation such
that T( k, k, O) k, k, 0), where k >-_ 2. Then

(5.13) T(1, 1,n-2)(1, 1,n-2).

Proof Arguing by contradiction, we assume that T(A) is not in (1, l, n 2) for
some A (1, l, n 2). We cannot have rank T(A)) because of Lemma 5.1 and
Theorem 5.2. Thus we may assume (replacing A by -A if necessary) that T(A) has at
least two positive eigenvalues. Since A belongs to (k l, k 2, 2), by Corollary 5.5 the
matrix T(A) is singular. Using Lemma 3 in JP2 ], we choose a rank Hermitian matrix
B such that

i+(T(A+B))>i+(T(A)), i_(T(A+B))>-i_(T(A)),

where i+ and i_, respectively, represent the number of positive and negative eigenvalues.
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There are two possibilities:
(i) n 4(k 2 ). Clearly A + B e (2, 2, 0), but i+ T(A + B)) >= 3. This contradicts

the assumption that T(2, 2, 0) c (2, 2, 0).
(ii) n >- 6. Then A + B e (k- 1, k- 1,2). Again, from Corollary 5.5, it follows that

T(A + B) is singular and i/ (T(A + B)) -> 3. Replacing A + B with A, we repeat our
procedure, obtaining a contradiction if n 6 and iterating again if n >- 8. Eventually, of
course, we will obtain a contradiction. U]

It follows that T preserves the class (1, 1, k- 2). It then follows from the main
result in JP2 that T has the required form, and hence Theorem 1.1 is established.

6. Proof of Theorem 1.3. Let Ei,j be the matrix with in position (i, j) and zero
elsewhere. Suppose first that T maps every matrix in K(2) to a matrix in K(2), i.e.,
every matrix of rank is mapped to a matrix of negative determinant (such Tdo exist).
Let S be the set of all A K(2) with Frobenius norm 1. Then S is compact and thus
T(S) is a compact subset of K(2). It follows that there is an e, 0 < e < l, such that D,T
still maps K(2) into K(2). If we assume e to be chosen as small as possible so that D,T
maps K(2) into itself, then D,Twill map some rank matrix in H(2) to a rank matrix.
It is easy to see that D,T actually maps K(2) into itself, and that e > 0 (so that D,T is
invertible). Replacing T by D,T, and applying congruence and negation (if necessary),
we henceforth assume that T(Ell Ell.

If the only rank matrices mapped to rank matrices by T are multiples of E,
then an argument similar to that above indicates the existence of an e, 0 < e < 1, such
that D,T preserves K(2), D,T(E) E, and D,T(A) has rank 1, for some A which
has rank and is not a multiple of Ez. To within congruence, then, we may take T to
fix both E, and E22.

Now for any r e R, rE + (E,2 + E2 e K(2). It follows that the 1, 2) and (2, 1)
entries in T(E2 + E2 are zero. The same is true, of course, for T(iEI2 iE21 ). If the
only rank matrices mapped to rank matrices by T are multiples ofE or E22, then
we may argue once more that there is an e, 0 < e < 1, such that D,T preserves K(2) and
that there is a rank matrix B such that DT(B) has rank 1, DT fixes both E and E2,
and E,1, E22, and B are linearly independent. In addition, by performing a diagonal
unitary congruence, we may also assume that B and D,T(B) are real, and that T fixes
EI2 + E21.

Now suppose that

(6.1) T( iE12 iE21 re_i

Then for u, v e R,

T
u- iv 0 u + rye-i 0

In order that T preserve K(2), it is necessary that

lu+rveil > [u+iv[

for any choice of u, v e R. This in turn, is equivalent to

(6.2)
0 r sin 0 v
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for all u, v e R. For (6.2) to be satisfied, the minimum singular value of the matrix in
(6.2) must be 1. This occurs if and only if Irl >-- 1, and cos 0 0, that is, 0 +r/2. It
then follows from (6.1) that T Dl,r. This establishes Theorem 1.3.
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ON MINIMIZING THE SPECTRAL RADIUS OF A NONSYMMETRIC
MATRIX FUNCTION: OPTIMALITY CONDITIONS

AND DUALITY THEORY*

MICHAEL L. OVERTON AND ROBERT S. WOMERSLEY:[:

Abstract. Let A (x) be a nonsymmetric real matrix afflne function of a real parameter vector x E .o.m, and
let p(x) be the spectral radius of A(x). The article addresses the following question: Given Xo E .#", is p(x)
minimized locally at x0, and, if not, is it possible to find a descent direction for p(x) from Xo? If any of the
eigenvalues of A (xo) that achieve the maximum modulus p(Xo) are multiple, this question is not trivial to
answer, since the eigenvalues are not differentiable at points where they coalesce. In the symmetric case,
A(x) A(x) r for all x, t(x) is convex, and the question was resolved recently by Overton following work by
Fletcher and using Rockafellar’s theory of subgradients. In the nonsymmetric case p(x) is neither convex nor
Lipschitz, and neither the theory of subgradients nor Clarke’s theory of generalized gradients is applicable. A
new necessary and sufficient condition is given for p(x) to have a first-order local minimum at Xo, assuming
that all multiple eigenvalues of A(x0) that achieve the maximum modulus are nondefective. The optimality
condition is computationally verifiable and involves computing "dual matrices." Ifthe condition does not hold,
the dual matrices provide information that leads to the generation of a descent direction. The result can be
extended to the case where p(x) is replaced by the maximum real part of the eigenvalues ofA(x). The authors
use the eigenvalue perturbation theory of Rellich and Kato, which provides expressions for directional derivatives
of p(x). They also derive formulas for the codimension of manifolds on which certain eigenvalue structures of
A (x) are maintained; these are due to Von Neumann and Wigner and to Arnold. Finally, they discuss the much
more difficult question of resolving optimality when A(xo) has a defective multiple eigenvalue achieving the
maximum modulus p(Xo).

Key words, nonsmooth optimization, nondifferentiable optimization, eigenvalue minimization, minimum
spectral radius, nonconvex optimization
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1. Introduction. Let A(x) be a real n n matrix affine function of x=
(21, m) r m, i.e.,

m

(1.1) A(x)=Ao+ , kAk,
k=l

where {Ak} are given real n n matrices. Define O(x) to be the spectral radius of
A(x), i.e.,

(1.2) o(x) max Ai(x) I,
l_i_n

where ,i(x), 1, n, are the (not necessarily distinct) eigenvalues ofA (x). Because
A (x) is real, the eigenvalues { Xi(x) } are either real or occur in complex conjugate pairs.
In this paper we address the following question: Given Xo e m, is p(x) minimized
locally by x x0, and if not, can we find a descent direction for p from Xo, that is, a
direction d m such that O(Xo + ad) < p(Xo) for sufficiently small a > 0? There are
several cases of increasing level of difficulty.
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IfA(xo) has real eigenvalues of distinct modulus, p(x) is differentiable, indeed an-
alytic, at Xo (see Kato (1984, p. 64)). The question is therefore answered by examining
Vp(xo) and V2p(Xo). The same is true when complex conjugate pairs of eigenvalues,
each pair having different modulus, are permitted. For example, let n 2, m 1,
and define

A(x)=
-jl

Then Xl,z(X) _+ /1 + 2, and p(x) is minimized at Xo [0], where VO 0 and V2p
is positive.

If several eigenvalues, not complex conjugates of each other, achieve the maximum
modulus at Xo but each eigenvalue is distinct, then o(x) is simply the pointwise maximum
function of several differentiable functions, and may be analyzed by standard min-max
theory (see, e.g., Fletcher 1981, p. 175 )).

Example 1.1. Let n 2, rn 1, and define

The eigenvalues are

]A (x)
--1 - 1

and the spectral radius is given by

--1--l+ -- if (l ----<
O(X) -t-- 1 - -1 if-1 --<l_--<0,

/21 + 3i+ ifl>_0

(see Fig. 1.1). We see that at x [l] -1, the eigenvalues Xl(X) and X2(x) have the
same modulus, although they are distinct. The function o(x) is a standard "max function"
here; in particular, it is Lipschitz. On the other hand, at x 0, the eigenvalues X (x)
and X2(x) coalesce and o(x) has a completely different, non-Lipschitz, character. In fact,
A is defective, i.e., not diagonalizable, at x 0, and we say that hi(x) X2(x) is a
defective eigenvalue. In general, even if A(x) is nondefective at x Xo, o(x) is not
differentiable at x0 ifA (x0) has multiple eigenvalues, and cannot be analyzed by standard
min-max theory.

Besides showing the very different character of the two local minima, Fig. 1.1 also
shows that, as typical with nonconvex problems, several local minima may occur and
finding a global minimum would be very difficult in general. The example also shows
that it is possible for o(x) to have a smooth local maximum, so that the condition
Vo(x0) 0 is not sufficient forfto have a local minimum at Xo.

An example with m > gives additional insight.
Example 1.2. Let n 2, m 2, and define

2 ]A(X)
21 2 + + 2

Figure 1.2 shows a contour plot of o(x). There is no unconstrained local minimum of
o. At the origin x 0, 0 r, A (x) has a nondefective eigenvalue of multiplicity 2. Along
the two lines 2 0 and 2 --81, except at the origin, A(x) has a defective eigenvalue
of multiplicity 2. These two lines divide the ((, (2) plane into four quadrants; the ei-
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o(x)

1.8

0.8

0.6

FIG. 1.1. Plot ofExample 1.1.

FIG. 1.2. Contours ofExample 1.2.
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genvalues are real and distinct in the top right and bottom left quadrants, and a complex
conjugate pair in the other two quadrants. Note how the contours of t9 change sharply
as they cross the defective manifold. This is because on the real side of the defective
manifold, one of the eigenvalues is sharply increased by O() as the point x moves a
distance e away from the manifold, while on the complex side it is the imaginary part of
the eigenvalue that is perturbed by O(), which has only an O(e) effect on p. (The same
effect is observed in Fig. 1.1 at x 0.) Along lines passing through the origin, the function
p is Lipschitz, but it is not Lipschitz along any other line in the (, 2) plane. Note that
even iftwo vectors d and dE are descent directions from the origin, a convex combination
ofd and dE may be an ascent direction. We shall return to this phenomenon later.

Example 1.2 is not genetic in the sense that a two-parameter family of matrices
cannot be expected to have a nondefective multiple eigenvalue; this is explained in 2.
However, the example can be extended to three variables without changing its essential
character by adding a term 3A3 to A (x). In that case the defective manifold becomes a
cone instead of a pair of lines (see Arnold (1971, p. 40)). The eigenvalues ofA (x) are
complex in the two disconnected "interior" parts of the cone and real elsewhere.

IfA(x) A(x) r for all x, p(x) is a convex function and Rockafellar’s theory of
subgradients applies. In a recent paper, Overton (1988), following Fletcher (1985), has
given verifiable optimality conditions for the symmetric case and shown how, if not
optimal, a descent direction may always be obtained, even if this requires splitting a
multiple eigenvalue. (There are exceptions in degenerate cases.) Both the optimality
conditions and the method for obtaining descent directions involve an interesting duality
theory. The same paper provides a practical, accurate algorithm for minimizing t(x) in
the symmetric case.

In the nonsymmetric case tg(x) is generally not convex and the problem is much
more difficult. The main contribution of the present paper concerns the case where the
(multiple) eigenvalues achieving the maximum modulus at x0 are all nondefective. Even
in this case, (x) is generally not Lipschitz at x0, and hence the usual definition of the
generalized gradient ofClarke 1975 is not applicable. However, the function t9 is Lipschitz
at x0 if its argument is restricted to the line { Xo + ad[ a e }, for any d e m, and
indeed the usual directional derivative oft9 (in the direction d) always exists. By considering
this we are able to give a new necessary and sufficient condition for x0 to be a local first-
order minimizer of p(x), excluding degenerate cases. The condition is computationally
verifiable and involves computing "dual matrices." If the condition is found not to hold,
the dual matrices are used to provide information that produces a descent direction, even
if this requires splitting a multiple eigenvalue or making a multiple eigenvalue defective.

The paper is organized as follows. In the next section we derive formulas for the
codimensions of manifolds defined by maintaining a given Jordan structure for A (x).
In the most general case, these formulas are due to Arnold (1971), (1983). In 3 we
characterize the directional derivative of t9 (x). This derivation relies on the classic work
of Kato and Rellich (see Kato (1984)). In 4 we begin by summarizing the known
optimality conditions for the symmetric case; we then derive new optimality conditions
in the nonsymmetric case when only one multiple eigenvalue, which is nondefective at
x0, achieves the maximum modulus at x0. In 5 we extend this result to cover the case
of several nondefective multiple eigenvalues achieving the same maximum modulus at
x0. In 6 we briefly discuss the situation where a multiple eigenvalue achieving the
maximum modulus is defective. The question ofoptimality seems very difficult to resolve
in this case.

This paper is motivated by many applications. Perhaps the major source of appli-
cations is control engineering, where, for example, an optimal spectral radius value below
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would represent system stability while a value greater than would represent instability.
See, for example, Mikil/i and Toivonen (1987) and Miller, Cochran, and Howze (1978)
for applications where A(x) is nonsymmetric; see Boyd (1988) and Kamenetskii and
Pyatnitskii (1987) for applications where A (x) is symmetric. Another source of appli-
cations is the design of iterative methods for solving linear systems of equations, where
certain parameters must be chosen to minimize the spectral radius ofthe iteration matrix
(see, for example, Young (1971)). The most well-known example is the SOR method,
which depends on a single parameter o whose optimal value is well known. More generally,
we might consider a general preconditioner design problem. Since the latter application
class generally involves nonlinear parameter dependence, the results ofthis paper cannot
be applied directly. However, the results reported here will be an essential starting point
for the analysis of problems where A (x) is a nonlinear function. Other applications may
involve constraints on the variables; it should be possible to extend the results given here
to handling such constraints using standard Lagrange multiplier techniques.

As mentioned earlier, a practical algorithm is already available to minimize p(x)
in the symmetric case. We believe the results in this paper are an important first step
towards the long-term goal of obtaining an efficient algorithm for the nonsymmetric
case. There are many difficulties to be overcome before such a goal can be achieved. For
example, even computing the Jordan form ofA (x) at a single point x is known to be a
hard problem numerically, although there has been substantial progress in this direction
in recent years (see Golub and Van Loan (1983) and Demmel (1983 )).

It is important to note that the techniques used in this paper are also relevant to
other functions of the eigenvalues )(x) besides the spectral radius. In fact, they could be
used to analyze any real convex function of the eigenvalue function )(x) e cm. In our
analysis of p(x), we note that minimizing (x) is equivalent to minimizing

(1.3) f(x) 1/2P(X) 2"- 1/2 max ki(X)ki(X),
l_i_n

where f denotes the complex conjugate of z e c. Most of the analysis is then concerned
with the nondifferentiable nature of )i(x). Similarly, we can also consider minimizing
another function that frequently arises in applications:

(1.4) g(x) max Re )i(x)= 1/2 max ()i(x)+ ki(X)).
li_n l_i_n

Of course, tg(x) and g(x) are related to each other by exponential transformation ofthe
matrix A(x), but this is to be avoided numerically (Golub and Van Loan (1983)). In
control engineering, for example, the form g(x) arises when we consider stability of
initial value problems; the form p(x) arises when we consider discrete-time systems.

There is a large literature on extremal eigenvalue problems (see, for example, No-
wasad (1968), Friedland (1978), and references therein). However, most of this work
seems to be concerned with special problems that arise in infinite-dimensional spaces.
The questions raised here do not seem to have been considered in detail previously.

2. The codimension of manifolds. An eigenvalue of multiplicity is said to be non-
defective (or semisimple) if the corresponding part of the Jordan form of the matrix is
diagonal. Let x0 be given, with A (x0) having a nondefective eigenvalue of multiplicity
t, say ,(x0) )t(Xo). What, generically, is the codimension of the manifold
containing x0 on which A(x) has a nondefective multiple eigenvalue )l(X)
)t(x)? This question was answered in the symmetric case by von Neumann and Wigner
(1929) and, in the context of requiting a matrix to have a given rank, by Ledermann
(1937), although the answer does not seem to be widely known. More recently, the
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symmetric case was discussed by Friedland, Nocedal, and Overton (1987) in the context
of inverse eigenvalue problems. Arnold 1971), 1983 answers the question in the general
complex nonsymmetric case, including the defective case when nontrivial Jordan blocks
must be considered. In this section we motivate and summarize these results, which are
essential for a complete understanding of the later sections. We do not give a rigorous
derivation, for which the reader is referred to Arnold’s work.

First assume that ,l(x0) t(Xo) is real and that the other eigenvalues of
A (x0) are real and distinct. For x to lie in the desired manifold, we require

(2.1) A(x)Q=QA, A=[ ’/t ]A2

where Q is a nonsingular real matrix, It is the identity matrix of order t, and A2 is a real
diagonal matrix of order n t. (None of the eigenvalues can become complex near
enough to Xo since the only multiple eigenvalue is being preserved.) We may view (2.1)
as hi n 2 equations that restrict x; but we have introduced additional variables Q and
A. These variables are correctly counted as follows. There are h2 n + variables
in A. The matrix Q has h3 n 2 components, but not all n 2 degrees of freedom are useful
in satisfying (2.1). Let Q [Q, Q2], where the columns of Q correspond to ,(x)

,t(x). We may postmultiply Q by any nonsingular matrix, and postmultiply
Q2 by any nonsingular diagonal matrix, without affecting (2.1). Let h4 t2 and h5
n t; therefore, we see that the total number of introduced variables useful in solving
(2.1) is

h2 + h3- h4- h5 n2- 2 + 1.

The codimension of the desired manifold is obtained by subtracting this from hi, the
number of equations in (2.1), giving

(2.2) cN(t) h h2- h3 + h4 + h5 t2- 1.

Since this manifold is embedded in m, and the codimension describes the number of
degrees of freedom restricted by requiring x to be in the manifold, the dimension of the
manifold is m + 2. For example, if 2 and m 3, the dimension ofthe manifold
is zero, i.e., a three-parameter matrix family A (x) generically has only a single point Xo,
where A (x0) has a nondefective multiple eigenvalue. Ofcourse, this argument is genetic
and there are exceptions in degenerate cases.

A similar argument for the symmetric case (A(x) A(x)" for all x) gives the Von
Neumann-Wigner result h n(n + 1)/2, h2 n t + 1, h3 n(n 1)/2 (since Q
is orthogonal), h4 t(t 1) / 2, h5 0 (since Q is already restricted to being orthogonal
by h3), so

t(t+ 1)
(2.3) Cs( t) 1.

2

Von Neumann and Wigner also derived the codimension for the case thatA(x) is complex
but Hermitian for all x, where we continue to view A (x) as a function of real variables;
thus (2.1) is n 2 real equations, namely n(n 1)/2 complex off-diagonal equations and
n real diagonal equations. We then obtain the same formula as (2.2).

Returning to the real nonsymmetric case, if ,l(x0) kt(Xo) is real but we
allow the other eigenvalues to be complex, the codimension (2.2) does not change. This
is because 3-2 and Q2, although complex, consist of complex conjugate pairs.
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Ifthe multiple eigenvalue ),i (Xo) ht(Xo) is one ofa complex conjugate pair,
we require

A(x)Q=QA, A= )1I,

where Q [Q, QI, Q2], and 3-2 is a diagonal matrix of order n 2t. We obtain hi
n 2, h2 n 2t + 2, h3 n 2, h4 2t2, and h5 n 2t, i.e.,

(2.4) Cc(t) 2t2 2.

Thus the codimension is the same as iftwo real multiple eigenvalues, each ofmultiplicity
t, were to be preserved separately.

Suppose we require r + s nondefective multiple eigenvalues to have the same mod-
ulus, where r of them are real with respective multiplicities, ti, tr, and s of them
are complex with positive imaginary part and respective multiplicity tr+l, tr+s.
(Note r _-< 2.) Then the codimension of the manifold along which multiplicities are
preserved and all eigenvalues have the same modulus is

r+s

cr(t,’",tr;tr+,’",t) (tj2-1)+] (2t}-2)+(r+s-1)
j=l j=r+l

(2.5)
r+s

t+2 t--S--1,
j-I j=r+l

reflecting the fact that (r + s 1) additional restrictions are being placed on the moduli.
Now let us drop the assumption that ),1 (x0) is nondefective. Assume A(xo) has a

real multiple eigenvalue hi(x0) ,t(Xo), corresponding to Jordan blocks of size
ul ->- u2 ->- - up, =< p -< t. We are interested in the dimension of the manifold
passing through x0 along which the same Jordan structure is maintained. For x to lie in
the manifold, we require that

A(x)Q=QJ, j=[Jl ]A2

where Q [Ql, Q2] is any nonsingular matrix, A2 is diagonal of order n t, and Jl is
the desired Jordan form. We have hi n 2 h2 n + h3 n 2 and h5 n t as
before. To determine ha we need to answer the following question: What class ofmatrices
commute with Jl? IfJl equals ),l I, the answer is all t matrices; ifJl is a single Jordan
block, the answer is all upper triangular Toeplitz matrices. In general, the answer
is given by Arnold (1971, p. 34), namely matrices of the following form:
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Here the block partitioning conforms to the Jordan block partitioning of J, and each
block is an upper triangular (rectangular) Toeplitz matrix. The example shown here
corresponds to u 4, u2 3, u3 2. The number of variables in such a matrix is

h4 u d- 3u2 + 5u3 -- +(2p+ 1)up.

We therefore obtain the codimension

(2.6) CD(Ul, ,Up)=Ul + 3U2"b 5U34r +(2p+ 1)up- 1.

Note that, as before, the codimension is independent of n. We have

Co(l, 1, ,1)=t2- I=CN(t)

and the codimension for a single Jordan block is

(2.7) Co(t) t-- 1.

The arguments given here are not rigorous; in particular we have not attempted
to prove independence of the various restricting equations. For a full derivation, see
Arnold (1971).

3. Directional derivatives. Let Xo be given with A(Xo) having a nondefective multiple
eigenvalue h(x0) ht(Xo). In general the eigenvalues hi(x), 1, t, are not
Lipschitz functions even at x0. For example, let

so that

_+

Given any ball of radius e > 0 around xo [0, 0 r, let x e//, 0 r and x
e/ /, r, where > O. Both x and x lie in the given ball if i -< e/f, but

hi(Xl hi(X2

cannot be bounded by K6 for any constant K independent of di. This contradicts the
definition of a Lipschitz function (which may be found in, e.g., Clarke (1983)). Of
course, the eigenvalues hi(x) are always continuous functions, regardless ofxo, provided
a consistent ordering is used.

Although the eigenvalues hi(x), 1, ..., t, are not Lipschitz with respect to
several variables, they may be ordered so that they are locally continuously differentiable
along any line passing through Xo. This follows from the classical eigenvalue perturbation
theory of Rellich and Kato. Before stating the result let us introduce some notation. Let
al be an n matrix whose columns are independent right eigenvectors ofA (Xo) cor-
responding to h (Xo) ht(Xo) and let P be a n matrix whose rows are corre-
sponding independent left eigenvectors. We may normalize P so that

(3.1) P’(Q, =It

and we then have

(3.2) PA(xo)Q= h(xo)lt.
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The quantity Q,P is called the eigenprojection for }, (Xo). Define the X t matrices

(3.3) Bk PAkQ, k 1, ,m,

where Ak is given by (1.1). Note that if kl(X0) is real, all OfPl, QI, and Bk, k 1,
m, are also real, but if1 (x0) is complex, all these matrices generally will also be complex.
If 1 (xo) is complex, it has an associated complex conjugate multiple eigenvalue, with
corresponding eigenvector matrices P, QI, and

P AO.Bk 1, k=l,...,m
corresponding to (3.3).

Now define the directional derivative of hi(x) in the direction d [di, 6m] T
E B-m by

(3.4) k[(xo;d) lim
a--,. 0

Xi(Xo + ad) hi(Xo

LEMMA 3.1. We have

(3.5) X;(x0; d) txi, 1, ..., t,

where { lai ) are the eigenvalues of
m

(3.6) B(d)
k=l

Proof See Kato 1984, p. 81) and preceding pages for the proof. Note that, although
we assume that kl(X0) kt(Xo) is nondefective, we do not assume that B(d) is
nondefective.

Remark. It is useful to motivate the result as follows. Suppose for simplicity that
B(d) is nondefective, and let its eigensystem be

(3.7) B(d)= ZDY,
where Y, Z are nonsingular matrices, YrZ It, and D is diagonal with entries
{ i }. We have

(3.8) YrP(A (Xo + ad)Q Z k (Xo) + aD.

If n, this proves the lemma, since (3.8) gives the eigensystem ofA(Xo + ad), with
linear eigenvalues , (x0) + a,;. On the other hand, if 1, the lemma is trivial since
*1 is the inner product ofd with the gradient ofthe differentiable function , (x), namely
[P rhql, P4mq T. More generally, suppose that < < n. Then (3.8) represents
a generalized Rayleigh quotient, the key point being that the right-hand side is diagonal.
Thus the diagonal entries approximate the first eigenvalues of A(xo + ad), and the
columns of Q Z (respectively, the rows of yrp) are the particular right (respectively,
left) eigenvectors ofA (Xo) to which the fight (left) eigenvectors ofA (Xo + ad) generally
converge as a -- 0. (If the { i are not distinct, the corresponding eigenvectors need
not converge.)

Now let us turn to the functionsf(x) and g(x) defined by (1.3) and (1.4); it is easier
to work withf(x) 1/2p(x) 2 than directly with p(x). Note that as long asf’(x0; d) exists
with f(xo) g= O, the quantity p’(Xo; d) exists and is related by

p’(Xo; d)
f’(xo d)
p(xo)
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LEMMA 3.2. Suppose that X(Xo) kt(Xo) is a real nondefective eigenvalue,
and that all other eigenvalues ofA (Xo) have smaller modulus than X (Xo) [. Thenfor any
de m

f’(xo;d) X(Xo) max Re ti,
l_i_t

where, as before, { Idi } are the eigenvalues ofB( d).
Proof It is clear that

f’(xo;d) max f(xo;d),
l_i_t

where

Now
f.(xo; d) 1/2ki(X)Xi(X).

f}(xo;d) 1/2(Xi(Xo)X}(xo;d)+ Xi(Xo)X(xo;d)),

so the result follows from Lemma 3.1, since X (Xo) is real. El
LEMMA 3.3. Suppose that Xl (Xo) Xt(Xo) is a nondefective eigenvalue, and

that all other eigenvalues ofA Xo) have smaller real part. Then
g’(xo;d) max Re i,

l_i_t

where again { Ii } are the eigenvalues ofB( d).
Proof. The proof is straightforward.
More generally, consider the case where several different eigenvalues achieve the

maximum modulus or the maximum real part, respectively. It is convenient to change
notation as follows. Let Xjl(X) denote the eigenvalues ofA (x) with the following properties:

(i) ,j (Xo) Xtj(Xo), for j 1, r, is a real nondefective multiple
eigenvalue ofA (Xo) with multiplicity t.

(ii) X.(Xo) Xtj(Xo), forj r + 1, r + s, is a complex nondefective
multiple eigenvalue ofA (xo) with multiplicity tj and positive imaginary part.

(iii) { ,l(Xo)}, j 1, r + s, are distinct quantities with, in the case of
minimizing the spectral radius, the same modulus p(Xo /2f(xo ), or, in the case ofmini-
mizing the maximum real part, the same real part g(xo). These eigenvalues are said to
be active. The complex conjugates Xl(Xo), j r + 1, r + s, are also active, so
there are a total of r + 2s distinct active eigenvalues. All other eigenvalues of A(xo)
are inactive, i.e., they have smaller modulus or smaller real part, respectively. (Note
that r -< 2.)

Now, for j 1, r + s, define Q, Pf as matrices whose columns (respectively,
rows) are independent fight (respectively, left) eigenvectors ofA(xo) corresponding to
j(Xo) t(Xo), with efQj Its. Define the tj. tj matrix

(3.9) Bk)=PfAkQJ, k=l,...,m, j=l,...,r+s.

LEMMA 3.4. LetA (Xo) have nondefective active eigenvalues with respect to thefunc-
tion f(x). For any d [61, 6m] r m,

f’(xo;d) max max Re (Xl(Xo)tj),
_j_r+s _l_tj

where #t, l 1, ..., t are the eigenvalues of
m

(3.10) B()(d) Z diB().
k=l
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Proof It is clear that

f’(xo; d) max max f}t(Xo; d),
_jNr+s _l_tj

where

Since

(x) 1/2 xs(x) Xs(x).

(3.11) fit(xo d) 1/2 Xt(Xo X}t(xo d) + Xt(Xo XTi,(xo d)

the result follows from Lemma 3.1.
LEMMA 3.5. Let A Xo) have nondefective active eigenvalues with respect to thefunc-

tion g(x). For any d m,
g’(xo;d)= max max Re

_j_r+s _l_tj

where ujt, 1, tj, are the eigenvalues ofB)(d) defined by (3.10).
Proof The proof is straightforward.
We complete this section with the definition of a matrix inner product that will be

needed in 4. Following Fletcher (1985), define

(3.12) A:B=tr ArB
for any real rectangular matrices A and B with the same dimension.

LEMMA 3.6. XAYr’B A’XrBY.
Proof. The proof is straightforward.

4. Optimality conditions in the case of one active nondefective multiple eigen-
value. Assume that A (xo) has one active multiple eigenvalue that is real, nonzero, and
nondefective, and that we denote by Xl(X0) Xt(Xo), reverting to our original
notation. Let us define d e to be a descent direction forf from Xo iff’(xo; d) < 0.
If no such direction exists, f is said to have a first-order local minimum at Xo. We wish
to give a procedure for determining whetherfhas a first-order local minimum at Xo and,
if it does not, for obtaining a descent direction.

It is useful to first consider the symmetric case.

(1) Symmetric case (A(x) A(x) r for all x).

In this case the eigenvalues Xi(x) are always real, the eigenvector matrix Q is orthogonal,
Pl Q1, and Bk QAkQI. Furthermore, f(x) and o(x) are convex; this follows from
Fletcher (1985, p. 510).

THEOREM 4.1. Define the set

{ l) [/11, llm] T. mlthere exists a symmetric positive semidefinite
matrix Usatisfying tr U 1, X xo U:Bk vg k 1,... m }

(The matrix inner product operator ":" was defined by (3.12).) A necessary and sufficient
condition for Xo to minimizef is that 0 e f.

Proof. Let v e f, let d 61, 6m] r e m, and let the eigenvalue decomposition
of the symmetric matrix B(d) ’= ikBk be given by B ZMZr, where Z is
orthogonal and M diag (#i). We have

m

l)Td kl(X0) ikU:Bk
k=l

XI(Xo)U:ZMZ r.
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Therefore

(4.1) supvrd k(Xo) sup U:ZMZ ,
vf U

where the second "sup" is taken over all t symmetric positive semidefinite matrices
U with tr U 1. Since Z is orthogonal and U is symmetric, without loss of generality
we may write (4.1) as

(4.2) ,l(X0) sup U:M= I(X0) SUp Uiildi
u u i=1

(see Lemma 3.6). Now U cannot have negative diagonal elements, and it has trace equal
to one, so we see from (4.1), (4.2) that

sup vrd (Xo) max #i
vft _i_t

(4.3)
f’(xo;d)

by Lemma 3.2. It follows that if 0 e fl,

f’(xo;d)>=O Vd m,
i.e., x0 minimizes f. On the other hand, if 0 fl, then by the separating hyperplane
theorem and the convexity of f, there exists d with v rd < 0 for all v e f, i.e., d is a
descent direction by (4.3). (For a statement of the separating hyperplane theorem, see
Rockafellar (1970, p. 95 ).)

Remark. This theorem was proved in Overton (1988). The proof here is more
direct, since it does not use Rockafellar’s theory of subgradients, but only the separating
hyperplane theorem. Nonetheless, the proof technique is similar to those used in the
theory ofsubgradients, and it is doubtful whether the theorem would have been obtained
without the motivation of that theory (and also the paper of Fletcher (1985)).

COROLLARY. Of(xo), the subdifferential ofthe convexfunctionfas defined by
Rockafellar 1970 ).

Proof The proof follows from (4.3).
Remark. Becausefis convex, there is no distinction between "first-order local min-

imum" and "minimum."
Remark. The matrix U is called the dual matrix (or Lagrange matrix), and it plays

the role of Lagrange multipliers familiar from constrained optimization.
We now discuss the generation of descent directions if x0 is not optimal. There are

three cases.

(1 A) Symmetric case, assuming I, Span { Bl, Bm ).
In this case we simply solve

(4.4) Xl(Xo) 6cBk=--It
k=l

By Lemma 3.2, d [61, "", 6m] 7" is a descent direction for f. Furthermore, all the
eigenvalues ,(x), Xt(x) decrease at the same rate along d; that is, the eigenvalue
does not split to first order. This case holds generically if m >- t(t + 1)/2, i.e., m > Cs(t),
i.e., the genetic dimension of the manifold defined by

(4.5) Xl (x) Xt(x)

is greater than zero.
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(1 B) Symmetric case, assuming (1A) does not apply and the set { It, B, nm}
has full rank t(t + 1)/2.

This case holds genetically when m Cs(t) t(t + 1)/2 1, i.e., the manifold defined
by (4.5) is the single point x0. It also holds if m > Cs(t), but f is minimized on the
manifold (4.5) at x0. To make further progress we must split the multiple eigenvalue ),1.
Solve for the dual matrix U Ur in the linear system

(4.6) trU=l, ,(xo)U:Bk=O, k= l, ,m.

This is a system ofm + equations in t(t + 1)/2 unknowns. Although it is possible that
the { Bk are not independent, (4.6) has a unique solution U in view ofthe homogeneity
of all equations except the trace equation (which is equivalent to It:U 1). If 0 f, i.e.,
x0 is not optimal, it follows that U is not positive semidefinite.

THEOREM 4.2. Assume 0 2, so that U has an eigenvalue 0 < O. Let z t be a
corresponding normalized eigenvector of U. Solvefor 6o, 6 6m] 7" m+ in

m

(4.7) 6Oil + ,(Xo) , 6kB= -zz ’.
k=l

Then d [, m] r is a descent direction.
Proof The linear system (4.7) is solvable by assumption, although if { Bk } are not

independent, d is not unique. Taking an inner product of U with (4.7) we obtain

m

6o tr U+ l(xo) , 6U:B=-U:zz r,
k=l

6o -0> 0

by (4.6). From (4.7) and Lemma 3.2,f’(x0; d) is the maximum eigenvalue of the sym-
metric matrix -zzr- 6olt. The eigenvalues of this matrix are (-1 + 0, 0, ..., 0), so
f’(xo; d) < O.

Remark. This theorem was given by Overton (1988). The proof here is slightly
different. The theorem shows that we can progress by splitting the multiple eigenvalue
while maintaining multiplicity (to first order). This is analogous to moving off a
single active constraint in the context of constrained optimization. Note that it is the
dual matrix U that provides information leading to a descent direction, just as negative
Lagrange multipliers provide similar information in constrained optimization. Note in
particular that the coefficient matrix of the left-hand side of the linear system (4.6),
which defines the dual matrix, is the transpose of the coefficient matrix of the linear
system (4.7), which gives the descent direction.

C) Symmetric case, where neither A) nor B) applies.

Although this applies generally if m < Cs(t), such cases are degenerate in the sense that,
generically, a point x0 satisfying (4.5) will not exist. In such degenerate situations, verifying
optimality or finding a descent direction is very difficult, just as it is in the much simpler
case of linear programming. We may be able to solve (4.6), but the dual matrix U is not
uniquely defined and generally (4.7) will not be solvable. Theorem 4.1 still applies, so
x0 is optimal if and only if there exists a dual matrix U with the required properties.
However, because the solution to (4.6) is not unique, finding such a matrix U may be
very difficult.
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We now turn to the nonsymmetric problem. We first dispose of the trivial case.

(2A) Nonsymmetric case, assuming It Span (B Bm }.
A descent direction is obtained by solving (4.4). The eigenvalue is not split (to first
order). This case holds genetically if m > Cs(t) t2 1.

(2B) Nonsymmetric case, assuming (2A) does not hold and the set
{ It, B, Bm ) has full rank 2.

This case holds genetically when rn ON(t), i.e., the manifold defined by maintaining
the nondefective multiple eigenvalue is the single point Xo. It also holds if rn > Cs(t),
butfis minimized on the manifold at x0. To make further progress we must either split
the multiple eigenvalue , or make it defective.

Our initial work on this problem involved the following set, intended to generalize
the subdifferential fl to the nonconvex case. Define the (nonconvex) set xI, by

xit {)= [P l, Pm]Tm there exists a real diagonalizable matrix U with
real nonnegative eigenvalues satisfying tr U= 1, l(X0) U:Bk vk, k 1, m }.

However, it is not the case that (4.3) holds when we substitute for fl on the left-hand
side. On the contrary,

sup vrd .
The point where the proof of Theorem 4.1 breaks down in the nonsymmetric case is
that U can have negative diagonal elements, even though it is similar to a nonnegative
diagonal matrix with trace equal to 1.

Nonetheless, it is true that 0 e is a necessary condition for Xo to minimize f. A
weaker result which is easier to show, following the lines of Theorem 4.1, is that 0 e
Conv 9 is a necessary condition for optimality, but this is of no interest since it turns
out that Conv m. We note that ifwe were to apply the usual definition ofClarke’s
generalized gradient (Clarke (1983, p. 10)) tof, ignoring the fact thatf is not Lipschitz,
we would obtain Of(xo) R m. Rockafellar has extended the definition ofthe generalized
gradient to the non-Lipschitz case, but this apparently still gives Of(xo) m for our
functionf (Rockafellar (1985 ), Burke (1987 )).

It may be worth noting at this point that there cannot exist any set , convex or
not, such that

supvTd=f’(xo;d) for all d m.
v,

The existence of such a set would contradict the possibility of the existence of descent
directions whose convex combination is an ascent direction, which was noted in Exam-
ple 1.2.

To show that 0 e 9 is a necessary condition for Xo to minimizef, first observe that,
as in case (1B), the linear system (4.6) is solvable, although since the matrices are non-
symmetric, it is now a system of rn + equations in t2 unknowns, namely the elements
ofthe dual matrix U. If U has a negative real eigenvalue, we can obtain a descent direction
by solving (4.7), replacing the right-hand side by yz r, where z and yr are, respectively,
fight and left eigenvectors for the negative eigenvalue of U. If U has complex eigenvalues
or is defective, we can also find a descent direction by appropriate choice of the right-
hand side of (4.7). In view of the subsequent remarks, there is no need to elaborate on
this further.
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We now show that the set * is too large to be useful and that a necessary and
sufficient optimality condition can be obtained from using a smaller set. Define

O= {v=[vl, ,vmlrlml U=71t, hl(Xo)U:Bk=vk, k= 1, ,m},

i.e., consists of the single point v (A(Xo)/t)[tr BI, tr Bm] r.
THEOREM 4.3. A necessary and sufficient condition forfto have a first-order local

minimum at Xo is that 0 .
Remark. The theorem does not require the assumption that A (Xo) q: 0. However,

it is convenient to assume throughout that ,l (x0) q: 0, as stated at the beginning of the
section, so that (4.6) remains solvable. With this assumption, 0 , tr Bk O, k
1,...,m.

Proof. Define U by solving (4.6). The theorem states that U (1/t)It if and only
iff has a first-order local minimum at Xo. First suppose that U (1 / t)It, and suppose
also that x0 is not a first-order local minimizer, i.e., there exists a descent direction d
m. By Lemma 3.2, this implies that

h(Xo) Re ti<0, 1, ,t,

where #i are the eigenvalues of B(d). Because ,(x0) is real, B(d) is also real, so this
implies tr )l(Xo)B(d) < 0. However, this is a contradiction, since U (1/t)L implies
,(Xo) tr Bk 0, k 1, m.

Now suppose that f has a first-order local minimum at Xo, but that U q: (1/t)It.
The latter assumption implies that there exists a real matrix E with zero eigenvalues
such that U:E v O, namely, one of the following 2- linearly independent defec-
tive matrices:

or

eper, p,q= l, ,t, pqq

eper- ep / ler+ + epeT+ e. er, p- 1,..., t- 1.

Here e denotes the pth column of It. Now solve the following linear system for
[60, 61, 6m] T: [60, dr] r - ,m+l:

m

(4.8) 6olt+ ),(Xo) , 6kBk=E.
k=l

(This system is a nonsymmetric version of (4.7), and therefore the coefficient matrix of
the left-hand side is the transpose of that in the nonsymmetric version of (4.6).) Taking
an inner product of U with (4.8), we get

(4.9) 60 U:E q: O.

But by (4.8) and Lemma 3.2, f’(xo; d) is the largest real part of the eigenvalues ofE-
6Oil, i.e., -60. This contradicts the assumption that a descent direction does not exist,
since if 60 < 0 we may replace [60, dr] r by -[60, dr] r. E]

Any direction d that preserves the multiple eigenvalue ,l At (to first order)
by making it defective (to first order) has the property that f’(xo; -d) -f’(xo; d),
since all the active eigenvalues have the same first-order charge. It follows that either d
or -d is a descent direction unless the first-order charge is zero; Theorem 4.3 states that
this happens for all such "defective" directions if and only if U (1/t)lt. An example
of this is the following.
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Example 4.1. Let n 2, m 3, and define

l ]A (x)
(2 t3

The eigenvalues are

At the origin, X k2 is nondefective (with value 1) and we may take PI Ol I. Thus
Bk Ak, k 1, 2, 3, and tr Bk tr Ak 0, SO U, defined by (4.6), is 1/2 I. The spectral
radius 0(x) is one at every point on the manifold where X X2 is defective. Figure 4.1
shows a contour plot of0(x) restricted to the ((1, (_) plane, where the defective manifold
reduces to the coordinate axes.

COROLLARY. There is always a direction d satisfying f’(x0; d) <- 0, i.e., f never
has a strongly unique local minimum at Xo.

Proof The proof is straightforward.
From both a practical and a theoretical point of view, obtaining a descent direction

by making the active eigenvalue defective to first order is far from satisfactory. Because
defective eigenvalues are very ill-conditioned, roundoff error may be overwhelming. Even
in exact arithmetic, it is possible that a very small stepsize a may be required to make
f(xo + ad) < f(xo). In any case, finding the next descent direction to further reduce f
may be very difficult, as explained in 6. The following theorem greatly improves the
situation.

THEOREM 4.4. Suppose that 0 , i.e.,fdoes not have afirst-order local minimum
at Xo and therefore U, defined by 4.6 ), is not equal to / t)It. Then there exists a descent
direction d along which X Xt is split into several nondefective eigenvalues. All
eigenvalues maintain a common realpart tofirst order, but they may have several different
imaginary parts.

I -I

FIG. 4.1. Contours ofExample 4.1 in 3 0 plane.
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Proof. Since U 4:(1 / t)It, there exists a matrix E with imaginary eigenvalues such
that U :E 4: 0, namely one of the following 2 linearly independent matrices:

2e,e-eaer, p,q=l,...,t, pq
or

e,er- e,+ ,er+, + 2e,er+ e,+ ,er, p= 1, ,t- 1.

Now solve (4.8) for [ao, dr] r, using the new fight-hand side matrix E. As before, we
obtain (4.9). Also as before, f’(xo; d) is the largest real part of the eigenvalues of E-
8oIt, i.e., -80, since E has imaginary eigenvalues. Thus a descent direction is obtained
with the required property, since d may be replaced by -d if i0 < 0. Note that, to first
order, multiplicity 2 is maintained along d, the common value being reduced by io,
while the other two eigenvalues split into a complex conjugate pair. It may be possible
to split Xl further, with several eigenvalues taking on several different imaginary parts to
first order, by choosing a less elementary matrix E with several different imaginary ei-
genvalues for the fight-hand side of (4.8).

The following question might arise: Can we obtain a descent direction along which
k k is split into several distinct real eigenvalues? Obtaining such a descent
direction d is much more difficult, since it is not true thatf’(x0; -d) -f’(x0; d). If
U has a negative real eigenvalue, such a descent direction may be obtained by using yz r

on the right-hand side of(4.8 ), where yr, z are the left and right eigenvectors corresponding
to the negative eigenvalue of U, as already explained. However, we have observed examples
where there exists such a descent direction even if U has no negative eigenvalue.

Other examples have led us to the following conjecture that might be of interest.
CONJECTURE. Assume n 2, rn 3, )k (X0) )k2 (X0) is nondefective, and

{ It, BI, B2, B3 } has full rank. Then U has real eigenvalues if and only if there exist
descent directions in both of the disconnected regions where X1,2 splits into a complex
conjugate pair.

Remark. When there are descent directions in both of these disconnected regions,
a convex combination of descent directions can give an ascent direction, namely in the
region where X,2 splits into a distinct real pair.

In the case n 2, 2, m 3, it is usually easy to find a descent direction by
random search, since we need only that X (x0) max Re i < 0, 1, 2. However, for
larger t, the chance of finding a descent direction rapidly diminishes. In some randomly
generated tests, we found that it was usually possible to obtain a descent direction with
less than 500 random attempts for n 6, m 35, but this was not usually possible
for n t 8, m 63. Presumably the chance of success decreases exponentially with t.

We have now completed the discussion of case (2B). The degenerate case remains.

(2C) Nonsymmetric case, where neither (2A) nor (2B) applies.

This case generally applies if m < Cv(t) 2 1. As in case (1C), such situations are
degenerate. Unlike the symmetric case, the nonsymmetric case no longer has an applicable
optimality condition.

5. Optimality conditions in the case of several active nondefective multiple eigen-
values. Assume that A (x0) has several distinct active eigenvalues, all nondefective and
with nonzero common modulus. Denote those that are real by Xt, j l, .-., r, and
those that have positive imaginary parts by Xt, j r + 1, s, as described in the
latter part of 3. Recall that X. Xt is a multiple eigenvalue of multiplicity
t, and recall the definition of Bk given by (3.9). We now wish to generalize the re-
sults of the previous section.
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(I)

(2)

(2A)

Symmetric case. This is easily generalized, since r =< 2 and s 0. Details may
be found in Overton (1988).
Nonsymmetric case. To avoid confusing notation we entitle the three cases (A),
(B), (C) somewhat differently than in 4.
Nonsymmetric case, where we can obtain a descent direction without splitting
a multiple eigenvalue or making it defective, or separating moduli.

For this case to apply, assume that the following linear system is solvable for
til, tim, 8"r+ l, .r+s] T - lm+s:

m

(5.1) _, tik,jl(Xo)B(kj) =--It, j= 1, ,r,
k=l

m

(5.2) , tik Re (Xjl(Xo)B(kJ)) -It, j= r+ 1, ,r+ s,
k=l

m

(5.3) e.jlt+ . tik lm (,jl(Xo)B(kJ))=O, j= r+ 1, ,r+ s.
k=l

The system is genetically solvable if m> co(t, ,tr+), which is given by
(2.5). Since we do not use the index in this section, let f. Adding (5.2) to times
(5.3) we get

Z 6Xjl(Xo)BkJ)=--( +eji)It, j=r+ 1,... ,r+s.
k=l

From Lemma 3.1, the first-order changes in the eigenvalue Xjr, l l, Q, along the
direction d { til, tim } r, are thus all the same quantity -(1 + ei)/Xjl(xo), for
each j =r + 1, r + s. Similarly, by (5.1), the first-order charges in ,t, l- l,
tj, are all / ),j (x0), for eachj 1, , r. Thus all multiple eigenvalues are preserved.
Furthermore, by Lemma 3.4, or more specifically (3.11), the first-order change in Jt
1/2 Xjtl 2 is for all 1, Q, j 1, r + s, i.e., all moduli are reduced along
d and remain equal to first order.

(2B) Nonsymmetric case, where we can obtain a descent direction by splitting a
multiple eigenvalue or making it defective or separating moduli, or else dem-
onstrate optimality.

For this case to apply, assume that the coefficient matrix of the left-hand side of the
following linear system has full column rank, and that the system is solvable. This case
applies genetically if m cG(h, t+). It also applies if m > cG(h, t+s), but

f is minimized at x0 on the manifold that preserves the nondefective multiplicities and
the equal moduli. The linear system defines square dual matrices, Ul,"’, Ur/s,
Vr / l, V/ , of dimension tl, tr / , tr / , tr / , respectively, by

r+s r+s

E U’Xj,(xo)Bk)+ E Uj:Re(Xj,(xo)Bk)) + E
(5.4) j= j=r+ j=r+

r+s

(5.5) tr Uj 1,
j=l

(5.6) tr V 0,

Vj:Im (Xj (xo)B(i))= O,

j= r+ 1, ,r+ s.
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The system (5.4)-(5.6)consists of m + s + equations in t2 + + tr2 + 2tr2+l +
+ 2tr2+s unknowns, so that it is square if m co(t, tr+s).
THEOREM 5.1. Define the dual matrices by (5.4)-(5.6). Then f has a first-order

local minimum at Xo ifand only if Us Ksltj, where K s is a nonnegative real number,
j= 1,...,r+s, andV=O,j=r+ 1,...,r+s.

Proof. First suppose that f does not have a first-order local minimum at x0 and
assume the given condition on the dual matrices holds. Let d be a descent direction for
f from x0. Then by Lemma 3.4,

Re(hs(x0)tst)<0, =l,...,ts, j=l,...,r+s,

where { gst } are the eigenvalues of BS)(d), defined by (3.10). It follows that

r+s, Ks Re (tr (sl(Xo)BS)(d)))<O.
j=l

(Note that Z+_- Ksts by (5.5), so not all the { Ks } are zero.) Therefore, since the
trace is the sum of diagonal elements,

r+s, Ks tr (Re (s(xo)BS)(d)))<O.
j=l

But from (5.4), using the facts that Us Kslt and Vs 0, and that XSl(X0)Btks) is real
forj 1, r, we have

r+s

str (Re (Xs(x0)BkS))) =0, k= 1, ,m.
j=l

By (3.10), this is a contradiction.
Now suppose that the given condition on the dual matrices does not hold. We wish

to show that there exists a descent direction. Solve the following linear system in
60, 61, 6m, ,r+ l, gr+s] - m+s+ l.

(5.7) 6oItjb E 6k’jl(Xo)B(kJ)=Ej, j= 1, ,r,
k=l

m

(5.8) 6oItj+ , 6k Re(j(xo)B(kJ))=Ej, j=r+ l, ,r+s,
k=l

m

(5.9) ejlt+ ., 6Im(Xji(xo)BJ)=Fj, j=r+ 1, ,r+s,
k=l

where the fight-hand sides { Es, Fs } will now be defined. First note that the coefficient
matrix of the left-hand side has full row rank, since it is the transpose of the coefficient
matrix of the system (5.4)-(5.6), which defines the dual matrices. Now define all right-
hand side matrices { Es, Fs } to be zero except one, namely Eh or Fh, which is to be
defined by the first applicable case from the following list. At least one case must apply
by assumption.

(i) Set Eh epe if there is a dual matrix Uh with a nonzero element in the
(p, q) position, with p # q. Here ep denotes the pth column of Ith.

(ii) Set Fh eper if there is a dual matrix Vh with a nonzero element in the
(p, q) position, with p # q.
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(iii) Set Eh to

(5.10) eperp ep+ ,erp+ + eperp+ ep+ ,erp
if Uh is diagonal but has different pth and (p + 1)th diagonal entries.

(iv) Set Fh to (5.10) if Vh is diagonal but has different pth and (p + 1)th diagonal
entries.

(v) The only other possibility is that Uh KhI where Kh < 0 for some h, since we
know tr V 0, j r + 1, r + s by (5.6). Set Eh --Io,.

Now take inner products of { Uj } with (5.7) and (5.8), respectively, and inner
products of V with (5.9), respectively. Summing the result and using (5.4) we obtain

r+s r+s

/i0 tr Uj + ej tr V U,’Eh + Vh’Fh.
j=l j=r+l

Here one ofthe terms on the right-hand side is zero. The other is nonzero by construction.
Using (5.5), (5.6) we therefore have/i0 4: 0, and, as before, we may take i5o > 0 by
reversing the sign ofthe fight-hand side and the solution of(5.7)-(5.9). Now add times
(5.9) to (5.8) to obtain

m

(5.11) 6kXj(xo)B(kJ)=Ej+Fj--(6o+eji)It, j=r+ 1, ,r+s.
k=l

In cases (i)-(iv) the eigenvalues of all Ej, j 1, r, and all Ej + Fj, j r + 1,
r + s, are zero, even for j h. Therefore, by (5.7) and (5.11),

Re(,j(Xo)ujt) =-dio, l 1, ,tj, j= 1, ,r+s,
where {/z jz } are the eigenvalues of

B(J)(d) ., 6B(j).
k=l

In case (v) the hth equation gives

Re )h (Xo)m) -6o

since Eh =-I. In both cases f’(x0; d)<0, where d [tl,-’-, m]T by Lemma
3.4.

Remark. In cases (i)-(iv), descent is obtained by maintaining all eigenvalue mul-
tiplicities but making kh khO, defective (to first order). We could just as well
split khl ’hth SO that the change in all eigenvalues in the group has a common
positive component in the direction (in the complex plane) --kh(Xo), and has different
components in the orthogonal direction, i.e., tangent to the circle centered at the origin
and passing through khl(Xo). This is what we did in Theorem 4.4, where the multiple
eigenvalue is real. All we need do is set Eh or Fh, respectively, to a matrix with imaginary
eigenvalues and nonzero inner product with Uh or Vh. In case (v), descent is obtained
by preserving all nondefective eigenvalue multiplicities but reducing the modulus of
by more than the moduli of the other eigenvalues.

Remark. In the case s 0, tj 1, j 1, r, Theorem 5.1 reduces to the
standard min-max optimality condition where only case (v) applies. In the case s 0,
r 1, the theorem reduces to Theorem 4.3. In the case r 0, s 1, the theorem reduces
to a statement about splitting a multiple eigenvalue which is one ofa single active complex
conjugate pair.
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We conclude this section with two examples.
Example 5.1. Reconsider Example 1.1. At Xo [- ], we have r 2, t t2 1,

s 0. The codimension of the manifold defined by IX(x) IX=(x) is c(1, 1; 0)
1, so since m 1, the dimension of the manifold is zero. The optimality condition is
checked as follows. We have

Xl(X0) 1,

i1[Q1 Qz]

X(Xo) -,

] [p1p]= 1[1-1

3

Equations (5.4)-(5.6), which define the dual matrices, in this case scalars, give

3
Wl -- W2--O W -[- W2-- 1.

The solution is U1 K 4
, U2 K2 , so Xo is indeed optimal.

Example 5.2. Let n 10, let Xo 0, 0] r, and define Ao A (Xo) by

-1

-1

This matrix has one active quadruple real eigenvalue and one active double complex
conjugate pair of eigenvalues, all with modulus f. Thus r 1, s 1, tl 4, t2 2. In
order for a genetic family A(x) to have Xo, and only Xo, as a point where A(x) has a
quadruple real eigenvalue and a complex conjugate pair with the same modulus, we
require

m c(4;2) 16+8- 1- =22.

The component matrices {Ak }, k 1, 22, are randomly generated by setting the

elements, in the order (A1)II, (AI)I,2, (Al)l,n, (Al)n,,, (A2),, (Am),,,,,,
tO the sequence ft,, v 1, 2, defined by

0,

" 4095’
0, (4450,_l+l)mod4096

and 0o 1.
We have X l,t V, 1, 4, X2,t + i, 1, 2, and

P Q1 elel
r+ e2e+ e3e+ eae,

P2 (eselr+ e7e) + (e6eT+ e8e),

Q2 --;( eser+ e7er) + _-( e6el
r+ e8e).

V2 V2
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Here ep is the pth column of the identity matrix of the appropriate dimension, so that
P1, Ql are 10 4 and P2, Q2 are 10 2. Forming the system (5.4)-(5.6) and solving
it, we obtain

.455 .040 .039 231
110 .094 -.057 187
007 .017 .335 -.043

-.227 .092 .002 187

U2=
114 -.050/’ V2=

.338 .5151"
Thus there are many possible descent directions. For examl’.e, we have the following"

(i) Let El -e4er, E2 0, F2 0. Solving 5.7 )-( 5.9 we obtain (6o, d, e2) with
f’(0; d) -60 -.227. Along this direction ,1.1 ,1,4 does not split but becomes
defective (to first order).

(ii) Let E1 -e2e
r + ele, E2 0, F2 0. We get f’(0; d) -60 -.150.

Because El has imaginary eigenvalues, ,l, ,1,4 splits into a complex conjugate
pair and a double real eigenvalue (to first order).

(iii) Let El 0, E2 -e2e(, F2 0. We getf’(0; d) -60 114. This time
it is the double complex conjugate pair of eigenvalues that becomes defective (to
first order).

(iv) Let E1 0, E2 -e2el
r + ee, F2 0. We getf’(0; d) -60 -.097. The

double complex conjugate pair of eigenvalues splits in directions tangent to the circle in
the complex plane centered at the origin with radius V.

Finally, there is the degenerate case.

(2C) Nonsymmetric case, where neither (2A) nor (2B) applies.

This case generally applies if m < ca(tl, tr+ s). As before such situations are degen-
erate, and the optimality condition does not apply.

6. The defective case. IfA(xo) has a defective active eigenvalue, none ofthe previous
results apply. In such cases it seems very hard to determine in general whether Xo is a
local minimizer off, and, if not, to generate a descent direction. Indeed, it is well known
that even determining the Jordan structure ofA (Xo) is difficult numerically.

Suppose there is one real active multiple eigenvalue ,l(X0) )t(Xo), and
suppose the orders of the corresponding Jordan blocks are ul >- >= up, -< p =< t.
The codimension of the manifold on which the same Jordan structure is preserved is
c cz(u, up), given by (2.6). If m > c, then genetically the dimension of this
manifold is at least one, and ifxo does not minimizefon the manifold, it seems reasonable
to suppose that a descent direction exists. This is not clear, however, sincefis not Lipschitz
along lines through Xo.

If m c, then genetically x0 is the only point where A(x) has the given Jordan
structure. If 1 (x0) is derogatory, i.e., there is more than one Jordan block corresponding
to ?l(Xo), it may be possible to decrease f(x) by making ,l(x) "more defective," i.e.,
moving to a point x where two of the Jordan blocks combine to form a larger block.
Such points lie on a manifold with smaller codimension and hence larger dimension. If
m c and , (x0) is nonderogatory, i.e., p 1, it will generally be necessary to split the
multiple eigenvalue to obtain a reduction in f. It seems that the cases where Xo is most
likely to be a minimum are where ,l(Xo) is nonderogatory.

If (x0) is nonderogatory, an arbitrary perturbation ofx with size e will generally
perturb the eigenvalues by O(e l/t). More specifically, the eigenvalues can be expanded
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in Puiseux series; see Kato (1984, p. 65 ). The sum ofthe perturbed eigenvalues is analytic
in e (Kato (1984, p. 78)); accordingly, the O(e l/t) changes in the eigenvalues are
generally of equal magnitude and along directions in the complex plane separated by
angles of 2r/t. It follows that if > 2, the spectral radius is increased by O(e 1/t). If
2, the only case in which the spectral radius changes by O(e) is that in which the eigenvalues
split into a complex conjugate pair; or more generally, if ,1 (Xo) is complex, that in which
the changes in the eigenvalues are tangent to the circle in the complex plane centred at
the origin and passing through ,1 (xo). However, it is also true in the nondefective case
that arbitrary perturbations to x generally increase the spectral radius; the question is
whether a properly chosen perturbation can decrease f. It may be possible, even in the
nonderogatory case, to perturb x so that the spectral radius is decreased. This would
require that the first nonzero term in the Puiseux series be either an imaginary term of
size O(e l/2) or a real term of size O(e). It might be achieved, for example, by splitting
off a complex conjugate pair of eigenvalues and preserving multiplicity 2.

Consider Example 1.1. At x0 0, ,1 (x0) is defective, with n 2, p 1. We
have c m 1, and, indeed, x0 is the only point where ,(x) is defective. The point Xo
is a local minimizer off. Now generalize the example to

+3’ ]A(x)=
-1

with x0 0 ]. Regardless of 7, the eigenvalues ofA (x) are real for < 0 and we may
legitimately generalize the notion of directional derivative to say that f’(0; -1) +
For 1 > 0, the eigenvalues are a complex conjugate pair, with

so that

f’(0; +1) 3, + 1/2.
Thus zero is a first-order local minimizer if and only if 3" >= -1/2. In fact, we may without
difficulty extend the definition of Clarke’s generalized gradient to handle the case m
regardless of whether , (x0) is defective. In this particular case we obtain

0f(0) [-,3,+ 1/2]

so that, for any 3’, f has a first-order local minimum at zero if and only if 0 e Of(O).
The reason that duality theory, particularly the theorems in 4 and 5, is so useful

is that information computed only at x0 defines dual variables, in our case matrices, that
resolve the question of optimality and give information regarding descent directions. If, (x0) is defective, however, it does not seem possible, even in the simple case just
described, to resolve optimality directly from the information given by the Jordan form
ofA (x0) together with the component matrices {Ak }. It is possible, ofcourse, to determine
whether a given direction d is a descent direction by looking at the limit of the well
defined quantitiesf’(x0 + ed; d), where e > 0 and A(xo + ed) has distinct eigenvalues,
but this is of little use when m > 1.

Let us turn to Example 1.2 (see Fig. 1.2). We see that at, say, Xo 1, 0 r, it is not
trivial to determine which directions into the "complex region" are descent directions.
In this case, the defective manifold shown in Fig. 1.2 is linear, so reducingfby keeping
the eigenvalue defective poses no difficulty.

Finally, consider the following example.
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Example 6.1. Let n 3, m 2 and define

0 .5 -.2 -.4 0 0 0
A(x) 0 + 1 .7 1.2 + 2 0 0 0

0 0 --2 .8 --.3 0 0

Let Xo 0, 0 . At Xo, A has a nonderogatory triple eigenvalue. The codimension c
3 2. Since m 2, Xo is the only point with this Jordan structure. Figure 6.1 gives
a contour plot of 0(l, 2). Figure 6.2 shows graphs ofo(,/2) along the lines 2 0.1,
2 0 and 2 --0.1, respectively.

There is a curve clearly visible in Fig. 6.1 across which p(x) is not differentiable.
Along the part of the curve above the point Xo, A(x) is defective; more specifically, the
triple eigenvalue splits into one defective double real eigenvalue and one single eigenvalue.
On the part of the curve below x0, A (x) is not defective, and in fact it has distinct
eigenvalues, one complex conjugate pair and one real eigenvalue. Along this part of the
curve, p(x) is a Lipschitz max function, with the complex conjugate pair and the real
eigenvalue achieving the same modulus. Theorem 5.1 is trivially applicable at these
points. It can be seen that p is Lipschitz along 2 -0.1 (Fig. 6.2(c)), that p is not
Lipschitz along 2 0.1 (Fig. 6.2 (a)), and that p has even more rapid variation along
2 0 (Fig. 6.2 (b)); this is because a triple eigenvalue is being perturbed in the last case.
There is another curve emanating up from x0 along which the triple eigenvalue also splits
into one defective double real eigenvalue and one single eigenvalue. This curve is not
visible in the contour plot, since it is the distinct eigenvalue that has the maximum
modulus. Thus the "defective manifold" has a cusp at x0. This is consistent with the
illustration given by Arnold (1971, p. 38); the manifold here corresponds to a cross-
section of the one shown by Arnold.

We note that p is apparently locally but not globally minimized at x0. There are
lower values of p on the curve of discontinuity towards the bottom of Fig. 6.1.

FIG. 6.1. Contour plot ofExample 6.1.
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In summary, the question of optimality seems very hard to resolve in the defective
case, and many interesting questions remain open.
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Abstract. This paper presents an overview of the periodic Lyapunov equation, both in discrete time and
in continuous time. Together with some selected results that have recently appeared in the literature, the paper
provides necessary and sufficient conditions for the existence and uniqueness of periodic solutions.
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1. Introduction. The Lyapunov equation arises in a large variety of problems in
linear systems theory. In particular, it represents a basic tool for stability analysis oflinear
systems and for state covariance computation in a stochastic framework. It is also useful
in the analysis of the Riccati equations encountered in optimal filtering and control
problems.

Due to its importance, the Lyapunov equation has long deserved considerable at-
tention, starting with the pioneering work of Lyapunov himself [1]. Since then, most
results have concerned the time-invariant case (algebraic Lyapunov equation). In par-
ticular, in 2 ], 3 ], the so-called "Lyapunov lemma" was established, linking the existence
of a positive-definite solution to the asymptotic stability ofthe underlying system. Other
authors (see, e.g., [4], [5 ]) investigated spectral properties of solutions, which led to
further developments known as the "inertia theory."

In the present paper, we consider the periodic Lyapunov equations, namely the
discrete-time periodic Lyapunov equation (DPLE)

(1) P(t+ 1)=A(t)P(t)A(t)’+B(t)B(t)

where e Z, and A (.): Z -- Rn n, B(" ): Z -" Rn m are periodic matrices of period
T e Z /, and the continuous-time periodic Lyapunov equation (CPLE)

(2) [( t) A (t)P(t) + P( t)A t)’ + B(t)B( t)’

where R, and A(-):R -- Rn n, B(" ):R -- Rn m are continuous periodic matrices
of period T 6 R +.

In many problems, the dual versions ofthese equations must be considered. However,
we will concentrate only on the DPLE and CPLE above, since the analysis of the dual
equations can be carried out by standard duality considerations.

Some results obtained in the algebraic case have been recently extended to the
periodic Lyapunov equations. In particular, the "periodic Lyapunov lemma" was worked
out in [6], [7], while the "periodic inertia theory" was addressed in [8 ]-[11]. Results
concerning the Lyapunov equations with generally time-varying coefficients can be found
in [12] and [13].

Despite such a large amount ofresearch, a complete picture ofnecessary and sufficient
conditions for the existence and uniqueness ofperiodic solutions ofthe DPLE and CPLE
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is still lacking. Filling this deficiency is the main purpose of this paper. However, a few
previous results are also reported herein, for the sake of completeness. The implications
with the newly developed theorems will be appropriately pointed out.

Basically, criteria for the existence and uniqueness ofreal symmetric (possibly positive
(semi-)definite) T-periodic solutions ofthe DPLE and CPLE are provided. The derivation
hinges on reducing to a suitable discrete-time algebraic Lyapunov equation (DALE),
the solutions of which are shown to be the periodic generators of the DPLE and CPLE.

Major attention will be devoted to the DPLE. Actually, the analysis of the CPLE is
completely analogous and leads to conclusions that are (mostly) formally identical.

The main results of this paper are stated in terms of the structural properties and
the canonical decomposition of linear periodic systems. The reader who is unfamiliar
with these topics is referred to [14 for an exhaustive survey.

The paper is organized as follows. After a brief review of some basic concepts re-
garding discrete-time linear periodic systems ( 2), the relationship between the DPLE
and a suitable DALE is discussed in 3. In 4, conditions for the existence and uniqueness
ofthe solutions ofthe DALE are worked out. Such conditions are extended to the DPLE
in 5. Section 6 is devoted to the inertia theory for the DPLE. Finally, the continuous-
time case (CPLE) is briefly treated in 7.

2. Discrete-time linear periodic systemsmbasic concepts. Consider the system

(3) x(t+ 1)=A(t)x(t)+B(t)u(t)

where e Z, and A (.)" Z -- Rn n, B(. )" Z -- R are periodic matrices of period
T e Z /. The transition matrix over [z, t] associated with A(. will be denoted by

(t, z), i.e.,

A(t- 1)A(t-2) A(-), t>-,
(t’z)

In, t= ’.

The monodromy matrix of A (.) at time z is defined as fir (z + T, z). It is well
known [14] that the eigenvalues of r are independent of z, and that system (3) is
asymptotically stable if and only if all the eigenvalues ofr lie inside the open unit disk
in the complex plane. In this case, we will say, for short, that A (.) is asymptotically
stable. Moreover, denote by W(z, t) the reachability Gramian matrix associated with
(A( ), B( )), i.e.,

W(r,t)= b(t,j)B(j- 1)B(j- 1)’(t,j)’.
j=r+l

Also, let ffrr W(-, " + T) represent the single-period reachability Gramian, and/r
be any matrix such that/r/’r lr.

The structural properties of system (3) (reachability, controllability, and stabiliza-
bility of the pair (A (.), B(. ))) have been analyzed in several papers (see, e.g., [14] and
the references quoted therein). It is worth reminding the reader that reachability refers
to the possibility of reaching any state from the origin, while controllability refers to the
possibility of driving any initial state to zero (see, e.g., 15 ]). In the present paper, we
concentrate only on the characterizations stated in terms of the constant pair (r,/r),
where z is fixed. Precisely, the following criteria hold (see [16]).

PROPOSITION 1. The pair (A(. ), B(. )) is reachable at r ifand only if ((br, Dr) is
reachable.

PROPOSITION 2. The pair (A (.), B(. )) is controllable if and only if ((br, Dr) is
controllable.
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PROPOSITION 3. The pair (A(.), B(. )) is stabilizable if and only if (, D) is
stabilizable.

Notice that reachability of the periodic pair (A (.), B(. )) at z does not imply in
general reachability at a different time point. Now, let Xr(t) and Xc(t) denote the reach-
ability and controllability subspaces at time of system (3), and let Zr and Z,c denote
the reachability and controllability subspaces of (, D). Then the following relation-
ship can be proven.

PROPOSITION 4.

Xr(’r Zrr, Xc(’r Zrc
The conclusions of Proposition 4 can be easily derived from the results given

in [171.
It can be shown that the dimension of Xc(r) does not vary with - (see [14]). This

enables us to perform the Kalman canonical decomposition of system (3) into the con-
trollable and uncontrollable parts. Specifically, a nonsingular T-periodic state-space
transformation exists that puts the matrices A (.) and B(. in the canonical form

A("
0 A3( 0

where the pair (Al ("), B1 (’)) is controllable. According to such a decomposition, matrices
and D take on the following form:

= 0 3’ 0

It is straightforward to verify that this partition coincides with the standard canonical
decomposition of the constant pair (, D). In particular, ffl represents both the con-
trollable part of (, D) and the monodromy matrix of the controllable part A (") of
(A(.), B(.)).

3. Time-invariant reformulation of the DPLE. In this section, we will point out the
relationship between the periodic solutions of the DPLE and the constant solutions of a
suitable discrete-time algebraic Lyapunov equation (DALE). We will be concerned with
real symmetric T-periodic solutions of the DPLE. Hence, we will often omit the phrase
"real symmetric," for simplicity.

By solving recursively the DPLE starting from P(z) P, the solution at > z is
given by

P(t) (t, -)Pq(t, )’ + W(-,t).

Since we are looking for periodic solutions of the DPLE (P(r + T) P(z) for all z),
the periodic generator P must satisfy the following algebraic Lyapunov equation (DALE):

(4) P,= b,P/b’, + D,D’,.

Thus, a bijective correspondence between the solutions P, of (4) and the T-periodic
solutions P(. of the DPLE can be established. In particular, the following proposi-
tions hold.

PROPOSITION 5. The DPLE (1) admits a T-periodic solution P( ifand only ifthe
DALE (4) admits a solution P.

PROPOSITION 6. The DPLE (1) admits a unique T-periodic solution (. if and
only ifthe DALE (4) admits a unique solution P.
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In many cases, we are interested in the T-periodic solutions of the DPLE (1) that
are positive definite or semidefinite. In this respect, the following results can be established.

PROPOSITION 7. The DPLE (1) admits a T-periodic solution P(. that is positive

semidefinite at any t(P(t) >= O, for all t) ifand only ifthe DALE (4) admits a positive-

semidefinite solution Pr.
PROPOSITION 8. The DPLE (1) admits a T-periodic solution (. that is positive

definite at time - ifand only ifthe DALE (4) admits a positive-definite solution Pr.
Notice that a T-periodic solution/(. that is positive definite at z is also positive

definite at any t, ifA (t) is nonsingular for all t. In general, it is only positive semidefinite.
.Remark. The DALE (4) can also be seen as the Lyapunov equation associated

with a time-invariant sampled-state representation of the periodic system (3), i.e.,

z(k+ 1)=z(k)+Dv(k), keZ

where

z(k) x( z + kT),

v(k) [u(-+kT)’u(-+ +kT)’ u(-+(k+ 1)T- 1)’]’

and D is the following factor of W"
O [ff(-+ T,-+ 1)B(-)(z + T,z+2)B(-+ 1) B(-+ T- 1)].

This useful reformulation was introduced in [18].

4. Existence and uniqueness conditions for the solutions of the DALE. In view of
Propositions 5-8, our attention must focus on the properties of the constant solutions
ofthe DALE (4). Thus, consider a discrete-time algebraic Lyapunov equation (DALE)"

(5) Q FQF’/ GG’

where F e Rnn, G Rnm, and the unknown Q is real and symmetric.
The purpose of this section is to derive a set of necessary and sufficient conditions

for the existence and uniqueness of the solutions of the DALE (5).
Remark. Consider a nonsingular n n matrix S and the DALE

(6)

where/ SFS- and 0 SG. It is easy to see that Q is a solution of (5) if and only if
Q SQS’ is a solution of (6). Moreover, such a correspondence preserves symmetry
and positive (semi-)definiteness of the solution. Hence, there is no loss of generality in
considering, when necessary, suitable canonical forms of the pair (F, G).

A major role in the sequel will be played by the Kalman canonical decomposition
of (F, G) into the controllable and uncontrollable parts, i.e.,

where (F, G) is controllable. F and F3 are the controllable and uncontrollable parts
of (F, G), respectively.

The results concerning the solutions ofthe DALE (5) are summarized in the following
theorems, whose proofs are given in the Appendix. The symbol #i(M) will indicate the
ith eigenvalue of the square matrix M.

THEOREM 1. The DALE (5) admits a unique solution Q ifand only ifF does not
have reciprocal eigenvalues (#i(F)#j(F) for all i, j).



THE PERIODIC LYAPUNOV EQUATION 503

THEOREM 2. The DALE (5) admits a solution Q ifand only if for each z C, y
Cn, z C such that F’y tY and F’z t-z, it results in y*GG’z 0 (where * denotes
conjugate transpose).

THEOREM 3. The DALE (5) admits a positive definite solution Q ifand only if
(i) F is asymptotically stable (I#i(F) < 1, for all i);
(ii) Ira(F3) for all i;
(iii) F3 is diagonalizable;
(iv) (F, G) is reachable.
THEOREM 4. The DALE (5) admits a positive semidefinite solution Q ifand only

ifFI is asymptotically stable (I/i(FI) < 1,for all i).
THEOREM 5. The DALE (5) admits a unique positive-definite solution Q if and

only if’.
(i) F is asymptotically stable ([/i(F) < 1,for all i);
(ii) F, G) is reachable.
THEOrEM 6. The DALE (5) admits a unique positive-semidefinite solution Q if

and only if:
(i) F is asymptotically stable ti(F < 1, for all i);
(ii) Izi(F3) :/: 1,for all i.
By looking at Theorems and 5, it is evident that, whenever a unique positive-

definite solution Q exists, it is also the unique solution.
In order to avoid ambiguity in the statements of the theorems, it is worth noticing

that all the assumptions on F and F3 must be considered only when the corresponding
parts do not vanish. For instance, any assumption on F3 must be dropped when (F, G)
is reachable (i.e., F F).

The term "diagonalizable" in the statement ofTheorem 3 means that the eigenvalues
of F3 are simple roots of the minimal polynomial.

Notice that some results above can be seen as the discrete-time counterparts of the
theorems presented in 19 ], concerning the positive (semi-)definite solutions ofthe con-
tinuous-time algebraic Lyapunov equation (CALE).

5. Existence and uniqueness conditions for the solutions of the DPLE. This section
is concerned with necessary and sufficient conditions for the existence and uniqueness
ofperiodic solutions ofthe DPLE (1). The derivation ofTheorems 7-12 is straightforward,
let us bear in mind the correspondence between the DALE and the DPLE pointed out
in 3 (Propositions 5-8), and the results on the DALE derived in 4 (Theorems 1-6).

THEOREM 7. The DPLE (1) admits a unique T-periodic solution P(. ifand only
if,b does not have reciprocal eigenvalues.

THEOREM 8. The DPLE (1) admits a T-periodic solution P(. if and only if
for each tC, yCn, zC such that ?b’y uy and -’z t-z, it results in
y*Wz O.

THEOREM 9. The DPLE (1) admits a T-periodic solution P( that is positive definite
for all ifand only if

(i) is asymptotically stable([zi() < 1,for all i);
(ii) [ui(3) 1,for all i;
(iii) 3 is diagonalizable;
(iv) Xr( Xc( ), for all t.
THEOREM 10. The DPLE (1) admits a T-periodic solution (. that is positive

semidefinitefor all ifand only if is asymptotically stable lzi() < 1,for all i).
THEOREM 1. The DPLE (1) admits a unique T-periodic positive definite solution

zh(. ifand only if
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(i) A (.) is asymptotically stable I#i() < 1, for all i);
(ii) (A (.), B(. )) is reachable at any time point t.
THEOREM 12. The DPLE (1) admits a unique T-periodic positive semidefinite so-

lution (. ifand only if
(i) z is asymptotically stable (1#i(1) < 1,for all i);
(ii) [m(3) =/= 1,for all i.
In view of Theorems 11 and 12, the following results can also be easily obtained.
THEOREM 13. Suppose that the pair (A (.), B( )) is reachable at any time point.

Then A (.) is asymptotically stable ifand only ifthe DPLE (1) admits a unique T-periodic
positive-definite solution if(. ).

THEOREM 14. Suppose that the pair (A(. ), B(. )) is stabilizable. Then, A(. is
asymptotically stable if and only if the DPLE (1) admits a unique T-periodic positive-

semidefinite solution :(. ).
In order to prove Theorem 14, recall that the assumption of stabilizability of

(A(.), B(. )) implies that all the eigenvalues of 3 lie inside the open unit disk (see,
e.g., [16]).

The conditions stated in Theorems 13 and 14, linking the stability ofA (.) with the
existence of periodic solutions of (1), are usually referred to in the literature under the
heading of"periodic Lyapunov lemma." The same results could be alternatively obtained
by following the rationale used in [6] and [7] (where the continuous-time case is mainly
considered), or by restricting the analysis carried out in 13 ], for general time-varying
linear systems, to periodic systems.

6. Inertia theorems for the DPLE. To complete the overview on the DPLE, this
section is devoted to a brief presentation of the so-called "inertia theory." This theory
consists of a number of results linking the inertia (i.e., the number of positive, null, and
negative eigenvalues) ofany symmetric T-periodic solution ofthe DPLE with the pattern
of eigenvalues of the monodromy matrix of A(.). The interested reader is referred to
10 for a complete discussion on this topic. Here, only the major results are reported.

The following short notation will be used. Given a real square matrix M, the symbols
ac(M), di(M), and rc(M) will represent the number of eigenvalues ofMwith negative,
zero, and positive real part, respectively. The symbols aa(M), 6a(M), and ra(M) will
represent the number of eigenvalues ofM with modulus less than, equal to, and greater
than 1, respectively.

THEOREM 15. Let the DPLE (1) admit a T-periodic solution P(. ).
(i) If (A (. ), B(. )) is reachable at t, then

rc(P(t) aa( ’bo ),
c(P( (o),
6(P( t) 6a(o O.

(ii) If (A(. ), B(. )) is controllable, then, for any
7rc(e(t)) lyd(o qt,

c(P(t)) r(qo),
6c(P(t)) qt,

a(o 0
where qt is the dimension ofthe unreachability subspace of(A(. ), B(. )) at time t.

(iii) If (A (.), B(. )) is stabilizable, then,for any
7rc(P(t)) + 6c(13(t)) ad(q?o),
a(e(t))
d( ’l?o) O.

(iv) If (A(.), B(" )) is stabilizable and P(. is the unique T-periodic solution,
then, for any t, the conclusions ofpoint ii hoM.
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The proof of Theorem 15 in 10 relies on the correspondence between the DPLE
(1) and the DALE (4), already mentioned in 3, and the inertia theory for the DALE.

Notice that some results of Theorem 15, when specialized to the case of positive
(semi-)definite solutions, could be obtained as well starting from the necessary conditions
of Theorems 9-12 of 5. For instance, consider Theorem 15(iii). If P(t) >= 0, for all t,
and (A (.), B(. )) is stabilizable, the conclusion is drawn that ad(ff0) n, or equivalently
that A(.) is asymptotically stable. On the other hand, using the "only if" part ofTheorem
10 and recalling that the stabilizability of (A (.), B(. )) implies the asymptotic stability
of 3, the very same conclusion is easily reached.

7. Results for the CPLE. In this final section, the attention is turned to the con-
tinuous-time periodic Lyapunov equation (CPLE) introduced in (see (2)). Since the
analysis of the CPLE mimics the discussion on the DPLE presented in the previous
sections, the results will be reviewed very concisely; only the major differences between
the two cases will be pointed out.

First, the continuous-time linear periodic system underlying the CPLE (2) is de-
scribed by

2( t) A( t)x( t) + B( t)u( t)

where e R, and A (.): R -- Rn n, B(" ): R -’ Rn m are periodic matrices of period
T e R +. A survey on the structural properties of such a class of systems is contained in
[14]. Here, only some basic definitions and results are needed. The transition matrix

(t, r) associated with A (.) is the solution of the differential equation

de(t, r)
=A(t),b(t,.), t>=r

with initial condition (r, r) In. The symbol will be used again to denote the
monodromy matrix ofA (-) at r (, (r + T, r)).

The reachability Gramian matrix associated with (A (.), B(. )) is

W(., t) (t,a)B(a)B(a)’(t,a)’da, t>-r

and W, W(r, r + T) represents the sin#e-period reachability Gramian. Furthermore,
let D, be any matrix such that D,D’, W,. As in the discrete-time case, the periodic
system (or, equivalently, A (.)) is asymptotically stable if and only if all the eigenvalues
of, lie inside the open unit disk. Similarly, the structural properties (reachability, con-
trollability, stabilizability) of (A (.), B(. )) can be analyzed in terms of the properties of
the discrete-time constant pair (,, D,).

Two important results peculiar to the continuous-time case are that: (i) reachability
and controllability are equivalent notions; (ii) reachability at a given r implies reachability
at any time point. In conclusion, the results expressed in Propositions 1-4 of 2 have
the following continuous-time counterpart.

PROPOSITION 9. (i) The continuous-time pair A (.), B )) is controllable sta-
bilizable) ifand only if (,b,, D, is controllable (stabilizable).

(ii) Xr(r) Xc(r) Z,r
AS for the Kalman canonical decomposition, everything remains formally unchanged

with respect to the discrete-time case, with the additional property that the controllable
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pair (Al("), B(. )) is also reachable. Keeping the same notation as before, (I)l and (I)

are the monodromy matrices ofthe controllable and uncontrollable parts of(A (.), B(- )),
respectively.

It is easy to verify that the solution at time of the CPLE (2) starting with P(z)
P is given by

P(t)= ’b(t,r)PP(t,r)’+ W(z,t).

When we impose periodicity, it follows that the periodic generator P for the CPLE must
satisfy a DALE that is formally identical to (4). Hence, the analysis carried out for the
DPLE can be repeated for the CPLE. As a noticeable difference, remark that a T-periodic
solution/3(. that is positive definite at a given z is positive definite at any time point
(due to the fact that (t, z) is always nonsingular). The results for the CPLE can be
summarized as follows.

THEOREM 16. The CPLE (2) admits a unique T-periodic solution P( ifand only
if(b does not have reciprocal eigenvalues.

THEOREM 17. The CPLE (2) admits a T-periodic solution P(. if and only if
for each It C, y Cn, z C such that ?b’y ty and ?b’z t-z, it results in
y* lYv’z O.

THEOREM 18. The CPLE (2) admits a T-periodic solution P(. that is positive

definitefor all ifand only if
(i) is asymptotically stable (I,(,) < 1,for all i);
(ii) [i(3) 1,for all i;
(iii) (I) is diagonalizable.
THEOREM 19. The CPLE (2) admits a T-periodic solution P(. that is positive

semidefinitefor all ifand only if, is asymptotically stable ([ti() < 1,for all i).
THEOREM 20. The CPLE (2) admits a unique T-periodic positive-definite solution

P(. ifand only if
(i) A (.) is asymptotically stable (Ii() < 1, for all i);
(ii) (A (.), B( )) is controllable.
THEOREM 21. The CPLE (2) admits a unique T-periodic positive semidefinite so-

lution P(. ifand only if:
(i) is asymptotically stable lzi() < 1,for all i);
(ii) 1#i(3)[ 4: 1,for all i.
THEOREM 22 (Lyapunov Lemma). Suppose that the continuous-time pair

(A(.), B(. )) is controllable. Then A(. is asymptotically stable if and only if the
CPLE (2) admits a unique T-periodic positive definite solution P(. ).

THEOREM 23 (Extended Lyapunov Lemma). Suppose that the continuous-time
pair (A (. ), B(. )) is stabilizable. Then, A (. is asymptotically stable ifand only ifthe
CPLE (2) admits a unique T-periodic positive semidefinite solution P(. ).

THEOREM 24 (Inertia theorem). Let the CPLE (2) admit a T-periodic solu-
tion if(. ).

(i) If (A(. ), B(. )) is controllable, then for any
zro( P(t) (8o ),
(P(t)) (o),
(P( a(o o.

(ii) If(A(. ), B(. )) is stabilizable, then for any
r(P(t)) + c(P(t))= ad(0),
c(P(t)) (0),
a(’I’0) 0.
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(iii) If(A(. ), B(. )) is stabilizable andS(. is the unique T-periodic solution, then
for any
r((t) rd(7o) q,
c(P(t)) rd(’I’o),
6c(P(t)) q,
(o 0

where q is the dimension ofthe uncontrollability subspace of (A(. ), B(. )). ff]

For an alternative derivation ofTheorems 22 and 23, see [7]. The proofofTheorem
24 can be found in [8] and [9] (see also [11]).

Appendix. This Appendix contains the proofs of the results presented in 4.
The proofs of Theorems and 2 are based on the Kronecker calculus (see, e.g.,

[20]). Precisely, the DALE (5) can be rewritten in the standard form:

(8) Hq=g

where q Vec (Q), g Vec (GG’), and H In2 F(R) F. The existence and uniqueness
conditions for the solutions of (8) are then reinterpreted in terms ofF and G.

Proofof Theorem 1. The eigenvalues ofH are given by #i(F)#j(F) for all the
pairs i, j. Hence, (8) admits a unique solution (H is nonsingular) if and only if
]2i(F) #j(F) 4 1, for all i, j.

Proof of Theorem 2. A necessary and sufficient condition for the existence of a
solution q of (8) is that g R[H] N[H’] . This is equivalent to saying that for all
v R, v’H 0 implies v’g 0. It is known (see [20, p. 27]) that any vector v satisfying
v’H 0 is given by v z (R) y, where y Cn and z Cn are such that F’y #y and
F’z z-lz for some # C. Then, by using standard properties ofthe Kronecker product,
the following results:

v’g= (z(R)y)’Vec(GG’)=(z*(R)y*)(G(R)G)Vec(In)

(z*G)(R)(y*G)Vec(ln)= Vec(y*GG’z)= y*GG’z.

The result of Theorem 2 easily follows.
In the derivation of Theorems 3 and 4, reference will be made to the canonical

decomposition (7). According to such a decomposition, the DALE (5) can be split into
the following subequations:

Q F1Q F’ + FzQ’zF’ + F1QzF’2 + FzQ3F’2 + G G(9)

(o)

(11)

with

Q2 FQ2F’3 + FzQ3F’3,

Q3 F3Q3F’3,

[Q Q2]Q=
Q Q3

Proofof Theorem 3. (Necessity.) Let Q > 0 be a solution of the DALE (5). Now
consider an eigenvalue # of F, and let z C" be an associate eigenvector of F’
(F’z #z). By premultiplying both sides of (5) by z* and postmultiplying them by z,
we obtain

(l#[ 2- 1)z*Oz+z*GG’z=O.
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Since z*Qz > 0, it results in [#[ _-< 1. Hence, F does not admit eigenvalues outside the
unit disk. Due to this fact, we can equivalently consider the following partitioned form
ofF:

where all the eigenvalues of Fa lie inside the open unit disk and all the eigenvalues ofFb
lie on the unit circle. The corresponding matrix obtained from G is

and the solution Q > 0 is transformed into

Equation (5) can be split into

(

(13)

Qc]>0.

Qa FaQaF’a + GaG’a,

Qc FaQcF’t, + GaG’b,

Qb FbQbF+ GbGb.
We now show that Fb is diagonalizable. Indeed, let y be a complex vector such that
F’by #y, t C. Recalling that ]u] 1, (13) implies that

(1/12_ 1)y,Qby+ y,GbG,t,y= y,GbG,t,y=O"

Hence, G’y 0. Suppose now by contradiction that F is not diagonalizable. Then, for
at least one eigenvalue u ofFb, there exists a nonzero generalized eigenvector z such that
F’y uY and F’bZ #z + y. From (13) and G’by 0, it follows that

0 Z*FbQbF’t,y-z*Qby+ Z*GbGy

(#*z* + y* )Qt,#y- Z*Qby

(I/a[ 2_ 1)z*Qt,y+ #y*Qby uy*Qt,y.

This contradicts Q > 0 and, in turn, the assumption Q > 0. Consequently, Fb is diagonal-
izable and its eigenvectors Yi form a basis of C" (n being the order of Fb). Hence,
G;yi 0, for all implies G 0.

It is then apparent that the subspace Y spanned by the vectors [0 x’]’, x e R"e is
contained in the unreachability subspace 2ur of the pair (, (). Since F does not have
null eigenvalues, Y is also contained in the uncontrollability subspace 2, (see, e.g.,
[21]). In particular, n _-< dim (Z,).

Now, consider the DALE (5) decomposed as in (9)-(11). Since there exists a solution
Q3 > 0, it is easy to show that all the eigenvalues of the uncontrollable part (F3) lie on
the unit circle. Indeed, letting u be an eigenvalue of F3 and z be an associate eigenvector
of F, (11) implies

(1.1 - )z*03z 0.

Since z*Q3z > 0, this equation is verified only if [1 1.
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Therefore, the uncontrollability subspace uc of (P, () is such that dim (,uc) <=
rib. Since dim (,uc) dim (,uc), the conclusion is drawn that nb= dim (,uc) and Y--
,uc. Thus, the pair (/, t) is a particular canonical decomposition. Hence, Fa is similar
to F1 and Fb is similar to F3. This completes the proof of points (i)-(iii).

As for point (iv), it suffices to prove that the pair (Fa, Ga), besides being controllable,
is also reachable (in view of the discussion above, (F1, G) and (Fa, Ga) are equivalent
pairs). Suppose by contradiction that (Fa, Ga) is not reachable. Then, beating in mind
the well-known reachability and controllability PBH tests (see, e.g., [15 ]), we find that
there exists a complex vector x such that F’ax 0 and G’ax 0. By (12), this leads to
x*aax 0, which violates the hypothesis > 0. E]

Proof of Theorem 3. (Sufficiency.) From assumptions (i) and (ii), the matrices
FI and F3 do not have common eigenvalues. Thus there exists a nonsingular
n X n transformation

(where S has the same dimensions as F2) such that

with F2 + SF3 F1S. As a matter of fact, this last equation admits a (unique) solution
S due to the fact that F1 and F3 do not have common eigenvalues (see, e.g., [20]).

When the DALE (5) is reformulated in terms of (, (), any solution

Q Q3

satisfies

(14) Q FIQI F’ + GG’,
Q2 FQ2F’3

03 F303 F’3

It is a simple matter of matrix algebra to recognize that F3 is similar to an orthogonal
matrix, namely, that there exists a square matrix such that -F3 is orthogonal.
Hence, a solution > 0 can be constructed by taking 03 ot*, o > 0, Q2 0, and
Q > 0 satisfying (14). From assumption (iv), the pair (F1, G) is reachable. Moreover,
FI is asymptotically stable. Hence, (14) admits a positive definite solution Q in view of
the Lyapunov lemma (see [22]). [2]

Proof of Theorem 4. (Necessity.) Let Q >- 0 be a solution of the DALE (5). It is
well known that, given Q >= 0, there exists a nonsingular transformation S such that

with Q > O. It is easy to see that ( is a solution of

Q PQP’+ OO’
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where P and are defined as

P= SFS_ [ Fr Fs ] O= SG= [ Gr]Ft Fu’ Gt
It can be shown by direct computation that

(15) Or FrQrFr+ GrGr,

(16) 0 FtQ,.F + GtG.
Since Qr > 0, from (16) it is apparent that Ft 0 and Gt 0. Hence, the subspace Y
spanned by the vectors [0 x’]’, x . R n" (where nu is the order ofF,), is contained in the
unreachability subspace , of the pair (/, (). A moment’s reflection reveals that the
eigenvalues of the reachable part of (, () coincide with those of the reachable part of
(Fr, Gr).

Now consider (15 ). In view of Theorem 3, since (15 admits a solution Qr > 0, the
eigenvalues ofthe reachable part of (Fr, Gr) lie inside the unit circle. Thus, the reachable
part of (/, () is asymptotically stable as well. Recall that the asymptotic stability of the
reachable part is equivalent to that ofthe controllable part (see, e.g., 21 ]); thus the proof
is completed.

ProofofTheorem 4 (Sufficiency). Consider the decomposition (9)-( 11 ofthe DALE
(5). It is apparent that 03 0 and Q2 0 solve (10) and (11). Hence, (9) reduces to
the DALE

Q1 FQF’ + GG’
with (F, G) controllable. Since F is asymptotically stable by hypothesis, the existence
ofa solution Q1 -- 0 is ensured by the Lyapunov Lemma (see, e.g., 22 ). In conclusion,
the overall solution Q defined by Q, Q, and Q3 is positive semidefinite. I-3

Proof of Theorem 5. (Necessity.) Suppose that there exists a unique solution
Q > 0 of the DALE (5). Then, in particular, Theorem 3 yields I#i(F)I < 1, for all i,
I/i(F3)l 1, for all i, F3 is diagonalizable, and (F, G) is reachable. Consider again
the transformation used in the sufficient part of Theorem 3. It was shown there that a
positive definite solution of the transformed DALE is given by

0 *
where is an arbitrary positive constant, is such that -Fis orthogonal, and Q >
0 satisfies (14). The uniqueness assumption obviously implies that Fg must vanish. Thus,
F F, and the proof is complete.

Proofof Theorem 5. (Sufficiency.) The proof is part of the well-known Lyapunov
Lemma 22 ].

Proofof Theorem 6. (Necessity.) Suppose that there exists a unique positive semi-
definite solution Q of the DALE (5). In view of Theorem 4, the controllable part (F)
is asymptotically stable, so that point (i) is established. By a suitable transformation, the
pair (F, G) can be put in the following form:

0 Fd 0
0 0 Fe 0

where the eigenvalues of F, Fa, and Fe lie inside the unit disk, on the unit circle, and
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outside the unit disk, respectively. The existence of zero elements in can be easily
inferred from the asymptotic stability of the controllable part. In consideration of the
transformed DALE, any solution

Qc Qf Qg]= Q’f Qa Qh
Q’g Q’h Qe

satisfies

(17) Qc FcQcF’+ GG’,

(18) Qu= FcQTF’a,

(19) Qa FaQaF’a
(20) Qe FeQeF’e.

Since I/ti(Fe) > 1, for all i, the unique solution of (20) is Qe 0. Since /ti(Fc)
/tj(Fa) -, for all i, j, the unique solution of 18 is Qf 0. Thus, any positive semidefinite
solution must take on the form

0 Qd 0
0 0 0

with Qc >- 0 and Qd >= 0 satisfying (17) and (19), respectively. It is easy to see that, in
view of the fact that I/ti(Fd) for all i, (19) admits an infinite number of positive
semidefinite solutions (the Jordan form ofFal can be considered to draw this conclusion ).
Hence, in order to result in uniqueness ofthe overall solution, Fd must vanish. This leads
to the result that I/t/(F) 4: 1, for all i, and, in particular, I/t/(F3)l 1, for all (which
proves point (ii)).

ProofofTheorem 6. (Sufficiency.) Assume that conditions (i) and (ii) are verified.
From Theorem 4, the DALE (5) admits a solution Q >_- 0. Moreover, since
1, for all i, we can consider the following decomposition ofF and G"

where the eigenvalues of Fo and Fz lie inside and outside the unit disk, respectively.
Any solution

of the transformed DALE satisfies

Q’w Qz

(21) Q,,= F,,QvF’,, + GoG’,,,

(22) Qw FvQwF’,

(23) Qz FzQzF’z.

The unique solution of (23) is Qz 0. Moreover, in order to have ( >_- 0, we must have
Qw 0 also. Finally, (21) admits a unique solution Qo, which is positive semidefinite.
Hence, the DALE (5) admits a unique positive semidefinite solution. D
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BLOCK-SEQUENTIAL ALGORITHMS
FOR SET-THEORETIC ESTIMATION*

RONALD K. PEARSON,"

Abstract. A new algorithm is proposed for solving the set-theoretic parameter estimation problem. In
contrast to point estimation strategies like least squares or maximum likelihood, the set-theoretic parameter
estimation problem imposes bounds on model errors and seeks the resulting bounds imposed on the free model
parameters. The exact solution to this problem is a convex polytope in the parameter space with too many
vertices for an exact solution to be practical. Thus, the standard solution approach is to seek an outer bounding
set that is more easily parameterized. This paper describes a computational approach that interpolates in estimation
efficiency and computational effort between two extreme cases described by other authors. Two simple numerical
examples are included.

Key words, set-theoretic estimation, unknown-but-bounded uncertainty, parameter estimation algorithms,
simultaneous linear inequalities, confidence regions
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1. Introduction. Given a sequence ofN experimentally measured "dependent vari-
ables" { Yi and an assumed linear model of the form

P

(1.1) yi ,Gijaj+ei, 1,2,-.. ,N,
j=l

the linear parameter estimation problem is to determine values for the unknown model
parameters aj }. Here, Gi2 } is a set of N p "independent variables" defined by the
specific model structure chosen (cf. 5 for a more detailed discussion) and { ei } is the
sequence ofmodeling errors that represents the degree ofmismatch between the available
data and the assumed model. Deterministic point estimation strategies (e.g., least squares)
proceed by minimizing some norm of ( ei }, yielding "optimal" estimates ofthe unknown
parameters ( aj }, but providing no information about parameter uncertainty. Ifa statistical
description of the modeling errors is assumed, confidence intervals may be computed,
but this approach is not feasible when the statistics are unknown or when statistical
descriptions are inappropriate ].

In such cases, a weaker model error assumption that is often appropriate is the set-
theoretic or "unknown but bounded" [2 error constraint

(1.2) e:, <=ei<=e, 1,2, ,N

where the bounds e-} and (e[ } are known. Given these bounds, the set-theoretic
parameter estimation problem is to determine the region S* in parameter space Rp

containing the parameter vectors a al, , ap r consistent with (1. l) and (1.2).

2. Exact and approximate estimate sets. To proceed, note that the model (1. l) and
the error condition (1.2) may be combined to yield the 2N simultaneous inequalities

P

(2.1) yi-e[ <- ,Gi2a2<-yi-e:f, 1,2, ,N,
j=l
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that must be satisfied by all parameter vectors a in the admissible parameter set S*.
Condition (2.1) implies that S* is the intersection of 2N closed halfspaces in Rp, which
defines a polyhedral set [3, p. 26]. Further, if S* is bounded, it is a convex polytope in
Rp 3, p. 32 ], defined as the convex hull ofa finite number ofpoints. In practice, however,
this number is much too large for an exact determination of S* to be feasible, so some
computationally simpler approximation strategy is necessary.

The most common approximation strategy is to seek an outer bounding set O*
S* that belongs to some class C(co, ,) of sets in Rp parameterized by a p-vectorc0 and
a nonsingular p p matrix X. The class C defines the shape of the bounding sets con-
sidered, the vector Co defines their center positions, and the matrix X defines their size
and orientation. Four specific classes of this type are the following"

Ellipsoids in RP:

E(co, ;) {xeRPl(X-Co)’Y,(X-Co) <- 1,= 2 r, >0
(2) Parallelepipeds in RP:

P(c0, Z) {xeRP[ [IZ(x-c0) IIo -< );
3 Rectangular parallelepipeds in RP:

R(c0, ;)-{xRP[ II(x-c0)ll--< 1, rowsof; orthogonal }
(4) Rectangular parallelepipeds in Rp, oriented parallel to coordinate axes:

PR(co, Z)= {xeRPl II;(x-c0)ll_-< 1, Z diagonal }.
Given a collection { O } of sets from a class C such that O

___
S* for all k, define

the volume ratios

(2.2) wk VO1 { Ok }/vo1 { S* }.
The bounding set O will be termed tighter than Oj if w < w1. Further, given a class C
of bounding sets, if the quantity

(2.3) o o* min vol { O }/vol { S* }
oec
o_s*

exists, any bounding set O for which w w * will be termed maximally tight.
Several points should be made regarding this notion of tightness. First, note that

w

_
for any bounding set O

_
S*. Further, since S* is a closed, convex set, w

implies O S*. The notion of maximally tight bounding sets defined here is similar to
the notion of tightness defined by Kahan [4] for the class E(c0, Z). Specifically, Kahan
considers the intersection I of two ellipsoids and defines a third ellipsoid O to be a tight
bound for this intersection if O E I implies E O for any fourth ellipsoid E. This
notion of tightness may be extended to any class C of bounding sets, i.e., O is tight on
S if O

_
X

___
S implies X O. The following theorem shows that this is a weaker

condition than maximal tightness.
THOgM 2.1. IfO* is a maximally tight member ofthe class C ofclosed, convex

bounding sets, then it is tight in the sense ofKahan.
Proof Suppose O* is maximally tight and let X be another member of the class C

such that O* X___ S*. Since O* _X, wx <= * = Ox o*. Thus, vol {X} vol {O*}
and O*

_
X, implying X O* since both sets are closed and convex.

In terms ofthese notions, the set-theoretic problem considered here consists ofthree
steps:

(i) Select a class C(c0, Z) of bounding sets.
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(ii) Compute (cg, #) corresponding to the tightest possible bounding set 0# in
class C for S*.

(iii) Relate (cg, #) to the original parameters { a.}.
The class E(co, Y,) has been most commonly used in set-theoretic estimation al-

gorithms because ellipsoids have sufficient geometric flexibility to provide reasonably
tight bounds for S* in step (ii). Ellipsoidal bounding sets suffer from two distinct dis-
advantages, however. First, the interpretation of the parameter bounds required in step
(iii) is complicated by the fact that the defining condition for an ellipsoid consists ofp-
coupled quadratic inequalities in the parameters { a. }. For p > 3, direct visualization of
this set is impossible, so interpretation of the results can become a significant practical
difficulty. The second primary difficulty with the class of ellipsoidal bounding sets is that
it is not closed under intersection, introducing complications in sequential set-theoretic
estimation procedures in which a priori bounds are to be combined with updated bounds
obtained from new data.

The class P(co, Z,) of bounding parallelepipeds in Rp is similar in its geometric
flexibility to the class E(c0, 2; ), exhibiting similar advantages and disadvantages, although
it does not appear to have been considered before. The classes R(c0, 2;) and PR(Co, 2;)
are subsets of P(c0, 2;) obtained by restricting the form of the matrix 2;. Consequently,
tighter bounds can generally be obtained in P(Co, 2;) than in R(co, 2;), while these
bounds are correspondingly tighter than those achievable in PR(Co, Z,). Regardless, the
class PR(Co, Z, has been considered by other authors ], 5 ], 6 because it is the only
one of these classes of bounding sets that does not suffer from the two difficulties noted
for ellipsoids. In particular, interpretation of the bounding sets is immediate, since each
set represents independent bounds of the form

(2.4) c) 2.1 _< aj =< c + 2;-1.
Similarly, PR(co, Z) is closed under intersection (i.e., (PR, f3) is a meet semilattice
7 ]), considerably simplifying the computational effort required to sequentially combine
a priori parameter estimates with updated parameter estimates. Consequently, attention
will be focused for the remainder of this paper on the class PR(Co, Z ), hereafter called
"parallelepiped bounding sets" for simplicity.

3. Rectangular parallelepiped bounding algorithm. Various approaches have been
proposed for computing parallelepiped bounding sets 1], 5 ], 6]. Maximally tight
bounding sets are obtained with the algorithm ofMilanese and Belforte ], who reduced
the problem to that ofsolving 2p linear programs, each inp variables with 2Nconstraints.
The principal disadvantages of this algorithm are the computational effort required for
large N and the fact that it is a batch algorithm. Consequently, this algorithm is not
suited to real-time applications or exploratory data analysis applications where outlier
detection is a significant concern, or to the analysis of nonstationary data where adaptive
parameter estimators may be desirable. As a partial solution to these problems, Belforte,
Bona, and Cerone [5] use an ellipsoidal algorithm developed by Fogel and Huang [8]
to preprocess the data sequentially. In so doing, they obtain a bounding ellipsoid E that
intersects all of the hyperplanes defining S* (i.e., all of the "active constraints"), and
possibly some, but not all, of the other hyperplanes defined in (2.1). Thus, by selecting
only those hyperplanes that intersect E, they are able to reduce the number ofconstraints
in the Milanese and Belforte algorithm from 2N to something substantially smaller.

An even simpler algorithm for computing bounding parallelepipeds has been pro-
posed by Fogel and Huang 6 (this should not be confused with their ellipsoidal algorithm
8 ]). In this parallelepiped algorithm, the data is processed one point at a time, using
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each inequality in (2.1) along with a priori parameter uncertainty intervals to solve for
a posteriori parameter uncertainty intervals. Unfortunately, the quality ofthe parameter
estimates obtained with this algorithm is very strongly dependent on the quality of the
a priori parameter estimates used to initialize it. This point will be illustrated in the
numerical example described in 6.1.

The problem considered throughout the rest of this paper is that of preliminary or
exploratory data analysis, since that is where set-theoretic parameter estimation seems
most appropriate. In such cases, the number of model parameters p involved is typically
fairly small (say 2 to 10), while the number of data points available may be quite large
(e.g., hundreds or thousands). Further, a priori parameter estimates, if available at all,
are generally very conservative, and the available data may contain "bad data points"
or "outliers." Thus, desirable features in a set-theoretic estimation algorithm for such
applications are the following: First, the algorithm should process data sequentially to
facilitate detection ofoutliers, without requiting massive recomputation efforts to correct
for their effects if they are present. Second, because N is large, computational complexity
should not depend strongly on N, ideally growing only as O(N). Finally, because a priori
estimates are generally conservative bounds (and possibly inaccurate ones), the final
estimates should not depend on them too strongly.

The algorithm proposed here for computing an outer bounding set containing S*
is a "divide and conquer" strategy that interpolates between the computational efficiency
of Fogel and Huang’s algorithm and the maximally tight bounds obtained by Milanese
and Belforte. Specifically, suppose N Kp for some integer K, and partition the available
data { Yi } and Gij } into K disjoint subsets, of size p and p p, respectively. Alternative
partitionings will be considered in 5, but there is no loss of generality in assuming this
partitioning first for simplicity. Inequalities (2.1) then decouple into K sets of inequalities,
each of the form

p

(3.1) ui<= , Xiiai<= v, 1,2, ,p
j=l

where

(3.2a)

(3.2b)

(3.2c)

Ui Y(k- l)p+ i-- e{k- l)p+ i,

l)i Y(k- )p+ e(k- )p+ i,

Xij-- Gfk- l)p+ i,j

fori= 1, 2, ,p,j= 1,2,...,p, andk= 1,2,...,K. Each of these K sets ofp p
simultaneous inequalities defines bounding sets Sk whose intersection yields the exact
solution set S*. Consequently, if outer bounding sets Ok are computed for each solution
set Sk, their intersection yields an overall bounding set O* for the complete solution set
S*. In general, this bounding set will be looser than that obtained by Milanese and
Belforte’s algorithm, but tighter than that obtained by Fogel and Huang’s parallelepiped
algorithm.

The global computational strategy just described reduces the problem ofcomputing
the bounding set O* to one of solving K sets ofp p simultaneous linear inequalities.
A variety of computational strategies may be applied to these, an obvious possibility
being the algorithm ofMilanese and Belforte with N p, obtaining the solution by linear
programming. The approach pursued here, however, is to exploit the structure of (3.1)
to obtain a more efficient algorithm. One possibility would be to develop a variation on
Gaussian elimination in which both upper and lower bounds in (3.1) are manipulated



SET-THEORETIC ESTIMATION ALGORITHMS 517

simultaneously at each elimination and substitution stage. Such algorithms are easy to
generate, but experience indicates that they often lead to bounding sets that are not
maximally tight on Sk. This point has been noted in conjunction with the solution of
interval linear equations in which both { Xij } and { yi- ei } are permitted to assume any
value in given intervals [9, p. 61]. Indeed, any algorithm for solving linear interval
equations [9], [10] could be applied to (3.1), but here again these algorithms do not
exploit the structure inherent in (3.1). In particular, it has been shown 10 that the exact
solution set for the interval linear equation problem need not be convex, whereas the
sets Sk considered here are.

The approach advocated here for computing Ok is to first determine the coordinates
of the center c0 of the p-polytope Sk. Then, with c0 as the center of a local coordinate
system, vectors c l, c2, cp from c0 to the center of p nonparallel facets of Sk are
determined. These vectors are then used, with the result ofTheorem 3.1 and its corollary
below, to construct the vertices at which the extremes of Sk occur. As will be seen from
the results that follow, this approach reduces the problem of computing Ok to one of
solving p + sets ofp p simultaneous linear equations of the form Xcj zj.

Before giving a detailed pseudocode description of the algorithm just outlined, it is
necessary to establish the following key results. First, note that Sk is a p-polytope with
2p vertices

satisfying the linear equations
p

(3.3) Xmisj trfl
i=1

for m 1, 2, p and j 1, 2, 2p. Here, t’ Um or 1) for all j, and it will
simplify the proof of Theorem 3.1 below to write this as

(3.4) tT--ml)mq-(1 --m)Um

where Jm 0 or 1. Similarly, the centers c0, c l, cp of Sk and its p principal facets
are given by cj. [c, c, c.] r, where

p

(3.5) Xmicj Zr,
i=1

(3.6a) Zt Um + l)m)/2,

v-u)/2 ifm=j,
(3.6b) z’=

0 otherwise

for j 1, 2, p. Note that the vector z [z, z2, z] T defines the center of
the constraint set, placing e0 in the center of Sk, equidistant from the parallel supporting
hyperplanes defined by lower bound u and upper bound vj, for all j. Similarly, the

m Tvector zm [z, z’, zv defines a vector em directed from eo to the center of
facet m, parallel to the other facets of

Given these results, the keys to obtaining an exact solution for the tightest bounding
set Ok for (3.1) are the following theorem and its corollary.

THFOREM 3.1. Suppose the matrixX [Xi] has rank p. Then, any vertex sj ofSk
may be expressed as the vector sum

p

(3.7) s C0 + Z [2Jr-- 1]Cr.
r=l
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Proof. Since X is full rank, the solutions of (3.3) and (3.5) are unique. Thus,
it suffices to show that, given coefficients Jm defining sj, (3.7) is consistent with
(3.3)-(3.6).

Taking (3.7) component by component, we can expand the left-hand side of (3.3)
as follows:

p p

Z XmrS Z+ Z [2fjr-- 112r
r=l r=l

where (3.5) has been used to simplify the fight-hand side. From (3.6), it follows that

p

z+ [2fjr--1]grm=(VmWUm)/2+[2fjm--1](Vm--Um)/2
r=l

fjml)m-[-[1--fjm]Um

Thus, (3.3) is satisfied, establishing the result.
COROLLARY 1. Given m, the maximum value ofthe mth component ofanyparameter

vector in Sk is given by
+(3.8a) am C -[- O"m

and the minimum value is given by

(3.8b) a, cg’- am

where
p

(3.9) O’m-’- Z crml.
r=l

Proof From Theorem 3.1, the mth component of any vertex vector sj is given by
p

Srf C + qjrCr
m

r=l

where qjr + 1. Clearly, this sum is maximized when all terms are positive, corresponding
to qr sgn Crm ], from which (3.8a) follows immediately. Similarly, this sum is minimized
when all terms are negative, from which (3.8b) follows by a similar argument. V1

Given these results, an outer bounding algorithm may be implemented as follows.

set O a priori bounding set, if available;
otherwise, set O Rp’,

partition the available data into K subsets, either as in (3.2a), (3.2b), and (3.2c),
or by using one of the schemes described in 5;

do for k 1,2, ,K

do for q 0,1,2, ,p

nform the vector Zq from (3.6a), (3.6b)
resolve Xcq zq for c

end do
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/compute O [ai-, ai] [a, ap] from (3.8a), (3.8b), and (3.9)

compute O7, O, f) O7,-1

end do

Algorithm returns Ok as the outer bounding set O*.

4. Tightness of bounds Ok. A useful adjunct to the computational algorithm just
described is an estimate of the tightness Oak of Ok as a bound on &. It is easy to develop
such a bound by considering the largest inner bound Ik contained in Sk ofthe same shape
as Ok. That is, if Ok C(c0, Z), take Ik(h) C(c0, hZ) for the maximum h such that
Ok

_
&
_

Ik(h). It then follows that

(4.1) vol { Ok } >- vol { Sk } >- vol { Ik(h } hp vol { Ok }.
Thus, from the definition (2.2) of oak, the tightness of the outer bound Ok satisfies
the inequality

(4.2) =< Wk -< h-.

To compute h, it is most convenient to first change coordinates in a way that trans-
forms the outer bounding set Ok into the unit cube, centered at the origin. Thus, we
define centered and scaled parameters bj by

(4.3) bj= (a- co)/a
from which it follows by (3.8a, b) and (3.9) that

-1 _-<b -<

for j 1, 2,...,p. The corresponding transformed values for Xij, ui, and vi
are, respectively,

(4.4a) Xij -- Fi Xijaj,

(4.4b) ui gi ui vi / 2,

(4.4c) vi -’ +gi vi- ui)/2.

Under this transformation, (3.1) defining Sk becomes
p

(4.5) -gi <- , Fijb.i <= gi
j=l

and the inner bound sought here is the largest cube

(4.6) Ik(h)=[-h,h] [-h,h]

such that Sk Ik(h). This value of h is given by the following theorem.
THEOREM 4.1. The largest h such that Sk Ik( h is given by

(4.7) h=n,n{gi/;= Fi, }.
Proof. Here, Ik(h) is the convex hull of the 2p vertices

Yr qlrh, q2rh, qprh r

whereqjr=_l forj= 1,2,...,pandr= 1,2,...,2p.
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Thus, since Sk is convex, Sk Ik(h) is equivalent to V . Sk for all r

P

:= gi <= fijqjrh <= gi
j=l

for all i, r. Since qjr + for all j, r, it follows that

P P P-, Iflh<= , Fijqjrh<

_
Ifijlh

j=l j=l j=l

where both extremes are achieved by vertices of Ik(h). Thus, Sk
_

Ik(h) if and only if

P

E Ig,lhgi
j=l

for 1, 2, p. To satisfy all of these constraints simultaneously, it follows that the
maximum allowable value of h is given by the bound (4.7), as claimed, l-q

Geometrically, h represents a measure ofthe extent to which the facets ofthe polytope
Sk lie parallel to the facets of the hypercube Ok. Consequently, if h is consistently very
small for most of the K data partitions, this may be an indication that some of the
parameters { aj } in the model under consideration are strongly coupled. If so, it may be
desirable to identify and combine these coupled parameters to obtain a new, possibly
simpler, model in which the free parameters are less strongly coupled and thus more
clearly identifiable from the available data.

5. Data partitioning alternatives. The key step in developing the algorithm outlined
in 3 was the partitioning of the N p matrix G into Kp p submatrices { Xk }. While
a disjoint partitioning of the data was assumed for simplicity in 3, the only essential
requirement was that the resulting matrices Xk be nonsingular. A necessary condition
on the selection of such nonsingular data partitionings is the following: Define a non-
redundant partitioning P:(G) as any collection { Xk } ofKp p matrices formed from
the rows of G such that the same row does not appear more than once in any Xk. If all
of the available data is to be used (i.e., if all rows of G are to be used at least once in the
estimation process), it follows that nonredundant partitionings P(G) exist only for
N/p

_
K <- N!/(N- p)!p!.

The case K N/p corresponds to the disjoint partitioning assumed in 3, while
the case K N!/(N- p)!p! is an impractically complex strategy that guarantees a
complete vertex search of the polytope S*. Consequently, this latter partitioning is guar-
anteed to yield the maximally tight bounding set O* obtained by the linear programming
algorithm of Milanese and Belforte [1 ], but with a lot more work in all but the most
perverse examples. The key point is that the size K of the nonredundant partitioning
used in computing the bounding set O provides a useful algorithm tuning parameter
for trading off between computational efficiency and tightness of the resulting bounds.
As the numerical example discussed in 6.1 illustrates, a reasonable compromise appears
to be the "sliding block" partitioning obtained for K N- p by combining each obser-
vation j (i.e., the jth row of G) with its p predecessors (i.e., rows j through
] p + ). Besides representing a reasonable efficiency tradeoff of computational effort
and estimation, this particular scheme is also suitable for real-time applications, yielding
a new parameter bounding set Ok each time a new observation is obtained.

While nonredundancy is a genetic necessary condition for the matrices { Xk } to be
nonsingular, sufficient conditions will be problem specific, as the following three examples
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illustrate. First, consider the problem of fitting (xi, Yi) coordinate pairs with a (p 1)th
order polynomial basis set {p.(x)}. In this case, model equation (1.1) becomes

p

(5.1) Yi , ap (x -[- ei,
j=l

so the G matrix elements are G;j pj_l(Xi). If the sequence (xi) is monotonically
increasing, then a sufficient condition for any nonredundant partitioning to yield non-
singular matrices Xk is the Haar condition 11, p. 337 that every polynomial basis function
pj(x) have at most p zeros on the interval [Xl, XN].

Next, consider the problem of fitting a second-order moving average (MA) model
to input-output data pairs (xi, Yi). Here, model equation (1.1) becomes

yi alxiW a2xi- d- ei,

so the th row of the G matrix is [xi, xi_ 1]. Nonsingularity of a matrix Xk formed by
combining observations and m requires the determinant XiXm-I Xi-lxm to be non-
zero. Practically, this requirement means that exponential input sequences x cr are
not "persistently exciting" and do not exercise the system enough to identify both ofthe
unknown parameters al and a2.

Similarly, consider the problem of fitting a second-order autoregressive (AR)
model to a sequence { Yi } of observed system responses. In this case, model equation
(1.1) becomes

Yi al Yi- + a2Yi- 2 + ei,

yielding a G matrix with rows [Yi-1, Yi-2]. As in the MA model just considered, non-
singularity of the matrices Xk excludes exponential sequences Yi cri. In this case, the
assumed model is over-parameterized, since the exponential response is exactly describable
by a first-order AR model.

Finally, another important consideration in selecting a data partitioning scheme is
the numerical conditioning ofthe resulting matrices {X }. That is, even if they all yield
nonsingular Xg matrices, different nonredundant data partitionings can exhibit very dif-
ferent behavior in practice due to differences in the singular value distributions of these
matrices. As the numerical example in 6.2 illustrates, both the estimation efficiency of
the bounding set O* and the computational effort required to determine it can vary
drastically with different data partitioning schemes.

6. Numerical examples. To illustrate the performance of the computational algo-
rithm proposed in 3, this section presents two numerical examples. The first is an
impractically simple geometric problem, but one that clearly illustrates the mechanics
of all of the parallelepiped estimation algorithms considered here. The second example
considers the very practical problem of evaluating exponential decay parameters from
quantized experimental data.

6.1. Geometric example. Consider the following four inequalities:

(6.1a)

(6. lb)

(6.1c)

0 _-< a + a2 - 2,

0 _-< -al + a2 --< 2,
2 =< al + 2a2 =< 6,

(6.1 d) 2 -< 2al + a2 < 4.
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Here, the exact polytope S* defined by these inequalities is a triangle with vertices
{ (, ), (1, 1), (0, 2)} lying between the hyperplanes defined by the upper bound of
(6.1 a) and the lower bounds of (6.1b) and (6.1d). The maximally tight bounding set
that would be obtained from Milanese and Belforte’s algorithm may be constructed by
inspection from S* as B* [0, 1] [], 2], shown in Fig. 1.

To apply the parallelepiped algorithm ofFogel and Huang, it is necessary to specify
a priori bounds on al and a2. Their algorithm then solves (6.1a) together with the a
priori bound on al to obtain an a posteriori bound on a2. Similarly, the a priori bound
on a2 is substituted into (6. a) to obtain an a posteriori bound on a. This process is
repeated for inequalities 6.1b), 6.1 c), and 6.1 d), using the a posteriori bound obtained
at each stage as an a priori bound for the succeeding stage. If we assume a e [-2, 2
and a2 e [-5, 5 as a priori bounds, the final result of this process is the outer bound
BFH [0, 2] [0, 3], a set 4.5 times larger in area than the minimal rectangle B*. To
see the dependence ofthe Fogel-Huang parallelepiped bounds on a priori estimates, note
that if the starting estimate is [-20, 20] [-20, 20 ], the resulting outer bounds are
BFH2 [--5, ] [-- 11, 12 ], better than the a priori estimate, but over 200 times larger
in area than B*. This dependence on the quality of a priori parameter estimates is a key
point since poor or nonexistent estimates must often be tolerated in practice.

For the bounding algorithm proposed in 3, three possible sequential data partitions
may be considered--inequalities (6.1 a,b), (6.1 b,c), and (6.1 c,d). With these partitions
numbered 1, 2, and 3, the corresponding bounding sets are

0=[-1,11[0,21, 0:=[--,2][-,-], 03=[--,21[0,1.

2

XoXoXoXeXoXe

X

X
oxxxxxxx

a2

BFH1

FIG. 1. Estimate setsfor geometric example.

al
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TABLE
Relative areas ofparameter estimate sets.

Method Set Relative area

Exact solution S* 1.00
Milanese-Belforte B* 4.00
Fogel-Huang Bvn 18.00
Fogel-Huang II BFH2 862.50
Section 3, K 2 Oa* 10.00
Section 3, K 3 O’ 6.67

These bounds may be combined to obtain either

Oa* O16303 [-, 1] [0,2]
or

o’ o, n o,no [-, 1] x [-,2].
For comparison, the relative areas of each ofthese bounding sets are listed in Table

1. It is clear that, for this simple example, the algorithm proposed in 3 yields vastly
improved parameter estimates relative to the Fogel-Huang parallelepiped algorithm,
while retaining its advantages of sequential data processing. Also, note the significant
improvement in performance for this example in going from K 2 (2.5 times the Mil-
anese-Belforte bounding set area) to K 3 (1.67 times this area).

6.2. Quantized exponential decay example. As a more practical example, consider
the identification of exponential decay parameters from empirical data. This is, suppose
some physical measurand y(t) is given by

(6.3) y(t)=Aexp{-t/T}

for >- 0. The time constant T is usually a quantity of significant interest, directly related
to the physical relaxation phenomenon under study. Thus, a common experimental
objective is to determine the unknown parameters A and T from discrete measurements
ofy(t) taken at times tk kTs for k 0, 1, 2, , N- 1, following some experimentally
applied stimulus at 0. The available data from which these parameters are to be
estimated is the set of observations { Yk }, given by

(6.4) yk A exp { -bk } + e
where b Ts/T and ek represents the observation error inherent in each measurement.

If the data is acquired by an m-bit A/D converter, the discrete observations {y }
will be related to the continuous-time signal y(t) by

0, y(t)<Q,

(6.5) y= (j- 1)Q, (j- 1)Q<-y(tk)<jQ,

F, y(t)>=F.

Here, Q 2-mF is the quantization level (i.e., the "least significant bit") of the A/D
converter, and [0, F] represents its full-scale input range. Thus, if the error sequence
{ ek } in (6.4) represents quantization error Yk y(tk), it will satisfy the set-theor-
etic constraint

(6.6) -Q <- ek <-- O

for all k, provided y(t) is restricted to the range [Q, F).
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In its present form, this problem is not linear in the unknown parameters, as required
for the set-theoretic estimation strategy considered here. Equation (6.4) may be linearized,
however, through the following manipulations. First, introduce a relative error rk, de-
fined as

(6.7) rk e/y

and reduce the model (6.4) to

(6.8) y(1 r) A exp { -bk }
where rk satisfies the set-theoretic error constraint

(6.9) -Q/yk <- r <-_ O.

Equation (6.8) may then be linearized by taking logarithms of both sides, yielding

z a- bk + h

(6.11 a) z In yk,

(6.1 lb) a=lnA,

(6.11 c) h -ln (1 r)

and the error h satisfies the bounds

(6.12a) -Lk <-hk <=O

for

(6.12b) L= ln(1 +Q/y).

Applying the data partitioning introduced in 3 to the logarithmically transformed
data { zk } and L yields N2 pairs of inequalities of the form

(6.13a) z2k- =< a (2k- 2)b =< Zzk- 2 + L2k- 2,

(6.13b) z2k- <= a-(2k- 1)b =< z2- + Lzk- 1,

for k 1, 2, ..., N2. Due to the simplicity of these inequalities, analytic expressions
may be developed for the bounds of 3. Denoting the lower bounds in (6.13a) and
(6.13b) as u and u2, respectively, and the corresponding upper bounds as v and v_, the
parameter bounds become

(6.14a) a]-= (2k- 1)u- (2k- 2)v2,

(6.14b) a]= (2k- 1)v-(2k-2)u2,

(6.14c) a=u-v2,

(6.14d) a=v-u2.
Numerical values for these bounds are given in Table 2 for A (implying

a 0) and b 0.07. All of these values were computed from a 100-point simulation
of (6.4) with ek 0 in single precision FORTRAN-77 on a VAX-11/785 computer.
These values were then quantized according to (6.5) with F and m 8, 12, or 16.
Whenever this process resulted in a quantized value of zero, the data set was truncated
to include only nonzero data points. This problem only occurred with the eight-bit quan-

(6.10)

where
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TABLE 2
Exponential decay parameter bounds--uniformly sampled case.

m ai ai a a
8 0.0000 0.00390 0.06514 0.07261
12 0.0000 0.00244 0.06991 0.07022
16 0.0000 0.00015 0.06999 0.07004

Exact: a 0.00000 a2 0.0700

tization, reducing the quantized data set from 100 points to 90 points. The results given
in Table 2 represent the final bounding intervals returned by the algorithm described

in3.
An examination of these results shows that, as expected, the bounding intervals

shrink toward the exact parameter values as m increases, with the difference between the
eight-bit and the 16-bit results being fairly dramatic. Contrary to expectations, however,
these bounding intervals were determined by the first few data points alone, so the estimate
sets do not converge to the corresponding point estimates as N -- . Examination of
the parameter bounding intervals computed at each step k individually shows that these
intervals become wider with increasing k and thus do not influence the final intersection
that defines the overall outer bound O*.

This phenomenon is a reflection of two facets of the exponential decay problem
considered here. First, note that while the bounds on the absolute quantization error ek
are constant, the relative error bounds grow because the measured signal yk is monoton-
ically decreasing. Thus, it is to be expected that the parameter uncertainty intervals will
grow with increasing k. More serious, however, is the fact that the data matrix used at
step k of the estimation process is

(6.15) X= 2k

which becomes increasingly ill-conditioned with increasing k.
Another indication ofthe ill-conditioning ofXis the behavior ofthe scaling parameter

h introduced in 4. If we define the error growth ratio R as

(6.16) R=(1)2--bl2)/(1)l--bll)=L2k_l/L2k_2,

this scaling parameter is the smaller of

(6.17a) h 1/[(4k- 3) +(4k-4)R]

and

(6.17b) hE 1/[(4k-3)+(4k-Z)/R].

In the eight-bit case, h diminishes from approximately 0.53549 for k to approximately
0.00282 for k 45, correctly indicating that the bounds become quite loose for large k.

To improve the conditioning of the X matrix, an alternative experimental design
was developed. Specifically, rather than sampling the data uniformly at times t, nTs,
measurements were assumed to be taken at instants tn 2nTs. This measurement strategy
changed the data matrix Xk from that given by (6.15 to

2 E-E
(6.18) X=

2E-I
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TABLE 3
Parameter boundsfor exponential decay--exponentially sampled case.

m a-? a( a a
8 -0.00388 0.00010 0.06866 0.07106
12 -0.00035 0.00027 0.06995 0.07003
16 -0.00003 0.00000 0.07000 0.07000

Exact: a 0.00000 a2 0.07000

The conditioning of this data matrix also becomes worse with increasing k, but much
more slowly than the data matrix (6.15 ). Bounding intervals for this sampling strategy
are given in Table 3, which shows them to be generally better than those obtained in the
uniformly sampled case. This is an extremely significant conclusion, since these bounds
were computed from much less data, e.g., three data partitions (six inequalities) versus
45 or 50 data partitions (90 or 100 inequalities). Also, note that in contrast to the
uniformly sampled case, the scaling parameters h and h2 in (6.17a,b) depend only weakly
on k in the exponentially sampled case (through R’s dependence on k) and are given by

(6.19a) hi 1/[3+2R]

and

(6.19b) h= 1/[3+4/R].

These parameters are consistently larger than in the uniformly sampled problem, re-
maining on the order of 0.1 for all of the cases considered here.

7. Summary. This paper has described a new parallelepiped-based outer bounding
algorithm for the set-theoretic estimation problem. While the bounds obtained are not
as tight as those of Milanese and Belforte, they are considerably easier to evaluate. In
addition, because it processes the data sequentially, this algorithm can be used in appli-
cations requiting real-time parameter updates or adaptive parameter estimation. Because
ofits ease ofimplementation, especially for small p, and the fact that it yields independent
parameter bounds, this outer bounding algorithm should serve as an extremely useful
tool in preliminary data analysis. For example, it could be used in place of Fogel and
Huang’s ellipsoidal algorithm [8] in Belforte, Bona, and Cerone’s scheme [5] of pre-
processing the data to reduce the number of active constraint candidates in Milanese
and Belforte’s linear programming method ]. Similarly, the algorithm proposed here
could be used as a general prescreening tool to identify regions in the model parameter
space that are worthy of greater scrutiny by other methods.

Finally, because they are not nearly as well known as statistical confidence interval
estimators, it is probably appropriate to conclude with a few remarks conceming the
philosophical and practical implications of set-theoretic estimators. First, note that in
spite ofthe apparent similarities between set-theoretic estimation and statistical parameter
estimation with uniform error distributions, the two are not equivalent. In particular,
the uniform error distribution assumption is stronger than the set-theoretic error con-
straint. If e- e- and e e+ for all i, then the exact set-theoretic estimate set S* does
represent the 100-percent confidence set in Rp for the parameters, estimated under an
assumption of independently and identically distributed measurement errors, uniformly
distributed on [e-, e+]. However, S* may equally well be viewed as the 100-percent
confidence set for any independently and identically distributed measurement error dis-
tribution of compact support on [e-, e+ -skewed, multimodal, discrete, etc. In fact,
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deterministic error models describing bounded amplitude sinusoidal oscillations, poly-
nomial drifts over finite observation times, or chaotic processes are also consistent with
the set-theoretic description. Thus, without additional information regarding this error
distribution, the set S* should not be viewed as anything other than a set of worst-case
parameter bounds. In particular, without such additional information, there is no reason
to select any single point within S* as a preferred point estimator of the unknown pa-
rameter vector in Rp. Conversely, if statistical error models are appropriate, available,
and computationally tractable, they are to be preferred, since they provide much more
information about the unknown parameters (i.e., both defensible point estimates and
uncertainty intervals). In many applications, however, these conditions are not satisfied,
implying a need for practical approaches like the one described here for obtaining pa-
rameter uncertainty estimates from measured data.
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HOMOTOPY METHOD FOR GENERAL X-MATRIX PROBLEMS*
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Abstract. This paper describes a homotopy method used to solve the kth-degree X-matrix problem
(Akk q_ Ak- k-

__
+ Al - A0)x 0. A special homotopy equation is constructed for the case where all

coefficients are general n n complex matrices. Smooth curves connecting trivial solutions to desired eigenpairs
are shown to exist. The homotopy equations maintain the nonzero structure ofthe underlying matrices (ifthere
is any) and the curves correspond only to different initial values of the same ordinary differential equation.
Therefore, the method might be used to find all isolated eigenpairs for large-scale h-matrix problems on single-
instruction multiple data (SIMD) machines.

Key words. ,-matrix, homotopy continuation method, zeros of polynomial systems

AMS(MOS) subject classifications. 65H10, 58C99, 55M25

1. Introduction. Given a kth-degree matrix polynomial

(1.1) P(k)=AkXk+Ak-lXk-l + +AIX+Ao
with Ak, Ak-1, "", A0 e Cnn, the X-matrix problem consists of determining scalars X,
called eigenvalues, and corresponding n nonzero vectors x, called eigenvectors,
such that

(1.2) P(X)x=0

is satisfied. Problems of this kind occur in many different application areas. Note that
the important regular eigenvalue problem

(1.3) Xx=Ax

and the generalized eigenvalue problem

(1.4) XBx=Ax

are just two special linear cases of the general problem (1.2). Various examples of (1.1)
in physical applications can be found in [3 ]-[ 5] and the references cited therein.

A variety of numerical methods are available for solving the h-matrix problem. In
fact, several review papers have already appeared. Without attempting a complete list,
we mention here only those by Gohberg, Lancaster, and Rodman [3], Lancaster [4 ],
[5], Ruhe [12], Scott [13], and Peters and Wilkinson [10]. Roughly, most of the ap-
proaches can be classified into three categories:

(1) Solving the linearized problem;
(2) Iterating directly;
(3) Reducing to the canonical form.

Each approach has its strengths and weaknesses. For example, the first approach can
make use ofthe readily available software packages, but it increases the size considerably.
The second approach includes subspace and Newton-type iterations. Both iterative pro-
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cesses are plausible in theory. However, concerns over the rate of convergence for the
former process and the starting procedure for the latter arise in practice. The third approach
involves the problem of finding zeros of one-dimensional polynomials. When the degree
increases, this becomes an ill-conditioned problem. Interested readers may find more
detailed discussions and references concerning each approach among the review papers
mentioned above.

Recently the homotopy method has been applied successfully to find all isolated
solutions of the linear algebraic eigenvalue problems. In ], Chu proposes a homotopy
equation for (1.3) when A is real, symmetric, and tridiagonal with nonzero off-diagonal
elements. Li and Sauer [7] and Li, Sauer, and Yorke [8] study homotopy methods for
(1.3) and (1.4) by using fairy sophisticated concepts from algebraic geometry when both
A and B are general matrices. In [2] Chu shows that the equation formed in 1] for
tridiagonal symmetric matrices works equally well for general matrices by using elementary
algebraic theory. The same idea is also applicable to problem (1.4).

Solving the X-matrix problem by the homotopy method may be costly because of
the task of following the homotopy curves. We feel that with improvements in the curve-
tracing techniques (say, a hybrid method) this overhead would be substantially reduced.
Recently, Rhee 11 has reported some rather promising results on this subject. On the
other hand, the homotopy method may have the following advantages:

(1) All isolated eigenpairs are guaranteed to be reached. The method can even
approximate nonisolated eigenpairs.

(2) The homotopy curves correspond only to different initial values of the same
ordinary differential equation. Hence, all curves can be followed simultaneously if there
are enough processors.

(3) The homotopy equation respects the matrix structure (if there is any) of the
original problem.

In this paper we present a general treatment of the homotopy method for solving
the general kth-degree h-matrix problem (1.2). Previous results in regard to the linear
algebraic eigenvalue problems should then follow as special cases. Readers should be
cautioned, however, that the line of thinking in this paper is fundamentally different
from that of previous papers.

This paper is organized as follows. In 2 we begin with a collection of preliminary
observations. All these facts are either easy to prove or well known in the literature. We
then use these fundamentally important facts to establish the theory of the homotopy
method in 3. Comments on computational aspects of our method are given in 4,
along with some numerical examples.

2. Preliminaries. In this section we observe some basic facts that will be used in
the development of our homotopy method.

Consider an arbitrary X-matrix

(2.1) P(X;Bk, ,Bo)=BkXk+ +BX+Bo,
where Bk,"’, B0 e Cnn. When it becomes unambiguous, we shall abbreviate
P(X; Bk, Bo) as P(X).

We first observe the obvious fact that the determinant of P(X) is a polynomial.
Indeed, det (P(X)) (det(Bk))Xnk + lower-degree terms. It follows, if we count the
multiplicities, that the h-matrix problem corresponding to (2.1) has exactly nk eigenvalues
if the leading coefficient Bg is nonsingular. Such a h-matrix is said to be regular.

Recall that the resultant R R( a,,, ..., ao, bm, bo) of two polynomials

f(x) a,,x" + + ax+ ao,

g(x) bmxm --b -1- blX + bo,
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with an, "’", a0, bm, bo C, an 4: 0, and bm v 0 is defined to be the determinant
of the (n + m) (n + m) matrix

-a0,al, ,an
ao, al, an

ao, al an
bo, bl ", bm

bo, bl bm

b0, bi bm
which is made of m rows of a’s, n rows of b’s, and zeros elsewhere. It is well known 14
thatfand g have a common nonconstant factor if and only ifR 0. Thus a polynomial
f has a multiple root if and only if its discriminant, the resultant off and its derivative
f’, is zero.

Given di C, 1, n, let D diag (dl, dn) and

p(X)=det(P(X)-D).(2.2)

We claim the following.
LEMMA 2.1. There exist real numbers (d, dn) such that p(X) has no multi-

ple roots.

Proof. We prove the lemma by induction on n, the size ofP(,). For convenience,
we rename the polynomial p() as Pn(,).

When n 1, p (,) has multiple roots ifand only ifthe discriminant R (d) ofp (,)
vanishes. Suppose the leading coefficient ofp (},) is ak. It is easy to see that R(d) is an
(n 1)th polynomial in d with leading coefficient (kak). Therefore, R(d) can vanish
only at finitely many points. There exists a real number d such thatp (,) has no multi-
ple roots.

Let d, , dn_ be chosen by the induction hypothesis so that Pn-(’), the deter-
minant of the principal (n 1) (n 1) minor of P() D, has no multiple roots.
With these fixed values of d, dn-1, we have

Pn()=q,(k)-dnPn-l()

where qn() and p_() do not depend upon the value of dn. We claim the set of real-
valued dn such that p.(,) has no multiple roots is dense in .

Suppose not. Then there would exist an open interval I such that (dn) is a multiple
root ofpn(X) Pn( ; dn). By refining the interval I if necessary, we may assume without
loss of generality that (dn) is differentiable with respect to dn. For each dn e I, we have

0 p.(.(d.)) q.(X(d.))- dnpn-

Upon differentiating with respect to the parameter dn, we get

0 q’n(X(d.))X’(dn)- dnp’-,(X(dn))X,(dn)-Pn-

--p (X) X dn)-p,-l(X(dn))
X X(dn)

-p,_ ,(X(d,)), dnI.
The last equality follows t?om the fact that X(dn) is a multiple root for dn I. Note that
p,- (dn)) -= 0 for d, e I implies (dn) ,0 a constant) for dn I, since Pn- () is a
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polynomial. It follows that p,(X) has a multiple root at X X0 for all d, e I. Choose
d() 4: d(n2) in I. Then

0 Pn(XO) qn( XO)- d(,,’)p,,--, (Xo),

0 Pn(Xo) qn(XO) d(,,z)p,, (Xo),

0 =p,(Xo) q,(Xo)- d(,,)p’,,- (Xo),

0 P(X0) q(Xo)- -, ,,-(X0).

It follows that p,_ l(X0) p,-l(X0) 0. This contradicts the induction hypothesis that
p,-1 (X) has no multiple roots.

The following lemma is an extension of the preceding result.
LEMMA 2.2. The polynomial p(X) in (2.2) has no multiple roots for (dl, d,)

almost everywhere in C" except on a subset ofcomplex codimension 1.
Proof. The polynomial p(X) has no multiple roots if and only if its discriminant

R(d, d,) is nonzero. By Lemma 2.1, we know that R(dl, , d,) is not identically
zero. Furthermore, since R dl, d,) is itself a polynomial in variables dl, dn,
it can vanish only on a hypersurface of complex codimension [see 9 ].

It is well known in basic matrix theory that if all eigenvalues ofa matrix are distinct,
then it has no generalized eigenvectors. In 3 and 6 ], it is shown that this concept can
be extended naturally to matrix polynomials. In particular, the following lemma is equiv-
alent to the statement that there are no generalized eigenvectors 6, eq. 14.3.3 for the
h-matrix P(X). Readers are referred to 3, Chap. and 6, Chap. 14 for more detailed
discussions. We simply state the result without proof.

LEMMA 2.3. Suppose the h-matrix P( X has nk distinct eigenvalues
Let xj be a unit eigenvector of P(X) associated with X, i.e., P(X)x O. Then
P’(Xj)x q Range (P(Xj)), where P’(X) (d/dX)P(X) kBk xk-1 q-

Henceforth we shall assume that the h-matrix P(X) has nk distinct eigenvalues. For
each eigenpair (x, X) of P(X), we define Q Q(x, x) to be the n (n + 1) com-
plex matrix

(2.3) Q(x, x) [P(X),P’(X)x].

It follows from Lemma 2.3 that Q is of complex rank n.
Recall that a linear transformation from C "+1 to C" can be regarded as a linear

transformation from 2,+ 2 to 2, if each component, say z a + ib, of the complex
matrix is replaced by the 2 2 real matrix [gl -b]. Let e flq :" x (2. + 2) denote the real
matrix associated with the complex matrix Q e C "x(’+ l) defined in (2.3). Suppose each
component xg of the complex vector x is written as x ak + ibg, k 1, "", n. We
define a matrix M M(x, X) e N (:" + 1) x (2n + 2) as follows:

(2.4) M(x,X) [ ( ]al,b,a2, ,a,,bn,O,0

Note that the last row ofM is orthogonal to all rows of because P( X)x 0. It follows
that the matrix M is of real rank 2n + 1.

3. Homotopy method. Equipped with the knowledge of the preceding section, we
now consider our original k-matrix problem (1.2).
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(3.1)

(3.)

(3.4)

For simplicity, we shall denote

xk-P()=AkXk-I-Ak-I + +AIXq-A0,

a(X)= clXk--D,

R(X,t,c,D)=(1 t)Q(X)+ tP(X)

where c e C and D diag (dl, dn) e C n" are to be specified later.
Observe that

R(X,t,c,O)= (1-t)Q(X)+tP(X)

xk-l[(1--t)cI+tAk]Ak+tAk_l + +tAIX+[(I-t)D+tAo]

is still a h-matrix. It is easy to show [7 that there exists an open dense set Ul with full
measure in C such that if c e Ul, then (1 t) cI + tag] is nonsingular for all e 0, 1).
Henceforth we shall assume that the scalar c in (3.2) is always chosen from U, and
abbreviate R(X, t, c, D) as R (X, t, D). We shall also denote

gx(x,t) =-R(X,t,D)(3.4)
xk-2=k[(1-t)clWtAk]Xk-1 +(k- 1)tAk_l -t- +tAl.

For the X-matrix problem (1.2), the homotopy function H: C" C [0, 1) --*
C" N is constructed as follows:

[ R(X,t,D)x ](3.5) H(x’X’t)=
(x’x- 1)/2

where x* represents the transpose of the complex conjugate of x. We are interested in
the set H-1 (0). As our main result is we show that H-1 (0) is a two-dimensional smooth
submanifold in 2n 2 .

Note first that H(x, X, 1) 0 corresponds to problem (1.2) with normalized eigen-
vectors. For 1, ..., n, let e; represent the standard ith unit vector in n and Xi be
the jth complex root of (d/c) l/k, where j-1, ...,k. It is obvious that
(ei, Xij, O) H-l (0). We shall use these nk points (ei, Xij, 0) C C 0, 1) as our
initial points when constructing homotopy curves connected to the desired solution
of(1.2).

The following theorem is the main result.
THEOREM 3.1. There exists an open dense subset U offull measure in C n such

that, for D diag (dl,’", dn) with (d,..., dn) U and each initial point yij
(el, Xi, 0), the connected component C(yi) ofyij in H-l(O), when identified as a sub-
set in 2 2 , has thefollowing properties.

1. C(yi) is a (real) analytic submanifoM in [R2 2 with real dimen-
sion 2.

2. The cross-section of C(yi) with each hyperplane constant [0, 1) is a unit
circle centered at (0, X) 2n ff2 2 for some X.

3. The manifolds C(yij) corresponding to different initial points do not intersectfor
t[0, ).

4. Each manifold C(yij) is boundedfor [0, 1).
Proof. For each fixed [0, 1), consider the h-matrix

X,t,D) (clXk D)+-_tP(X)R(X,t,D)=-_tR
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By Lemma 2.2, there exists a hypersurface /2 (t) e C" of complex codimension (real
codimension 2) such that if (dl, d,) U (t), then det (R (),, t, D)) does not have
multiple roots. As varies in [0, 1), the set V Ut[0,) U(t) C n is of real codimension
at most one. Thus the complement U of Vin C n is open and dense and has full measure.

For D diag (dl, ,dn) with (dl, dn) e U, the ),-matrix R ()‘, t, D) has no
multiple eigenvalues. For every (x,)‘, t) e H-l(0), it is necessary that R()‘, t, D)x O,
i.e., x is an eigenvector of R()‘, t, D) associated with the eigenvalue )‘. Analogous to
(2.3) we now consider the matrix Q Q(x, )‘, t) e C" (" / 1), where

(3.6) Q(x, )‘, t) [R( )‘, t,D),Rx( )‘, t)x]

and its associated real matrix M M(x, )‘, t) (2n+ 1)(2n+2) is as defined in (2.4).
Note that the homotopy function H may be regarded as a mapping from 2n X 2 X
into 2n X and that M (OH/O(x,)‘)), where the derivatives are taken in the real
variable sense. By the way the constant c C and the vector (dl, ,dn) e C" are
selected, we know that the )‘-matrix R ()‘, t, D) has nk distinct eigenvalues for every t e
0, 1). From the discussion in the preceding section, it follows that M is of full rank.

We may now apply the implicit function theorem to conclude that H-l(0) is a
smooth submanifold in 2n X 2 X with real dimension two. Assertion (1) is proved.

Indeed, given an arbitrary point (x,)‘, t) H-l(0), note that the partial derivatives
in forming the matrix M is not taken with respect to t. So a local neighborhood of
(x, , t) on H-1 0 is diffeomorphic to a two-dimensional neighborhood of and another
suitable real variable from (x,)‘). This shows that H- (0) intersects each hyperplane

constant [0, l) transversally. If the connected components C(yh and C(y22) of
two distinct initial points Yit and y:2 ever intersect, then C(yh) C(yg22). This is
possible only if at the intersection point the two-dimensional surface C(yi) "bends"
back toward the initial point Yi22. This contradicts the transversal property we have
observed. Assertion 3 is proved.

Since H(x, )‘, t) 0 implies H(3’x, )‘, t) 0 whenever 3" C and 13"1 1, we see
that C(yi;) indeed is a two-dimensional cylindrical tube whose cross-section with each
hyperplane constant [0, 1) is a unit circle centered at (0,)‘) e 2, 2 for some
)‘. Assertion 2 is proved.

To prove assertion 4 it remains to show only that on every manifold C(yij) the
eigenvalue )‘ stays bounded for e [0, 1). From assertions 2 and 3, it suffices to consider
any one-dimensional submanifold on C(yi;) that is parameterized by the variable t.
Define

w= min [l[(1-t)cI+ta,]x(t)ll.
[0, to]

Since (1 t)cI + tAk is continuous and nonsingular for all e [0, to ], we have w > 0.
Let r(t) IX(t) and s max/t0,/01 IltAo (1 t)DII. Then, R()‘(t), t, D)x(t) 0
implies that

0< wrk(t) <- [( -t)cI+ ta]x(t)ll
)‘k-<tllAk- (t)+ /4X(t)ll / Iltao-(1-t)DIi

--< IIAk-lllrk-(t)+ + Ilall]r(t)+s

since x[I and < 1. The solution ofthis polynomial inequality is obviously bounded.
The proof is completed. E]

Remarks. 1. It follows from a standard degree argument that each circle of solutions
of P()‘)x 0 in C "+l with xll is a limit set of one of the component C(yij).
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2. IfAk is nonsingular, the proof of Theorem 3.1 can be easily extended such that
H-1 (0) is uniformly bounded for [0, 1]. If Ak is singular, then some components
C(y;j.) will become unbounded as -- 1. This simply indicates that the X-matrix problem
(1.2) does not have nk eigenvalues.

3. For real symmetric eigenvalue problems Ax Xx 0, the homotopy method
can be carried out in real arithmetic. In this case, the zero set H-l(0) consists ofsmooth
curves only. Rhee 11 has shown that the local conditioning of the homotopy curves at

(0, 1) is affected by two factors: the separation of eigenvalues of the matrix D + t
(A D) and the closeness of D to A. It is interesting to note that a checking criterion
can easily be set up to prevent the ODE solver from jumping from one curve to another
in the continuation process.

4. Computations. Theorem 3.1 asserts the existence of nk cylindrical tubes C(yij)
starting from the hyperplane 0. We now show how to extract a path from a tube with
the intention that this path could be followed numerically and would lead from 0 to

1. According to the proof of Theorem 3.1, assertion 3, we could further require that
this path be parameterized by the variable t.

Among the many possible ways to define such a path, we choose to consider the
following approach.

Let the homotopy function H be a mapping from N .n N 2 [0, 1) to N 2n N so
that (x, X) is identified as a vector in N_n N and ix a vector in N2. We define vector
fields (2, ,, 1) on H-1 (0) by requiring

(4.1) M(x,X,t)[2]=[ (Q(X)- P(X))x]0

(4.2) [ixr,0][.] =0
where M e R (2n+ 1)(2+2) is the corresponding real matrix, defined as in (2.4), of the
matrix Q in (3.6). Note that (4.1) is a necessary condition for the vector field (2, }, 1)
to be tangent to the surface H-l(0). Equation (4.2) simply means that the vector field
is always perpendicular to the circle of the intersection of the hyperplane constant
and the tube.

The (2n + 2) (2n + 2) real matrix

ixr, 0 al b a,,, b,,, O, O
-b a -b,,, a,,, O, O

is precisely the real representation of the (n + 1) (n + 1) complex matrix

[ R(X,t,D), 0

Therefore, the remaining numerical work is to follow the initial value problem in
Cn C:

(4.3) x*, 0 dX/dtJ 0

x(0) e;, x(0)=

for 1, n andj 1, k.



HOMOTOPY METHOD FOR GENERAL )‘-MATRIX PROBLEMS 535

Remark. Note that the nk homotopy curves we derived are integral curves of the
same differential equations subject to different initial values. Since these curves are in-
dependent of each other, it is suitable to follow several curves simultaneously on a mul-
tiprocessor. Note also that the homotopy function (3.5) does not cause any destruction
in the matrix structure ofP()‘). Combined with a sparse matrix technique, the homotopy
method might therefore become attractive for solving large-scale )‘-matrix problems.

Remark. In practical computation, it may not be necessary to follow the entire
homotopy curve (x(t), )‘(t) as in (4.3). For example, Rhee 11] proposes an algorithm
for real symmetric eigenvalue problems that traces the one-dimensional eigenvalue curves
only, whereas the eigenvectors are estimated locally by the Rayleigh quotient iteration.
Test results seem to indicate that the overall complexity of the homotopy method for
finding all n eigenpairs would be O( n 2) as opposed to O( n 2"6) ofthe standard subroutine
IMTQL2 in EISPACK. We should point out also that. EISPACK is not designed for
large-scale matrices, where it can be shown [11 that the conditioning of the eigenvalue
curves in the homotopy method is independent of the size of the matrix. With careful
coding the homotopy method might be a serious alternative for solving large-scale ei-
genvalue problems.

We coded the homotopy method (4.3) into an IBM 3081 uniprocessor simply to
examine the various behavior of the paths near 1. With no intention of making this
code efficient, we integrated the initial value problem (4.3) by using the subroutine
DGEAR found in IMSL. The scalar c and the vector (dl, ,dn) were randomly gen-
erated. No matrix structure was taken into consideration. The linear equation solver
LEQ2C was used to find the vector field in (4.3). The following examples represent a
collection of problems we used to experiment with our homotopy method.

Example 1. The following is a symmetric, definite quadratic problem with dis-
tinct eigenvalues:

--10)‘ 2 + )‘ + 10,
2)‘2+2)‘+2,
--)‘2+)‘--1,
)‘z + 2)‘+ 2,

P()‘)
-11)‘2+)‘+9,
2)‘2+2)‘+3,
-23,2 + )‘- 1,
)‘2+3)‘-2,

-12)‘ 2 + 10,
-)‘2-2)‘+2,
)‘2-2)‘- 1,

symmetry

-10)‘ 2 + 2)‘ + 12,
2)‘2+3)‘+ 1, -11)‘ 2 + 3)‘ + 10

_)‘2_ 3)‘ + 1,
)‘2_ 1, -2)‘2- 3)‘ + 5, (symmetry)

P()‘) -)‘-- 3)‘ + 1, )‘2_ 1, -2)‘2- 5)‘ + 2,
-2)‘2-6)‘ + 2, 2)‘2- 2, -4),, -9X2- 19)‘ + 14

This problem has double eigenvalues and -2, and simple eigenvalues -4 _+ fi and
-4 + fi. The code had no difficulty in accurately locating all eigenpairs (although it
took a slightly extra effort to tackle the multiple eigenvalue cases). The computed eigen-
vectors associated with multiple eigenvalues were linearly independent.

The code found all 10 eigenpairs without any difficulty. The eigenvalues (to seven digits)
are: (-0.5117619, 0.8799272, 1.465467, -0.7790945, 0.5024152, 1.077167, 0.9365506,
1.004838, 1.956883, 1.271885 }.

Example 2. The following is a symmetric, definite quadratic problem with multi-
ple eigenvalues:
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Example 3. The following is an unsymmetrical cubic problem with singular lead-
ing coefficients:

+
)3+)‘, 5)‘3+)‘+ 1, )‘3+ .)‘3 + )‘, 5)‘3 + )‘, )‘3 + )‘ +

The problem actually has only seven eigenvalues since det(P()‘))= 27)‘7+ 4)‘6+
9)‘ + 9)‘ 4 _. 6)‘ .. )‘ 2 _. )‘

__
1. The code had no problem in locating these seven

eigenpairs. The eigenvalues (to six digits) are (0.307991 + 0.686745i, -0.453629
___

0.460837i, 0.327145

___
0.47441 li,-0.529683 }. Two of the nine homotopy curves es-

caped to infinity (with xll always) as approaches 1. This deceived the code into
giving two large extraneous eigenvalues and their associated eigenvectors.

Example 4. The following is a quadratic problem with high multiplicity of eigen-
values and high degeneracy of eigenvectors:

()‘- 1)()‘-4), 5 2)‘, 0
P()‘) 0, ()‘- 1)()‘- 4), 5-2)‘

0, 0,

Obviously the eigenvalues of this problem are and 4 only, and each eigenvalue is of
multiplicity 3. Furthermore, this problem has only one eigenvector. With local tolerance
TOL 10 -6 in DGEAR, the code was returned with all six curves being convergent.
However, the accuracy was only about 10 -2. This was due to a high-order bifurcation
occurring at 1.
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Abstract. Let A be a nonnegative, n n matrix, and let b be a nonnegative, n n vector. Let S be the
sequence {Akb }, k 0, l, 2, .... Define re(A, b) to be the length of the cycle of zero-nonzero patterns into
which S eventually falls. Define m(A) to be the maximum, over all nonnegative b of re(A, b). Finally, define
re(n) to be the maximum, over all nonnegative, n n matrices A of m(A). This paper shows given A and b,
that re(A, b) is a divisor of a certain number, which is determined by the structure ofA and b. It is also shown
that log m(n) (n log n) /2.

Key words, positive matrices, symmetric group, Prime Number Theorem

AMS(MOS) subject classifications. 15A48, 10H25

Let A be a nonnegative, n n matrix, and let b be a nonnegative, n vector. In
this paper, we are concerned with the zero-nonzero patterns in the sequence S {A kb },
k 0, 1, 2, .... Since there are 2n possible patterns for an n vector, the sequence
S must eventually fall into a cycle, and the length of the cycle is at most 2 n. We define
re(A, b) to be the length of this cycle. We also define re(A) to be the maximum, over
all b of re(A, b). Finally, we define re(n) to be the maximum, over all nonnegative,
n n matrices A of re(A). Given A and b, we will show that m(A, b) is a divisor of a
certain number, which is determined by the structure ofA and b. We will also show that

log (m(n)) 1/(n log n).

Each nonnegative, n n matrix A corresponds to a directed graph G(A) with vertices
l, 2, n, and with an edge from j to if aij > 0. (If aii > 0, then there is a loop at
vertex i.) This is not the usual definition. However, the present definition aids in the
exposition. We note that our graph could be obtained by applying the usual definition
to the transpose ofA. Each nonnegative vector b corresponds to a subset P(b) ofvertices,
defined by P(b) if and only if bi > 0. Given a vector b, the set corresponding to Ab
is the set of all vertices of distance one from P(b), i.e., all vertices j such that there is a
vertex P(b) and an edge (i,j) in G(A). If we define

I’ k) (v) { w: there is a path of length k from v to w },
r)(T)= r)(v),

v_T

then we have

P(Akb)= I’<)(P(b)).
A subgraph H of a graph G is said to be strongly connected if, for any two (not

necessarily distinct) vertices in H, there is a path in H from each vertex to the other. A
subgraph is a strongly connected component (scc) if it is a maximal strongly connected
subgraph of G. It is easy to show that the scc’s are pairwise disjoint. They need not,
however, partition the graph.

In terms of matrices, given A, we let P be a permutation matrix such that PAPr is
in block lower triangular form, with square matrices on the diagonal. If no such P exists,
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other than P I, then the matrix A is said to be irreducible. If we find P such that each
diagonal block is irreducible, then the diagonal blocks of size greater than 1, together
with the nonzero diagonal blocks, correspond to the scc’s of G(A).

LEMMA 1. Let SI, $2, be a sequence ofsubsets ofa finite set S, and let d be a
positive integer. Suppose that for all j and for all sufficiently large h, we have Sj
Sj /hd. Then the sequence has an eventual cycle whose length divides d.

Proof. Let j be any nonnegative integer less than d. Let S be the set of all v e S
such that v S/hd for some h >- 0. For each v e S there exists an integer hv such that
v S/hd for all h >= ho. Let h0 be the maximum of the ho, taken over all v e SJ Then

S+hd S for all h >= h0. Thus, the sequence has an eventual cycle consisting of S,
S, s(d-1). This implies that the sequence has an eventual cycle the length ofwhich
divides d. [2]

We define the index of a graph to be the greatest common divisor of the lengths of
the circuits in the graph. The index of a nonnegative matrix A is then defined to be the
index of G(A). (We note that this is not the usual definition of the index of a matrix.
Let b be a nonnegative vector, and for j >- 0 denote P(A b) by P. We first examine
re(A, b) in the case that A is irreducible.

LEMMA 2. Let A be a nonnegative, irreducible n n matrix with index d. Then,
for all b, re(A, b) divides d.

Proof. It is well known (see 5, Thm. 2.9, p. 49 that the greatest common divisor
of the lengths of the circuits through any vertex v is d, independent of the vertex v. It is
also well known that ifwe call these circuit lengths c, c2, cj, then there is a multiple
of d, say Nvd, such that every multiple of d greater than or equal to Nod can be written
as a nonnegative linear combination of the { ci}. If we let N maxoG No, then every
vertex in G is on a circuit of length hd, for all h >= N. Thus, if v P, then v P/ha for
all sufficiently large h. Then Lemma applies. This completes the proof.

LEMMA 3. Let A be a nonnegative, n n matrix, and let C be an scc in G(A ). Let
b be a nonnegative vector, and, as before, let P P(A b) and Po P(b). Let the index
ofC be d. Then the sequence { Pj f’) C} eventually repeats with a cycle length that di-
vides d.

Proof. Let j be a positive integer, and let v be any vertex in P fq C. Since C is an
scc with index d, v is on a circuit in C of length hd, for all sufficiently large h. This
means that v is in ej+hd f’) C for all sufficiently large h. Thus, from Lemma 1, we see
that the sequence { Pj. f’) C } eventually repeats with a cycle length that divides d. [21

THEOREM 1. Let A be a nonnegative, n n matrix, and let G(A) have scc’s C,
C2, Cg. Let b be any nonnegative vector. Suppose that the sequence {P Ci } has
an eventual cycle oflength ri. Then m(A, b) equals the least common multiple ofthe ri.

Proof. Let r equal the least common multiple (lcm) of the ri. First we show that
m(A, b) divides r. To show this, we shall show that for all vertices v in G(A), the
sequence {P f) { v has an eventual cycle whose length divides r.

Let v C for some i. If v e Pk for some k >= 0, then for some positive integerj and
for all sufficiently large h, we have v Pj / hr, since r is a multiple of ri. So Lemma
implies that the sequence {P fq { v } ) has an eventual cycle whose length divides r. If
v Pk for all k >= 0, then the sequence {P N { v } } has a cycle of length 1.

Now suppose that v is not an element ofany Ci. Let Ci, Ci2, "’", Ck be the scc’s
containing vertices that have paths to v. If k 0, then v is in no P with ->_ n. Finally,
if k > 0, then for j >= n, v e Pj if and only if there is a v* in Cis Pt, for some s -< k,
and a path of length (j t) from v* to v. (We need to assume that j >= n because, for
smaller values ofj, the fact that v e Pj could be due to v being at the end of a path of
length j from a vertex in P0 not in any C;.) Since v* Cs, the eventual cycle in the



CYCLE LENGTHS IN A kb 539

sequence { Pj fq v* } } has a length that divides ris. This means that the contribution of
v* to the eventual cycle in the sequence { Pj fq { v } } has a length that divides ris. Since
the contributions of all other vertices in Ci, C2, "’, Ck to the sequence {P N { v } }
are similar, we see that the sequence { P. N v } } has an eventual cycle whose length
certainly divides r. So we have shown that for all vertices in G(A), either they appear in
none of the P for sufficiently large j, or they appear with a pattern having a length that
divides r. This means that m(A, b) divides r.

Since the eventual cycle of the sequence {P fq C } is of length r, it is clear that ri
must divide m(A, b). D

COROLLARY 1. Let A be a nonnegative, n n matrix, and let G(A) have scc’s C,
C2, "", Ct with indices d, d2, "", dr, respectively. Let b be any nonnegative vector.
Let T be the set ofscc’s that intersect at least one element ofthe sequence { Pk }. Let dr
equal the least common multiple ofthe set of di’s corresponding to the C’s in T. Then
re(A, b) divides dr.

Proof. IfC e T, and we let rg equal the length ofthe eventual cycle ofthe sequence
{ Pj Ci}, then using Lemma 3, we know that ri divides d;. If C -e T, then the length
ofthe eventual cycle ofthe sequence {P C } is 1. Thus, since m(A, b) equals the lcm
of the r;’s corresponding to the C’s in T, we see that m(A, b) divides dr.

We now turn our attention to the maximization of m(A) over all nonnegative
n n matrices A. Given positive integers d, d2, dk, with sum n, it is possible to
construct a nonnegative, n n matrix A and a nonnegative vector b such that
re(A, b) lcm (d, d2, dg). We accomplish this by letting G(A) be the disjoint
union of circuits of lengths d, d2, dk, and letting Po be a set containing exactly one
vertex from each circuit.

Next, we note that di <= C;I for each i, and that
k

ICl-<n,
i=1

so we know that
k

i=1

Thus, we wish to maximize the lcm of d, d2, "", d over all sets of positive integers
with sum not exceeding n. The maximum value will be re(n). Let us call a set {di }
whose lcm is this maximum value an n-extremal set. We note that this problem can be
stated as follows. Among all elements of the symmetric group Sn, which elements have
the largest order, and what is their order? In terms of the original problem, the group
elements of largest order are those that, when written as a product ofdisjoint cycles, have
cycle lengths forming an n-extremal set. The order ofthese elements is re(n). This problem
was studied by Landau (see [3, Vol. 1, pp. 222-229 ]), who proved Theorem 2 below
(see also [4]). We will give a shorter proof of this result.

LEMMA 4. For every n >-_ 1, there exists an n-extremal set X such that each element
ofX is either a prime power or the number 1.

Proof. Assume that X is an n-extremal set containing an integer r, which is neither
nor a prime power. Then r is divisible by at least two different primes, p and q. Suppose

that the powers ofp and q appearing in the prime factorization of r are pY and qz. In X,
if we replace r by the integers pY, qz, and (r/pYqZ), then the lcm remains unchanged,
and the sum of the elements ofX decreases by the quantity

A=r-- py+qZ+
pyqZ
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It remains to show that A >__ O. We have

Since pY and qZ divide r,

>- r--p _qZ.

5 r

6 pY qZ

5

5 1)>=r6 2 3

Let p; denote the ith prime. At first glance, it might seem that an n-extremal set
should consist of Pl, P2, "’", Pk, where k is the largest prime such that the sum of the
first k primes does not exceed n. However, it is easy to show that this is not, in general,
the best way to proceed. As an example, suppose that n is the sum of all of the primes
not exceeding the prime 1231. The numbers 2, 3, 5, and 1231 have the same sum as the
numbers 29 and 36, but the lcm of the second set is larger than the lcm of the first set.
So, by replacing the first set with the second set, we obtain a set with a larger lcm.

It is nevertheless the case that by taking the first k primes, we obtain a set whose
lcm has, asymptotically, the same logarithm as m(n).

THEOREM 2. Given a positive integer n, let k be the largest integer such that

k

Pi<----n.
i=1

Then, log (m(n)) 7 ik=l log (Pi). Furthermore, k 2//ilog (n)), so

log(re(n)) n)( V(log (n))).

Before proving this theorem, we need the following lemma.
LEMMA 5. Let T and T’ be two sets ofreal numbers with thefollowing properties:
(i) Each element ofT is less than each element of T’.
(ii) Every element ofboth sets is at least as large as e.
(iii) The sum of the elements in T is at least as large as the sum of the elements

ofT’.
Then the product ofthe elements of T is at least as large as the product ofthe elements
ofT’.

Proof. Let B be a real number at least as large as each element of T and less than
each element of T’. We note that B can be chosen to be at least e. Let S and S’ be the
sums of the elements in the sets T and T’, respectively. Let P and P’ be the products of
the elements in the sets T and T’, respectively.

First, fix T’I k. Iftwo elements of T’ are unequal, we can make P’ larger without
affecting S’, by replacing each of the two elements by their average. Thus, we may
assume that all of the elements in T’ are equal. Then their common value is (S’/k),



CYCLE LENGTHS IN A kb 541

and P’ (S’/k) k. Since each element in T’ is greater than B, it is easy to show that
p, <_ B(S’/).

If q is any real number such that e -< q -< B, then it is easy to check that q >=
B (q/B). Thus, if the elements of T are q, q, , qk, then the product of the elements
of T is at least (B(q’/B))(B(q/B)) (B(qk/B)), which equals B (sly). Since S >- S’, we
have P >= P’, which completes the proof.

Proofof Theorem 2. The Prime Number Theorem implies that Pi log (i) (see
[2, p. 10]). Using this, it is easy to show that

l Pi k2 log (k).
i=

Thus, we have n (1/2)k2 log (k), which implies that log (k) (1/2) log (n). Hence,

k 2((n))/(/(log(n))).
We note that this implies that

Pk ((n))(]/(log(n)) ).

Now assume for the moment that n is the sum of the first k primes. Let S be the
set of primes not exceeding Pk, and let S’ be an n-extremal set. The sum of the elements
in S’ is then less than or equal to the sum of the elements in S, which equals n. Let T’
be the set of all elements of S’ which are powers of primes pj such that j > k. Let T be
the set of all primes Pi in S such that no power ofPi appears in S’. Since each prime in
S T appears to the first power in S T, and appears to at least the first power in
S’ T’, and since the sum of the elements in S is at least as great as the sum of the
elements in S’, we must have that

Z qj<- ZPi,
qj T pi T

where each qj. in the left-hand sum represents a prime power. We further note that each
q in T’ is greater than Pk, and that each Pi in T is less than or equal to Pk. We now note
that Lemma 5 applies, except that one ofthe Pi in Tmight be the prime 2. Ifwe temporarily
change it to a 3, then, using Lemma 5, we see that the product of the elements of T is
at least as great as the product ofthe elements in T’. Changing the 3 back to a 2 certainly
does not affect the dominant term in the estimation for the logarithm of the product of
the elements in S’. Thus in S’, if the elements in T’ are replaced by the elements in T,
the product of the elements of the new S’ is at least two-thirds as large as the product of
the elements in the old S’, hence we may assume that S’ contains no powers ofany prime
greater than pk. At this point we emphasize that S’ may have a sum that exceeds n.
Nevertheless, each element in S’ is less than or equal to n. Using this fact, we shall show
that the logarithm of the product of the elements in S’ does not exceed /(n)(logn).
We estimate:

log(
q. i_ ,/ p>

_-<log(n<))+ log(pi)
Pi >

fn(logn)
+ fn /logn- Vn

logn
 /log
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We now show that this bound is achieved by the elements in S. We have

k

log(pi) p
i=1

(see [2, Thms. 420, 434]). Also, since n /k= Pi and Pi /(log i), it is easy to show
that

p-, (2 (n)//(logn))log(2 (Vn)//(logn))

fn Vlog n.
Thus, if n is the sum of the first k prime numbers, then

log(m(n)) fn lgn.
Finally, we relax the assumption on n. Assume instead that

k k+l

n , Pi < n <= , Pi nz.
i=1 i=1

Since m(n) is clearly monotonic in n, we have m(n) <= m(n) <= m(n2), but it is easy to
check that m(n) m(n2), which completes the proof. [2]

A comment on the conclusion of the theorem is in order. While it would be nicer
to obtain a function to which m(n) is asymptotic, it seems unlikely that this can be done.
The task would require an estimation similar to the estimation ofthe product ofthe first
k primes. Let P be this product. We would have to obtain an estimate of the follow-
ing form:

k

log(pi)=f(k)+ o(1),
i=1

for then we would be able to say that P ef(lO. Although it is known that the above
sum is asymptotic to Pk, at this time we cannot even say that the error term is O(p) for
even one value of di < 1.

Acknowledgement. The author thanks the referees for their numerous helpful ob-
servations.

REFERENCES

1] P. G. COXSON AND L. LARSON, Monomial patterns in the sequence Akb, preprint.
[2] G. H. HARDY AND E. M. WRIGHT, An Introduction to the Theory ofNumbers, Clarendon Press, Oxford,

1960.
[3] E. LANDAU, Handbuch der Lehre yon der Verteilung der Primzahlen, Teubner, Leipzig, Stuttgart, 1909.
[4] W. MILLER, The maximum order of an element in a finite symmetric group, Amer. Math. Monthly, 94

(1987), pp. 497-506.
[5] R. S. VARGA, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962.



SIAM J. MATRIX ANAL. APPL.
Vol. 9, No. 4, October 1988

(C) 1988 Society for Industrial and Applied Mathematics
008

EIGENVALUES AND CONDITION NUMBERS OF RANDOM MATRICES*

ALAN EDELMANf

Abstract. Given a random matrix, what condition number should be expected? This paper presents a
proof that for real or complex n n matrices with elements from a standard normal distribution, the expected
value of the log of the 2-norm condition number is asymptotic to log n as n-- . In fact, it is roughly
log n + 1.537 for real matrices and log n + 0.982 for complex matrices as n . The paper discusses how
the distributions of the condition numbers behave for large n for real or complex and square or rectangular
matrices. The exact distributions of the condition numbers of 2 n matrices are also given.

Intimately related to this problem is the distribution of the eigenvalues of Wishart matrices. This paper
studies in depth the largest and smallest eigenvalues, giving exact distributions in some cases. It also describes
the behavior of all the eigenvalues, giving an exact formula for the expected characteristic polynomial.

Key words, characteristic polynomial, condition number, eigenvalues, random matrices, singular values,
Wishart distribution

AMS(MOS) subject classification. 15A52

1. Introduction. What is the condition number of a random matrix? Though we
were originally motivated by this question, the problem quickly becomes one ofstudying
the eigenvalues of a related random matrix.

This application of random eigenvalues originally appeared in a classic paper by
von Neumann and Goldstine [22 ]. Further applications can be found in statistics and
physics (see, e.g., [7 ], [25]). Statisticians use random eigenvalues in principal component
analysis, multiple discriminant analysis, and canonical correlation analysis. Physicists
model nuclear levels with eigenvalues.

When speaking of a random matrix, we will focus on the Gaussian and Wishart
distributions. We say that a matrix X has the Gaussian distribution if each element of
the matrix comes from an independent standard normal distribution. We obtain Wishart
matrices from Gaussian matrices by forming XX r. Wishart matrices are of intrinsic
interest because they are essentially the sample covariance matrices for multivariate
Gaussian distributions, as discussed in books on multivariate statistics such as 25].

Various researchers have investigated the eigenvalues of a Wishart matrix from a
number of points of view. If we take a large matrix from a Wishart distribution, we may
sort and plot the eigenvalues against their position index. A theory of what the picture
should be is developed in 13 ], 16 ], 21 ], and 23 ]. Estimates ofthe largest and smallest
eigenvalues are given in [9] and [17]. A complicated expression for the distribution of
the largest eigenvalue is given in 19 and for the smallest eigenvalue in 15 ].

Our question about condition numbers was introduced in a precise format in 18 ].
In effect, Smale asks for the expected geometric mean of the condition number of a
Gaussian matrix. Precisely, let Xn be an n n matrix whose elements are independent
standard normal random variables. Let Kxn Xn Xl be its condition number in
the 2-norm. What is the expected value of log Kxn? The reason we use log rx is that this
quantity is the measure ofthe loss ofnumerical precision (see [6]). The result ofdirectly
averaging the condition number, on the other hand, is known to be infinite. Kostlan and
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Ocneanu (see [18]) obtained some estimates showing that for all > 0, when n is suffi-
ciently large,

2 E(log Kxn) 5--_< =<-+.
3 log n 2

Kostlan has communicated to me a new result that raises the lower bound to 14 ]. In
the present paper, we show that this new result is sharp: E(log Kxn) log n as n -The same leading behavior holds for complex matrices, but we have more precise esti-
mates. We also explore asymptotic results for rectangular matrices.

A natural first step in conducting this investigation was to run some numerical
experiments. In Table 1.1, we list the result of averaging log condition numbers from
random samples of 1000 square matrices of dimension equal to various powers of 2.
Also listed are the results for 1000 matrices ofdimensions 100 200. The data for square
matrices clearly suggest E(log rxn) log n for both the real and complex cases, and we
might perhaps predict that E(log rx) log n + c + o(1) for some constant c. In 6,
we derive the constant c 1.537 for real matrices and 0.982 for complex matrices).
We also show that for large (real or complex) matrices the condition number depends
on the ratio ofrows to columns m/ n. For example, matrices with twice as many columns
as rows have an expected log condition number asymptotic to 1.76. It is of interest that
this value is finite. In the table we see that the asymptotic result gives a usable approxi-
mation for the finite case.

In Table 1.2, we summarize our results about condition numbers in the limit n
o. (Please consult the text for details not explained here.) The values listed are the
exponentials ofthe expected logarithms ofthree random variables: the condition number
of the Gaussian matrix and the largest and smallest eigenvalues of the related Wishart
matrix. Note that this first quantity is the ratio of the square root of the other two
quantities. As a kind of table of contents, the table lists where these results are stated
explicitly in the text. K2 is in fact 2e/2, where is Euler’s constant, 0.5772. KI is a
little more complicated. It is given by , and a readily evaluated definite integral. For the
rectangular matrices, the variable y denotes the ratio m/n, where 0 < y < 1.

For the special case of real and complex 2 n matrices we can specify exactly the
distributions of condition numbers and eigenvalues; these results are reported in 7. We
comment about the tail of the condition number distribution in 8. We look at the
complete spectrum of a Wishart matrix in 9 and derive further exact distributions
in 10.

TABLE 1.1
Average log condition numbers.

Real Complex

n Avg. Avg. log n Avg. Avg. log n

2 1.53 0.84 1.19 0.49
4 2.63 1.25 2.09 0.70
8 3.46 1.38 2.91 0.83

16 4.24 1.47 3.65 0.88
32 4.93 1.47 4.35 0.88
64 5.64 1.48 5.06 0.90
128 6.44 1.59 5.78 0.93
256 7.04 1.49 6.50 0.96

100 200 1.72 1.67
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TABLE 1.2
Exponentials ofexpected logs (K 4.65, K2 2.67).

Square kma

)kmin

Real Complex

Kin
Thm. 6.1

4n
Prop. 4.1

4

Kn
Cor. 3.2

g2n
Thm. 6.2

8n
Prop. 4.2

8

Kn
Cor. 3.4

Rectangular Xmx

min

1-G
Thm. 6.3

n(1 + 1/)
Prop. 4.1

n(1
Prop. 5.

I+V
I-G

Thin. 6.3

2n(l + 1/)
Prop. 4.2

2. Gaussian and Wishart matrices. We are interested in rectangular Gaussian ma-
trices, that is, m n matrices all ofwhose components are independent standard normal
variables. We denote such a random matrix (or its distribution) by G(m, n). G(m, n)
has the symmetry property that it is invariant under orthogonal transformations (i.e.,
isotropic).

A derived random matrix is the m m Wishart matrix W(m, n) defined by M
XX r, where X has the distribution G(m, n). We will focus on the eigenvalues of M,
kma k km kmi --- 0, since they are the squares of the singular values ofX,
and the 2-norm condition number ofX is Vkmax/kmi

Remarkably enough, the exact joint density function for the m eigenvalues ofM
can be written as

k k (n m 1)/2 H ki-- kj)dkl’’" dXm,(1) Kn,mexp .= i<j

where

(2) K,m r
2 2

(see [12] or [25]).
We may further define complex Wishart matrices )Q r, where is ofthe form

X + iX2, with XI, X2 each independent and with distribution G(m, n). Let G(m, n)
and I(m, n) denote the distributions of and , respectively. In this case also, the
exact joint density function for the m eigenvalues is known 12 ]"

(3) n,m exp - X, X7 H (Xi-- Xj)2dXl dXm,
i<j

where

(4) I-,=2mnI-I I’(n--i+ 1)I’(m--i+ 1).
i=1
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3. The smallest eigenvalue of W(n, n) and l(n, n). In Theorem 3.1, we show
that the probability density function (pdf) for the smallest eigenvalue, hmi of a matrix
from W(n, n) is given exactly by a confluent hypergeometric function ofa single variable.
The exact distributions of the largest and smallest eigenvalues of Wishart matrices are
known in certain cases (see [15] and [19 ]), but these distributions are given as zonal
polynomials or hypergeometric functions of matrix arguments that are computationally
unwieldy. In contrast, the function described below in Theorem 3.1 is readily calculated
numerically by equations 13.1.2 and 13.1.3 in 2 ].

In Corollary 3.1, we will observe that nhmin converges in distribution to a random
variable whose distribution has a simple form. From the limiting distribution, we
will analyze the asymptotic behavior of log hmin, which is the key factor in analyzing
E(log K), the expected log condition number.

THEOREM 3.1. IfMn has the distribution W( n, n), n >= 1, then the pdf Of hmin is
given by

n r(n) h_l/e_X./2u(n-1 )fXmn(h) n_--z]-2 F(n/2) 2 2

When a > 0 and b < 1, the Tricomi function, U(a, b, z), is the unique solution to
Kummer’s equation

d-w dw
(5) z--zz + b- z)--z aw= O

satisfying U(a, b, 0) F(1 b)/I’(1 + a b) and U(a, b, ) O.
Proof. Integrating (1), we obtain

Amin(h) Knh-/2e-X/2 exp II (hi- hj) II (hi- h)h:, ’/2 dhi,
i= _i<j_n-

where Rx {hi > > h,-i > h} c R"-1 and K; r-/22"2/ YI" F(i/2)i=1

The first trick is the transformation x hi- h,

n-IKn h_l/2e_Xn/ II (xi-Fh) -I/2A dp,(x1)’"dp,(Xn-l),Amin(h) (n- 1)---- -’ i=1

where A =/-I_<j_n-1 [xi xjl, dry(x) xe-x/2, and the integration takes place over
R-1 { (x l, x,_ 1) xi--> 0 }. Let w(h) denote the integral above. Our goal is to
show that w satisfies 5 ).

Let A diA2, where 6 1-I7_--2 Ix1 hi[ and A2 I-I2_i<j_n-I xi-
Further, let f,b X(Xj+ h)b and gj= 1-I n-li=J (xi+ h) -1/2. Last, let df
d#(x).., d#(x,-l) and dft2 d#(x2)’’’ dg(x,_). Below we express w, w’, and w"
using this notation. All the integrations are over R-1, and symmetry is used when
possible.

w= f
w’=-

n- ffo,_3/g.A df,
2 d

4
/g3A dft+-(n- 1) fl’-5/2g:A
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Since g (X + x)f’-3/2g2, we have

f fo,-3/ f /2g2AdW X 2g2A d9 + , f,-3

2
w’ + ffl’-3/Zg2A dft

n-1

w’ + ffz’-3/g_e-’/A dx, d2

n--(12’ w’ 2 ff,-3/ g--x,d { e_X/2 } A dx dftz

n-12’ w,+2f_x{f,_3/}e_,/_g_A dx df2.

The last line is the result of integration by parts. The differentiation gives three terms,
so that

w’ + 4 ff’-3/2gEA a-- 3 ffl’-/gA a

X fOl’-3/2gzA d(6) +2(n-2)
x-xz

(2, + 8)w’ f f X fOl’-3/2g2A dft.-3 fl’-5/Zg2A dft+2(n-2)
Xl--X2

Investigating each of the above two integrals, we find

(7) ffl’-/2g2A d= ff?’-3/2g2A d-Xff’-5/2gzA d,
and

Xl ,,,fo,-3 f Xl(X2 -" X)fo,-3/2fo,-3/2g3A df2
g2A dft

Xl --X2 Xl --x2

f X ’0 -3/2.g0 -3/2 A
J 1’ J2’ 3.a d,./ Xl --x2

because x x2 / (X X2 is antisymmetric. We can use the identity x / (x x2 -]- X2 /
(x2 x) and symmetry to integrate this last expression. We obtain

f Xl fo,_3/2g2Afl=xf x Jl’CO-3/2’O-3/2"Atj2’ 3-a

(8) x-x x-x

-Xffo,-3/zfo,-3/zg3A.

We substitute (7) and (8) into (6), replacing the integrals with the expressions for
w’ and w", and finally rescale z X/2 to obtain (5). Equation (1) gives w(0)
K+ 1,n- (n 1)! and clearly w( o 0. The constant term in the pdf is then

K. r(n/2+ 1) n r(n)
K.+ ,._ I(3/2) 2 n- 1/2 P(n/2)’
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and the theorem is proved. This proof was inspired by [3]. See 9 and 10 for further
applications of the techniques used.

Though the pdfgiven in Theorem 3.1 is readily computed, the distribution of nkmin
is far simpler as n --COROLLARY 3.1. IfMn has the distribution W(n, n), then as n -- o nkmi converges
in distribution to a random variable whose pdf is given by

-(x/2 +f(x)= 2x
e

Proof. From Theorem 3.1, the pdf of nmin is

n I/2 F(n) 1/2e_X/2 (n-1 x)f.x...(x)=2,._/-F(n/2)x- U
2 2’2n

We recall that x. converges to x in distribution if, for all a, limn-oo P(x,, < a)=
P(x < a). We obtain pointwise convergence of the pdfs on (0, o) with the aid of
Stirling’s formula and the following limiting expression:

-* 2
U

2 2’2n
=(l+x)e-Cx,

which is a valid variation of equation 13.3.3 in [2].
In Fig. 3.1, we illustrate the speed of this convergence. We plot the ratio of the pdf

of nkmin for n 10 against the function given by Corollary 3.1. We do the same for n
50. Note for n 50 the ratio is nearly throughout the whole interval shown.

COROLLARY 3.2. IfM has the distribution W( n, n), then as n -- ,
E(log (nXmin)) -- 1.68788-.-

2

1.8

1.6

1.4

1.2

1--------

0.8-

0.6

0.4

0.2

0
0

!1" 0

n-50

FIG. 3.1. Speed ofconvergence ofthe pdf ofnXmin.
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Proof. In light of the previous corollary and proper convergence of the integrals,
the number we seek is

l/Vx
log x 2x

e-tX/2+)dx.

This integral can be manipulated into
1/2y2

_2,y_2e/2 e-
y+l

dy

via a change of variables and equation 4.331.1 in 10 ], but we know of no simpler form.
In this form, however, numerical integration is trivial. / 0.5772 in Euler’s constant.

We now give the analogous results for complex matrices. The complex case turns
out to be simpler.

THEOREM 3.2. If Mn has the distribution W(n, n), then the pdf of min is

given by

n e_Xn/2A.x)=
Proof. Let Jmi, ()’) be the pdf of kmi From (1) we have

e-X/2fexp( 1"] )i<h k kj) dXl dun- 1.

By making the transformation x; ),;- ),, we may conclude that Amin( k ce-x/2 for
some constant c.

COROLLARY 3.3. IfM has the distribution W(n, n), thenfor all n, nmin has the
distribution x 2.

Although this corollary immediately follows from the theorem, we might only have
guessed it immediately for n 1. This result may be observed experimentally in Fig. 3.2,
where we have computed n,min for 1000 matrices, each 100 X 100. After sorting these
1000 numbers, let i denote the ith value obtained. In Fig. 3.2, we plot /i versus i/n.
This gives the empirical fraction that is less than or equal to r/i. Note that this empirical
cumulative density function (cdf) (also known as the empirical distribution function)
wiggles around the theoretical cdf plotted as a solid line.

COROLLARY 3.4. IfMn has the distribution l(n, n), then for all n,

E(log n,min) log 2 ,y 0.11593..

Proof. We can use equation 4.352 in 10 to compute the appropriate integral.

4. The largest eigenvalue of W(m, n) and I(m, n). In this section we discuss the
largest eigenvalue, kmax, of W(n, n) and I(n, n), but it requires little extra effort to
consider a more general case. Specifically, consider a sequence of Wishart matrices
W(m,,, n) or HT"(m, n) such that m,,/n - yas n -- oo. Loosely speaking, we are looking
at large matrices XX r, where the ratio of number of rows to columns in X is roughly y.
Clearly, y covers the cases of W(n, n) and W(n, n).

We start with a known result concerning the convergence in probability of the
largest eigenvalues. As a reminder, to say X -" x means for all > 0,

lim.-.oo Pr( x-x. > )=0.
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FIG. 3.2. Theoretical and empirical cdf ofnXminfor W(n, n).

LEMMA 4.1. IfM. has the distribution W(m., n), where lim,,-..oo m./n y, 0 <-_
y < oo, then

(9) (1/n)),,max(l+f)2 andfor O <= y <-_ l, (1/n),minf-(1--f) 2.

Proof. A stronger result (almost sure convergence) can be found in [17].
It is interesting to check Lemma 4.1 experimentally. When we take y 1, the lemma

states that, (1 /n))kma converges in probability to 4. With n 100, we computed kmax/n
for 1000 matrices. In Fig. 4.1, we plot the empirical cumulative density function (cdf),
which is quite close to a step function with step at 4.

We would like to be able to readily conclude from Lemma 4.1 that

E(logkmax/n)" log(1 + #)2.
It would be that simple if the logarithm were a bounded function; however, since log x
has singularities at zero and infinity, we must carefully investigate the convergence at
the singularities. To be precise, we must show that the sequence of random variables
log Xmax/rt is uniformly integrable [5 ]. In the following lemma we estimate the pdf.

LEMMA 4.2. IfM has the distribution W(m, n), then the pdf Jmx(X) satisfies

(10) Amax(X)
gn,m (n+m-3)/2 -x/2

"it’l/22(l-n-m)/2
X e x (n + m 3)

K,-l,m-1 F(n/2)F(m/2)

Proof. This was shown for m n in [22] by manipulating the expression (1). The
same techniques work in the general case.

We can now prove the result that we expect.
PROPOSITION 4.1. IfM, satisfies the hypotheses ofLemma 4.1 then E(log )kmax)

log n + log (1 + y)2 + O(1) as n oz.
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FIG. 4.1. Empirical cdf of(1/nXmax)for W(n, n) (n 100).

Proof. Let a denote kmax/r/, and letf,(x), F,(x) be the corresponding probability
density function and cumulative density function. We break up

E(loga) logxf,(x)dx

into three integrals:

+ +

for values of e and r depending on y, but not n. By Lemma 4.1, the middle integral
approaches log (1 + Uy)2, and we proceed to show that the other integrals vanish in
the limit.

Step 1. f3.
We will need a fact that is also of independent interest. We have available another

distribution of random matrices whose singular values are distributed exactly as that of
G(m, n). We perform a series ofHouseholder transformations to obtain this distribution.
(See [17] or [21] for details.) The conclusion is that ifX has the distribution G(m, n),
then X is orthogonally similar to an m n matrix

x. 0. .0

(11) Ym-l. Xn-l.
Y Xn-(m- l) 0 0

where x,2. and y,2. are distributed as X 2 variables with degrees of freedom (i.e. 2i). The
elements here are all nonnegative and independent.
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Let r be the random variable defined by (1/n)(x2 + y2m_ 1). Considering the first
column of( 11 ), we have MII X kmax X2n "- y2m-1, i.e., a >= r. It follows that
F(x) <= F(x). Integrating by parts, we obtain

0 ->_ log xf(x) dx dx

_
dx log xf(x) dx.

X X

The terms log x F(x) and log x F.(x) produced by the integration by parts vanish as
x- 0. The former can be verified by using the fact that r has the distribution
n-Ix 2n + m- 1, and the latter follows from the former.

To complete the argument we take m ran, and let k n + mn- 1, so that r has
the distribution x/n, andf(x) ((n/2)k/2/I’(k/2))xk/2- e-nx/2. Then,

O> fo"logxf,(x>dx>(n/2>’/2f’o’ ( ee ]k/2
I’(k/2)

(log X)Xk/2-1 ,, + y]

Here the indicates that only the exponential behavior is kept as n -- o. (Comput-
ing the asymptotics of this integral is routine but not obvious. A good reference is 4,
Chap. 6].) By choosing any e < (1 + y)/e, we have the desired result.

Step 2. f.
For the singularity of the logarithm at we use Lemma 4. l, the fact thatf(x)

nj.ax(nX), and a standard asymptotic analysis.
For r> + y,

f.(x) log x dx <= xf.(x) dx 4_x (2x) dx
n/2 n

-< (2/n)rl/2 fr X("+ m.- l)/2e-X dx

(e-r(er)l + ry-r)./2.

Here again, indicates that only the exponential behavior is kept as n -- c. By taking
r (depending on y) sufficiently large, we conclude Step 2.

All of these results have analogues for the complex case.
LEMMA 4.3. IfM. has the distribution I(m., n), where lim._.o m./n y, 0 <-_

y < , then

(12) (1/n)Xmax P_ 2(1 +f)2 andfor O <_ y <_ 1,(1/n)Xmin P_ 2(1 _1/-)2.

PROPOSITION 4.2. If Mn satisfies the hypotheses of Lemma 4.3, then
E(log kmax) log n d- log 2(1 + f)2 + o(1) as n -- .The proofs are similar and are omitted, but we think it is of interest to mention the
analogue of formula (11). If X has the distribution G(m, n), then X is orthogonally
similar to an m n matrix

(13)

X2n 0"" "0
Y2(m- 1). X2(n- 1).

Y2 XZ(n-(m- l)) 0 0

where the notation is as in (11). From this we can immediately read that in the square
complex case det k has the distribution X EE,,Xz(,_l) x2, while in the square real
case it is well known (and can be seen from (11)) that det M has the distribution
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5. The smallest eigenvalue of W(m, n) and W(m, n).
PROPOSITION 5.1. IfMn satisfies the hypotheses ofLemma 4.1 and 0 < y < 1, then

E(log )kmin) log n + log (1 V)2 -1- o(1).
Proof. As in the proof of Proposition 4.1, we must check that f log XfXmi,(X) dX

and fF log ’Jmio(’) d, vanish as n -- o. We use the same notation as in the proof of
Proposition 4.1 and abbreviate mn as m:

Amin( x

Kn,m )k(n- 1)/2 e-X/2 exp H ()hi-- kj) H (ki-- k)Xn-m- 1)/2 dXi
i<j

< gn,mk(n-m- l)/2e-X/2 exp , I-I ()hi-- Xj) I-[ X}n-m+l)/2 dXi
i<j i=

K,m
Kn+ l,m-

and from (2),

(n-m-l)/2e-X/2

Let a Xmin/r/, SO thatf,(x) nfxmin(nX). For e < y,

0

_
log xf.(x) dx >-

Kn+ l,m-
ntn-m+ 1)/2 (log X)X(n-m- l)/2e-nX/2 dx

e ye_
n(1 _y)2

On the other hand, as in the proofofProposition 4.1, a =< z, which has the distribution
2 / 1. It then follows that F,(x) >= F(x). For r > 1,

log xf(x) dx log x(F(x) 1)I + F(x)
X

log x(F.(x) 1)I log x(F.(x) 1)I + log xf.(x) dx.

The same kind of asymptotic analysis as above shows that as n -- , each of the terms
vanishes.

Of course, we have the complex result as well.
PROPOSITION 5.2. If Mn satisfies the hypotheses of Lemma 4.3 and 0 < y < 1,

then E(log kmin) log n + log 2(1 y)2 .+ o(1).

6. Limiting condition number distributions and expected logarithms. We can now
combine all the results of the previous section to describe the condition number distri-
butions and the expected logarithms.

THEOREM 6.1. If rn is the condition number of a matrix from the distribution
G( n, n ), then /n converges in distribution to a random variable whose pdf is given by

f(x)
2x +_._4 e_2/x_ 2/x2
x3
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Moreover,

E(log K,) log n + c + o(1) log n + 1.537

as n -- c.

Proof. From Lemma 4.1, we know (1/n)kmax 4 and Corollary 3.1 gives the
limiting distribution for nkmin. The ratio of these quantities, K2n/n-, converges in distri-
bution by a standard probability argument. The appropriate change of variables gives
the limiting pdf of n/n. The expected logarithm follows from Corollary 3.2 and Prop-
osition 4.1.

THEOREM 6.2. If n is the condition number of a matrix from the distribution
(n, n ), then n/ n converges in distribution to a random variable whose pdf is given by

Moreover,

8 e_4/xZf(x) =-
E(log ,) log n + 1/23’ + log 2 + o(1) log n + 0.982

as n-- o.
Proof. As in the proof of Theorem 6.1, the pdf follows from Lemma 4.3 and Cor-

ollary 3.3, and the expected logarithm follows from Corollary 3.4 and Proposition 4.2.
THEOREM 6.3. If is the condition number of a matrix from the distribution

G(m, n) or G(m, n), where lim_ mn/n y and 0 < y < 1, then converges in
probability to (1 + y)/(1 y). Moreover,

l+y
E(log .) log / o(1)1-

as n -+ .
The convergence follows trivially from Lemma 4.1 and Lemma 4.2 and, of course,

the statement could be strengthened to almost sure convergence. The expected logarithm
follows from Propositions 4.1, 4.2, 5.1, and 5.2.

7. Exact expressions for m 2. It is possible to integrate expressions (1) and (3)
against the condition number to get the exact distributions of the condition numbers of
real and complex 2 n matrices. We spare the reader the details and give only the results.

The pdf of the condition number of matrices that have the distribution G(2, n) is
given by

x2-
(14) f(x)=(n_ l)2n-,__(x2-[- 1)nXn-2
Similarly, when the matrices have the distribution ((2, n), we have

(15) A(x)= 2
r(2n) x2n-3(X2- 1) 2

r(n)r(n- 1) (x2+ 1)2n

We can use (14) and (15) to evaluate the integrals giving the expected condition
numbers, and the result is the following theorem.

THEOREM 7.1. IfXn has the distribution G( 2, n), then
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has the distribution r( 2, n), then

E(log2,)=log2+-: k-

and

We can also obtain the exact distribution for the smaller and the larger eigenvalues:
THEOREM 7.2. IfM, has the distribution W( 2, n) and {3 denotes (n 1)/2, then

fxmio(X) K,,2e-X(2Xae-x/2 + 2a(23 X)I’(3, X/2))

e-X/2, e-X/2Jmax(X) Kn,2 (2Xa 2 (23- X),(B, X/2)).

A similar result for I(2, n) could be calculated.

8. The tails of the condition number distributions. In the previous sections, we
described the behavior of the condition numbers but said nothing about the probability
that a matrix with a large condition number may appear. Here we will approximate the
condition numbers for square matrices in order to get a sense of the tails of the distri-
butions.

There are four condition numbers that we find interesting. Let K and k denote the
random variables, which are the 2-norm condition number of a matrix having the dis-
tribution G( n, n) and (( n, n), respectively. Since we are only considering n n matrices,
we omit the dependence on n in the notation. The other two condition numbers were
introduced by Demmel [8]. Let IIXIIF denote the Frobenius norm of X, defined
as VZi,j X2ij /tace (XX r). Demmel’s condition number is defined by X IIFI[ X
Let KD and D denote the random variables that are the Demmel condition number in
the real and complex cases as above. We chart the condition numbers and relate them
to the eigenvalues of the corresponding Wishart matrix in the table below.

K Vkmax/kmi -- kmax/kmi

KD V i/min D V X//kmin

In the tables that follow, we consistently use the above ordering" real versus complex in
the columns, and 2-norm versus Demmel’s norm in the rows.

The numbers in the table below are the values that the indicated expressions converge
to in probability as n -- W(n,n) l(n,n)

4

The first row is Lemmas 4.1 and 4.3. The second row is derived from the law of large
numbers and the observation that the trace of a Wishart matrix has the x 2n2 distribution
in the real case and the x 22n in the complex case. Replacing these convergence results
with equality, we define four approximate condition numbers:

’= ]/4n/min

t9 i/n2/kmin
k’ /8n/ kmi

]9 V2n2/kmin
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Directly from the definition of these condition numbers we have the following jus-
tification of our approximation.

LEMMA 8.1. As n -- , K/K’, KD/r’, /7’, and kD/’ all converge in probability
to 1.

The approximate condition numbers only depend on kmi Thus it becomes necessary
to investigate the probability that kmi is small.

LEMMA 8.2. As -- O, P( kmi (k) n ifM has the distribution W(n, n) and
e(kmin < ,) Xn/2 ifM has the distribution l(n, n).

Proof. The real result comes from analyzing the formula given in Theorem 3.1.
The complex result is trivial since nkmin has the distribution 22 according to Corol-
lary 3.3.

THEOREM 8.1. As x - c

P(x’ > x) 2n/x

P(r’D>X), n3/2/x
P(’>x) 4n/x-
P(Tc> x) n3/x2

Proof. Combine the small , behavior described in Lemma 8.2 with the definitions
of our condition numbers. The results follow from the obvious change of variables.

In one case we can compare our results with those known for the exact condition
number. Demmel showed that for all n, P(D > X) (n n)/x2 as x -- c, while we
have P(> x), n3/x as x- . The difference is negligible for all but very
small n.

9. All the eigenvalues of a Wishart matrix. We would like to describe the complete
spectrum of a Wishart matrix. The m eigenvalues of a matrix from W(m, n) and
W(m, n) are, of course, random, but what can we say about them? We have already
mentioned their joint density function in (l) and 3 ), but this does not give much insight
into the total picture. Here, we contrast three descriptions of the complete set of eigen-
values. The first two are well known and the third is, we believe, new.

(1) Mode. The m-tuple 2, ’m) that maximizes (1) or (3) (when there is a
maximum) consists of the roots of the Laguerre polynomial

L/)- )(x/{3)m

where a 1/2 (n rn 1) and/3 in the real case, while a n rn and/3 2 in the
complex case.

(2) Empirical distribution function. Take a large Wishart matrix and plot the
(;, i/n). The picture will be a curve the limiting form ofwhich is well known and listed
for reference in Propositions 9.1 and 9.2.

(3) Expected characteristic polynomial. The expected characteristic polynomials
of Wishart matrices can be computed precisely. They are

(-)mm[Ln-m)(t/[3);

/ in the real case and 2 in the complex case.
We now discuss these ideas in detail.

9.1. Mode. The mode is related to an electrostatic interpretation of the zeros of
the classical polynomials given in 20 ]. Note that there is an infinite density in the real
case when m n and Xm 0, so the formula does not apply.

9.2. Empirical distribution function. The empirical distribution function W(x)
of a matrix M is the fraction of eigenvalues ofM that are less than or equal to x. One
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way to view this is that if the eigenvalues are thought of as being chosen from a random
sample, Wt(x) is its empirical cdf. Computationally, we simply sort the eigenvalues and
plot hi against i/n. We do this for a matrix M,/n, where M, was generated from the
distribution W 200, 200 and plot WM,(X) in Figure 9.1 as a dotted line. It is well known
that W&(x) converges almost surely to a limiting function as n -- oz. W(x) is plotted
in Fig. 9.1 as a solid line.

PROPOSITION 9.1. IfM satisfies the conditions ofLemma 4.1, then Wt,/(x) con-
verges almost surely to afixedfunction W(x) as n -- oz. Ify 1, thisfunction satisfies
W’(x) (1/2’)((4 x)/x)/2forO

_
x <= 4. More generally, forO < y <- 1, we have

almost sure convergence to afixedfunction satisfying

/(x- a(y))( b(y)- x)
W’(x)

2ryx

for a(y) < x < b(y), where

a(y) (y- 1) 2 and b(y)=(y+l) 2

For y > the above result is modified by adding (1 1/y)6(x) to W’(x).
Proof. This proposition and the one to follow was proved in 23 in a very general

setting. Convergence in probability was proved earlier in 16 ]. Other more recent proofs
can be found in [13] and [21]. These last two proofs are not as general but are quite
elegant.

PROPOSITION 9.2. Ifn has the distribution l(m,, n), where lim,-o mn/n y
and 0 <= y < oz, then Wt/,(x) converges almost surely to a fixed function W(x) as
n - oz. Ify 1, this function satisfies l’(x) (1/4r)((8 x)/x)/2for 0 <= x <= 8.
More generally, l(2x) W(x), as defined in Proposition 9.1.
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The source ofthe extra factor of2 is simple. It is merely the variance ofthe elements
of the matrices that are in the real case but 2 in the complex case.

9.3. Characteristic polynomial. We can derive exactly the expected characteristic
polynomial of a Wishart matrix. This could be thought of as the average of all the coef-
ficients (which are of course symmetric functions of the eigenvalues) or as the average
value of the characteristic polynomial at a given point. This is of interest here because
the roots of the average polynomial deserve to be thought of as "typical" values for the
eigenvalue.

Computing the expected characteristic polynomial is a special case ofa multivariate
integration of the form

sf(Xl,
,Xm)Ak d#l" d#m,

where d#i e-(l/2)x’kTdki, A Hi<j (ki- kj), and the region ofintegration S is defined
by 1 >- >= km 0. Any expected value calculations involving the eigenvalues of
Wishart matrices has exactly this form with k in the real case and k 2 in the
complex case. (See 2.)

To compute the expected characteristic polynomial, take f(Xl,’", Xm)=
;= (t ,j), where may be thought of as a variable. We make use of a recent result

due to Aomoto [3].
LEMMA 9.1. Let

(16) If t-- ki) A k dul diem,

where dvi 7(1 Xi)dXi, and the region ofintegration, $1 is defined by >= 1 >= ">=
km O. Then

(17) If=(ot’q-I1 /’+ 2n)-1Ptm"’t’) (1
n

--2t).

where P(""a’)
--m denotes a Jacobi polynomial, a’ + 2 (a + 1)k, ’ +

2(/3 + 1)/k and I fs A d. dm.
This lemma is proved in 3 ]. The value ofI1 was first computed by Selberg in 1944,

but his original paper is unavailable in many libraries. His results and argument, however,
can be found in 5.4 of[l]. We have derived an alternative proof to this lemma and to
Lemma 9.2 by proving that the integrals satisfy the correct second-order differential
equation for the Jacobi and Laguerre polynomials. This proofclosely resembles the proof
of Theorem 3.1.

LEMMA 9.2.

(18) fSl (t-- ,i) Ak dial" dm r,(k) l. (a,)(t),-,oz,m-,-,m -where L (m ’) denotes a Laguerre polynomial. ((1) -1 (m+mC..m) (--1 )Kz+m+3.m and
(r(2))-1 m+a
,a,m (--1)m( m ga+m+l,m.

Proof. In (16) make the substitutions hi--)" i/213 and --) t/213. The value of(17)
becomes a multiple of
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To compute (18), let/3’ -- . Using standard formulas about orthogonal polynomials,
we can verify

’-lim Pm
’’)

k(/3’ + 1)- 2

(k) gm+aWe get the constants C,m() by setting 0 in (18). The fight-hand side is C,m, ). The
left-hand integral is an integral of the expressions (1) and (3) up to a constant. Since (1)
and (3) are joint density functions they integrate to 1. For a suitable choice of n we get
the values (2) and (4). (Note that we computed the constant for k or 2 since we

(k) from scratch for all k, by evaluatinghad 2 and 4 handy. We could have obtained C,,m
the integral (18) when 0 by using a limiting process on the value of Selberg’s integral.)

THEOREM 9.1. Let Pt(t) det (tI- M) be the characteristic polynomial ofM.
Then E(Pt(t)) 1) ram!L-m)(t) if M has the distribution W(m, n) and
E(Pt(t)) (-2)mm!L-m)(t/2) ifM has the distribution l(m, n).

Proof. Each of the expected values we are computing here has the form (18). In
the real case k and a (n m 1)/2, so a’ n m. In the complex case, k 2
and a n m, so again a’ n m. The easy way to check that the constant is correct
is to compare the highest coefficient of t, which is unity on both sides.

10. The probability density function of kmin for W(m, m + 3). Thee smallest eigen-
value of a matrix from W(m, m + 1) behaves exactly like the one in W(m, m), that is,

mXmin has the X 2
2 distribution. The proof is similar to that of Theorem 3.2.

In.fact, the pdf of min for any matrix from IV(m, n) for n m odd or any matrix
from W(m, n) is given by

e-Xm/2p(x),

where P is a polynomial. This was pointed out in the real case in 15 and in fact can be
seen directly from the integral.

To illustrate another application of Lemma 9.2, we derive the polynomial for the
special case of W(m, m + 3). A similar result is given in [15], where the distribution is
expressed as a hypergeometric function of a matrix argument. The two results are in fact
equivalent, but we give a more explicit expression.

THEOREM 10.1. IfM has the distribution W(m, m + 3), then

-m[2 (m3)fXmi,(,)=2(m+1-----e ,L _,(-).

Proof. From (1) we know that

ml
m-1

fXmin(k)=Kn,m e-x/2k (ki--k)A H ki dXl...dXm_,
i=1 i=1

where S’ is defined by k 2 - km- -- 0. Letting ,i -’ hi A, we obtain

o-Am/2k ()ti+ X)A d#l d#mfm,n( k) Kn,m..

Here the notation is as in the previous section and a 1, so that a’ 3. The conclusion
follows from Lemma 9.2.
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A NOTE ON THE NEWTON ITERATION FOR THE
ALGEBRAIC EIGENVALUE PROBLEM*

MARIA CILIA SANTOSf

Abstract. This paper considers the Newton iteration for the algebraic eigenvalue problem (,I A)x 0,
(x) 1, where is a convex norming function that is not necessarily differentiable. The role usually played

by the Frrchet or Gateaux derivatives will be performed by a choice of subgradients of . Under very mild
conditions on , the local and Q-superlinear convergence of this extended Newton iteration are proved. The
stability of the process is also investigated.

Key words. Newton’s iteration, algebraic eigenvalue problem, subgradients

AMS(MOS) subject classification. 65F10

1. Introduction. Let A be an n n real matrix. The Newton’s iteration is a well-
known and thoroughly studied method for the iterative determination of a real eigenvalue
and a corresponding eigenvector ofA (cf., e.g., [1 ]-[4 ]).

The real eigenvalue problem consists of finding a real number # and a vector v of
n satisfying

(1.1) (#I-A)v=O, (v): 1,

where : n _. is a norming function in (usually is a norm, an affine function,
a quadratic form, etc. ). If we define F(,, x) by

(XI-A)x](1.2) F(),,,x) :=
(I’(x)- 1’

for any x e and X e , then (1. l) is equivalent to F(#, v) 0.
Now assume that is differentiable and let J(X, x) denote the Jacobi matrix of

F(X, x), namely

(1.3) J(X,x)’=

where we represent by gx the gradient of at x (gradients will be considered as
row-vectors throughout). With this notation, the Newton iteration has the following
formal presentation:

This method is started with any pair (X0, x0) and then the iteration proceeds according
to (1.4), where it is assumed that J( X, x) is invertible.

The Newton iteration (1.4) has been extensively studied in the literature, under the
assumption that I, is G-differentiable at each x ]-[ 3 ], 5 ], 8 ]. However, even in
theoretical discussions, the algorithm has not been handled, assuming no differentiability
at some iterate x. As a simple example, let us take q as I1" which is frequently used.
Moreover, let us suppose that at some step k the computed x has (up to machine accu-
racy) more than one component ofmaximum modulus. This means that is not differ-
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entiable at Xk. In this situation, procedure (1.4) must stop. However, the subdifferen-
tiability of I1" at each x e n provides a natural way to overcome such a situation.
Namely, the role of gx may be played by a subgradient of I]" at x. To be more
specific, if Xk (X(k1), (n)Xk is nonzero, a subgradient of "] at Xk is any vec-
tor g (g(), g(")) such that [g(l + + g(")[ and sgn (g(i)) sgn (Xki))
fori= 1,...,n(forarealweletsgn()= if>0, sgn()=-I if<0, and
sgn () 0 if 0); if Xk 0, g is a subgradient of [l" at xk if and only if g() +

+ g(n[ _-< 1. Thus we select any such g to play the role of gxk and the computation
of Xk / is carded out according to 1.3 and (1.4).

The nondifferentiable norm (x):= xl[ is also often used. Here gis a subgradient
of []" I[ atx q: 0 if and only if ][g[] and g(i) sgn (x(i)) ifx(i) 0. Moreover, gis
a subgradient of I[" [[1 at x 0 if and only if gl[ -<- 1. Of course, if it happens that Xk
has (up to machine accuracy) at least one zero component, then I1" II, is not differentiable
at Xk, i.e., we have more than one subgradient at Xk. Then we may let any such subgradient
play the role of gxk in (1.3) and (1.4).

Generally speaking, the purpose of this note is to show that, as far as the local
behaviour is concerned, the convergence properties ofthe extended Newton method that
we have just roughly described are the same as those of the usual Newton method for
differentiable functions. More precisely, under the basic assumption that is convex,
we shall prove a point of attraction theorem and the Q-superlinear convergence of the
extended method ( 3). The local stability is established in 4. We retrieve, as we should,
the classical point of attraction and stability theorems when is differentiable. Since we
extend the class ofcases to which iteration (1.4) is applicable, it is obvious that we cannot
expect a lesser degree of complexity than that of the usual Newton iteration with ditfer-
entiable norming functions.

2. Preliminary considerations. In the sequel, : :n _. : denotes a real convex
function. A vector g in is called a subgradient of at v q n, if the following holds:

for any x in E. Here and throughout we represent the usual inner product in E by
(x, y). The subdifferential of at v is the set of all subgradients of ,I at v; it is denoted
by O(v).

For this concept and relevant results we refer the reader to 6 ].
Recall that 0(v) is a nonempty, compact, convex set; it reduces to a singleton if

and only if is differentiable at v.
For future reference we set forth the following comment.
Remark 2.1. Denote by ’(x; y) the one-sided directional derivative of at x, with

respect to y. By [6, Thm. 23.4] it is easy to see that { (g, y): g O(x)} is the real
closed interval whose extremes are -’(x; -y) and ’(x; y).

The subdifferential of the function F given in (1.2) at (, x) will be denoted by
OF(X, x) and is defined as the set of matrices

(2.1) J(,,x,g):=
g

where g runs over the set 0(x). The matrix (2.1) will be referred to as a Jacobi matrix
ofF at (X, x).

DEFINITION 2.2. We say that a convex function : n
__

is a normingfunction
if the following conditions hold:
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(i) Every nonzero x n is positively f-normalizable, that is, there exists a > 0
such that f(ax) 1.

(ii) (g, x) 4: 0, for any nonzero x and any g Of(x).
PROPOSITION 2.3. For a convexfunction f: n .. thefollowing are equivalent"
a f is a normingfunction;
b f has a strict minimum at x 0 and f O < 1.

Proof For any norming function f condition (i) implies that the level set B, :=
{ x: f(x) =< ) is a compact nonempty set. Therefore f attains its minimum at a certain
point ofB. It is well known that f(x0) is the minimum of f if and only if0 Of(xo).
Hence, condition (ii) implies that x0 is the unique minimizing point of f. Therefore (a)
implies (b).

Conversely, assume that (b) holds and let x 4: 0. For any g Of(x) we have 0 <
f(x) f(0) =< (g, x), and therefore (ii) is true. On the other hand, (i) follows easily
from the three following facts: (1) the continuity of f; (2) f(0) < 1; (3) lim f(tx)
+ as -- +. [2]

Let us briefly discuss the invertibility of matrices of type (2.1). This problem has
been considered for example in 8 ], so we content ourselves with the following statement
without proof.

PROPOSITION 2.4. Ifz is a real eigenvalue ofA and v is a corresponding eigenvector,
then J(#, v, g) is nonsingular ifand only ift has multiplicity one and (g, v

Note that Proposition 2.4 does not require that g Of(v).
We say that the subdifferential of F at (X, x) is unconditionally invertible if the

Jacobi matrices (2.1) are invertible, for all g Off(x).
As an easy consequence of the above proposition, we have the following corollary.
COROLLARY 2.5. Let f be a normingfunction and let (l, v) be a real eigenpair oJ

A. Then the subdifferential OF(t, v) is unconditionally invertible if and only if t is
simple. []

PROPOSITION 2.6. Let f" -- be a convex function. The set of the points
(X, x)for which OF( , x) is unconditionally invertible is an open set of "+1.

Proof Let OF(, x) be unconditionally invertible. Seeking a contradiction, we as-
sume that there exists a sequence (Xk, xk), converging to (X, x) such that OF(, x) is
not unconditionally invertible, for k 1, 2, . This means that, for any k, there exists
g 0f(x) such that the matrix J( Xk, x, g) is singular. Since the set

s:= {x,x,, ...)
is compact, then Of(S):= t_J {0f(y): y S} is compact as well (cf. [6, Thm. 24.7]).
Therefore, there exists a subsequence of (g) converging to an element ff of Of(x) (of.
[6, Thm. 24.4]). Thus J(X, x, if) is singular. This contradicts the unconditional inver-
tibility of OF( , x). []

Now, assume again we are given an n n real matrix A and a norming function f.
The Newton iteration for the eigenvalue problem will be carried out according to the
following scheme.

ALGORITHM 2.7. The iteration starts with a real number ko and a vector Xo e ".
For k 0, 1, we proceed inductively as follows:

(N. Choose gg in the set Of(xk);
(N.2) If J( Xk, X, gk) is singular, then the algorithm halts;
(N.3) If J( Xk, X, gk) is nonsingular, then define kk + 1, x+ by

Xk +
j( kk,Xk,gk)_l F( kk,Xk)"

Xk + Xk
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(2.2)

The equation of (N.3) is obviously equivalent to the system

,cI--A xk + k ,+

(g,xk+ ) (g,x) + --(x).

Remark 2.8. Assume that in a certain subset W of n, we have

(2.3) (gx, y) ,b(y)

for all x, y e W and gx O(x). It is clear that this condition is equivalent to the fact
that is locally linear in W, that is, for any x (xl, "", Xn)r W,

,b(x) ax + +
where al, "", c, are constants (the norms II" I1 and II" IIo are examples of such
functions).

If (2.3) holds and the iterates belong to IV, then Algorithm 2.7 is equivalent to the
well-known Wielandt iteration (cf. 3 ).

3. Convergence theorems. We point out that in Algorithm 2.7 the pair
(/ 1, x+ 1) depends on (hk, x) and on the choice of the subgradient made in
step (N. 1).

Let us denote by (o, Xo) the set of all sequences that may be generated by Al-
gorithm 2.7 and having the same starting pair (o, Xo). If is differentiable, then the set
cg(o, Xo) obviously consists of exactly one sequence. It is worth noting that some ofthe
sequences of cg(,o, Xo) may befinite, because the algorithm may very well stop at step
(N.2). According to convention, the finite sequences of g(,o, Xo) are not convergent.

DEFINITION 3.1. We say that (o, Xo) is an unconditional pair with respect to
(, v) if any sequence of Cg(Xo, o) converges to (#, v).

From now on, we will use to represent a norming function and A an n n real
matrix.

ATTRACTION THEOREM 3.2. Let be a real, simple eigenvalue ofA, and let v be
a corresponding eigenvector such that (v) 1. Then there exists a neighborhood of
(, v) whose elements are unconditional pairs with respect to (t, v ). The process has
superlinear convergence.

The proof of this theorem follows a traditional pattern (cf., e.g., 2 ), except for a
few technical details contained in the following lemmas.

The first lemma is a sort of mean value theorem for convex functions.
LEMMA 3.3. Let f: n _. S be a convexfunction. For any vectors x, u , x 4:

u, there exist : n and Of(:) such that we have thefollowing"
(i) . is oftheform : x + r(x u), with 0 < z < 1;
(ii) f(x) f(u) (, x-
Proof The lemma is easy to prove in the case n 1. Ifx u the lemma is trivial.

Next, we prove the lemma in the general case, assuming that x 4: u. Let us define y :=
IIx- ull-l(x u)and consider the convex function if(0):=f(u + Oy). Since the lemma
is true for n 1, there exist a R and 3’ &k(a), such that 0 < a < x u and

(3.1) x- u (0) x- u II,
On the other hand, if we define r all x u 1[-1 and u + -(x u), then we can
easily see that
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Therefore there exists eOf(:) such that 3,=(, y). With this notation, (3.1)
implies (ii). V1

LEMMA 3.4. Let f: q n .. be a convexfunction, and let u be any element of gqn.
Then, for any e > 0 there exists > 0 such that

If(x)-f(u)-(g,(x-u)> <-ellx-ull,

for all x such that IIx nil < and all g Of(x).
Proof. We will get a contradiction from the assumption that there exist e > 0 and

sequences of vectors (Xm) and (gm) satisfying the following:

Xm converges to u, gm Of Xm ),
(3.2)

If(Xm)-f(u)-(gm,Xm-U)l >ellxm-Ull forallm.

Denote by Ym the vector Xm u II-(Xm u). We may assume, without loss ofgenerality,
that (Ym) is a convergent sequence. Denote by y the limit of (Ym).

By the previous lemma, for each m there exists -)m of the form

m-U-Tm(Xm--U) (0 < 7"m < 1),

such that

(3.3) f(Xm) f( U) (m,Ym) IlXm u

for some ,m Of(2m
AS (2m) converges to u, by [6, Thm. 24.6], for any e > 0, there exists m0 such that

(3.4) Of(Xm)UOf(2m)COf(u)y+ eB,

for all m >= m0. In (3.4), B is the Euclidean unit ball and Of(u)y is the set of vectors
h e Of(u) such that

(3.5) (h,y) sup { (g, y) gOf(u) }.

Thus there exist vectors hm and hm Of(u)y, depending on e, satisfying

for all m >= m0. By (3.5), (hm, y) (hm, y). Therefore, taking (3.3) into account, we
easily obtain the following inequality:

[f(Xm)--f(u)--(gm,Xm--U)[

(3.6) <- [IXm- Ull (,m, ym- y) +

+ (hm-gm,Y) + (gm,Y--Ym) [].
By a compactness property of subdifferentials (cf. [6, Thm. 24.7]), the sequences (gm)
and (m) are uniformly bounded, because (Xm) and (m) both converge to u. Moreover,
(gm hm), (,m hm), and (Ym Y)converge to zero. Therefore, the bracketed term
displayed in (3.6) tends to zero. This contradicts (3.2). []

Proof of Theorem 3.2. Let us define z := (,, x) and z* := (#, v). Denote by
T(z, g) the extended Newton operator, given by

T(z,g) z-J(,,x,g)-F(,x).

Observe that, by Propositions 2.4 and 2.6, there exists a compact neighborhood V of z*
such that J(X, x, g) is nonsingular for any (X, x) in Vand any gin O(x). The compact-
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ness of V[6, Thm. 24.7] and a standard continuity argument yield a constant/3 > 0
such that

J( k,x,g)-l z-- z*

for any z V. With a few calculations it is easy to prove that

(3.7) [[T(z,g)-z*[[ <-_[[z-z*[[2+3[(x)-,(v)-(g,x-v)
for all z in V and g in O(x). Therefore, using Lemma 3.3, we can show that for any
e > 0 there exists a neighborhood V, of z* such that

T(z, g) z* --< z z*
The proof can now be completed in the same manner as in [2]. [2]

In the following comments we denote a simple eigenvalue ofA by t, and v and w
represent the corresponding eigenvectors, such that (v) (w) and w -av with
>0.

Let k: -- be a convex norming function and let a (respectively, /3) be the
unique positive (respectively, negative) real number such that 6(a) (respectively,
6(/3) 1). We may consider the Newton iteration given by

p( tp)
(3.8) tp+:=tp-, p=0,1,2, ....
This iteration is initialized with a real number to 4:0 and, at the pth step, we choose
in O/(tp) (this means that ’(tp) <= 3"p <-- b’+(tp), where b" and are the left and fight
derivatives of 4/).

It is easily seen that

(3.9) If to > 0 then lim tp a,
p

(3.10) If to < 0 then lim tp
p

As a matter of fact, if to > 0 it follows by induction on p >-_ 0 that 3’ >--0 and
tp+l tp+ 2 a. Therefore (3.9) holds. We prove (3.10) in the same manner.

Now assume that we start Algorithm 2.7 with Xo toy and o #, where to 4: 0.
It is easily seen that OF(l, tv) is unconditionally invertible if 4: 0. Solving (2.2) by
induction, we find that any sequence (kp, xp) of the set cg(o, Xo) has the form

Xp t and Xp tpl) forp 0, 1,2,

where tp is given by (3.8) for defined as (t) :- (tv). Therefore we have:

(3.1 l) For to 4: 0, the pair (t, toy) is unconditional with respect to either (t, v)
(if to > 0) or (#, w) (if to < 0).

Next we consider the case where Algorithm 2.7 is started with (Xo, Xo), o t. It
is clear that (cf. [8]) the nonsingularity of J(t, Xo, go) is equivalent to the following
assumption:

3.12 (go, v) 4:0 and Xo do not belong to the column space of #I A.

If this assumption holds, formulae (2.2) for k 0 give us a first iterate of the form
(kl, X (, tv), where t. (go, v) > 0. Therefore by (3.11):

3.13 If assumption 3.12 holds for any go 0q(Xo), then (#, Xo) is unconditional
with respect to (., v) or (., w) according to (go, v) > 0 or (go, v) < 0,
respectively.
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Note that in the above statement, the product (go, v) has a well-determined signal,
because 0rb(Xo) is a connected compact set.

Our final claim deals with the case when we start Algorithm 2.7 with an eigenvector
ofA.

(3.14) For all reals to 4:0 and Xo 4: 0, the infinite sequences of cg (Xo, toy) converge
to (t, v) or to (z, w), according to whether to is positive or negative.

Proof. Assume to > 0 (the case when to < 0 is similar). If (Xp, Xp) is an infinite
sequence of cg Xo, toy), then J( p, Xp, gp) is nonsingular for all p, where gp is the subgra-
dient chosen in step (N. 1) ofAlgorithm 2.7. As Xo is an eigenvector ofA, the nonsingularity
of J( Xo, Xo, go) implies (go, v) 4: 0. Therefore, if we solve (2.2) for k 0, we get

(Xo-u)t
x tv, X o-

to
where is given by

tl := to--
,(toV)-

As we saw in the proof of (3.9), tl is positive. Therefore, by induction on p, we have

x+ x-(x-u)t+ /t,

where tp/l is given by (3.8), with if(t):= rb(tv). By (3.8) we may conclude that
Xp, Xp) converges to (, v ). [3

Let rb: N n
__

be a convex function and q > O. We say that Orb is weakly q-
continuous at v, if there exists a neighborhood W of v and a constant >= 0 such that:

(3.15) For any x in Wand any gin Orb(x), there exists h in Orb(v) verifying

(g- h,x- v> <-’/IIx- vii + 1.

We observe that weak q-continuity of Orb does not imply the differentiability of rb.
By Remark 2.1 the following condition is obviously equivalent to (3.16):

(3.16) For any x in W, x 4: v, and any g in Orb(x), the following holds:

(g,y)-’b’(v;y) <=,llx-v[I q,

where y denotes the vector x vii-l(x v).

THEOREM 3.5. Under the assumptions of Theorem 3.2, suppose further that there
exists a q ]0, such that Orb is weakly q-continuous at v. Then the Q-order ofconvergence
ofAlgorithm 2.7 is at least q + 1.

Proof Without loss of generality, we may assume that the neighborhood W of v
for which (3.15 holds is a certain Euclidean ball centered at v. Thus, by Lemma 3.3
and (3.16), for each x q: v in W, there exist and in 0rb() such that the following
conditions hold:

(i) 2 is in W, 2 g: v, and
(ii) rb(x) rb(v) (g, x v) =< I(, Y) (g, y) IIx vii, for all gin Orb(x)

and I(ff, Y) rb’(v, Y) =< llx vile, where y represents the vector IIx- v ll-I
(x-v).

So, after a few standard calculations we easily obtain the inequality

I(x)-O(v)-(g,x-v)l 2llx-vll+

which, combined with (3.7), completes the proof.

for all g in Orb(x),
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4. Stability. As was to be expected, "small" perturbations on the unconditional
pair (),, x) as well as on the successive iterates do not interfere with the convergence.
This is the content of the next theorem.

THEOREM 4.1. Let be a real, simple eigenvalue ofA and v a corresponding ei-
genvector such that (v) 1. Then the set of all unconditional pairs with respect to
(, v) is an open set of +l.

To simplify the proof we introduce the following technical definition and lemma.
Also, for simplicity, we will state briefly that a pair is unconditional, meaning that it is
unconditional with respect to (t, v).

We say that the pair (A, x) has property-c if it is an unconditional pair and if there
exists a sequence of pairs that are not unconditional and that converge to (,, x).

LEMMA 4.2. Suppose that the pair , x) has property-c. Then there exists a sequence
((, xp) in q , x) whose elements are pairs with property-c.

Proof We need to show only that if (k, x) has property-c, then there exists a choice
of g in Ob(x), such that the first iterate (,’, x’) obtained by the equation in (N.3) of
Algorithm 2.7, calculated with this g, also has property-c.

Let (,, x) be an unconditional pair. It is obvious that the elements of any sequence
in c(A, x) are also unconditional pairs. On the other hand, by Proposition 2.6 there
exists a neighborhood V of (A, x), where the subdifferential of F is unconditionally
invertible. Hence, if the pair has property-c, there exists a sequence (ag, Yk) in V of
nonunconditional pairs, converging to (),, x) and such that OF(ak, y) is unconditionally
invertible.

Now, let g be a subgradient of at Yk. Denote by (a, y) the first iterate obtained
by the algorithm initialized with (ak, y) and with the choice ofgg in step (N. 1). Thus

(4.1) a ak

Since (Yk) converges to x, the set S := { x, y, Yk, ), and therefore the set
O(S), are compact. Hence, Theorem 24.4 in [6] applies and assures the existence of a
subsequence (gk) of (gk) converging to an element g of0(x). When we take (4.1) into
account, it is easily shown that the subsequence ((a, y)) of nonunconditional pairs
converges and that its limit is precisely the unconditional pair (X, x given by

where g := lim gk. Thus (, x has property-c.
Proofof Theorem 4.1. Let (k, x) be an unconditional pair. We need to prove only

the existence of a neighborhood of (k, x) whose elements are unconditional pairs.
Seeking a contradiction, we assume that there exists a sequence ofnonunconditional

pairs converging to (k, x). If so, (k, x) has property- c and by the previous lemma (,, x)
will be the limit of a sequence (( kp, xp)) such that, for all p, the pair (kp, xp) has prop-
erty-c.

On the other hand, any sequence in cg(k, x) converges to (u, v), since (k, x) is
unconditional. Hence, according to Theorem 3.2, there exists an integer P0 > 0 such
that, forp >_- P0, the pairs (kp, xp) belong to a neighborhood of(u, v) all ofwhose elements
are unconditional pairs. Thus, forp

_
P0, a sequence ofnonunconditional pairs converging

to (x, ) cannot exist. This contradicts the fact that (k, x) has property-c.
Finally we remark that if we combine our result (3.13) and the previous theorem,

then we have the following complementary result to (3.13 ).
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COROLLARY 4.3. Let K be any compact set of n such that for any x K the
following holds" x does not belong to the column space oflI- A and (g, v 4:0for any
g e O(x). Then there is a neighborhood N of# such that any pair (, x) ofN K is
unconditional with respect to (tz, v) or (l, w) according to whether (g, v is positive or
negative.

Acknowledgment. The author thanks Professor Marques de Sfi for helpful discus-
sions on the subject matter of this paper. The results are part of the author’s doctoral
thesis 7 ].
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LINEAR MATRIX EQUATIONS, CONTROLLABILITY AND
OBSERVABILITY, AND THE RANK OF SOLUTIONS*
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Abstract. The equation

* fikA iXB C
i,k

is studied. The controllability matrix of (A, C) and the observability matrix of (B, C) yield bounds for the rank
ofX. If the solution X is unique it can be expressed in the form

X hikA iCBk.
i,k

The coefficients hik are determined by an auxiliary equation oftype (,), where the right-hand side is a rank one
matrix.

Key words, matrix equations, Lyapunov equations

AMS(MOS) subject classification. 15A24

1. Introduction. The starting point for our investigation is the paper by de Souza
and Bhattacharyya [3 on the matrix equation

(1.1) AX-XB C.

In this note we will study the more general equation

p-lq-I

(1.2) ., Z fkA ixok C
i=0k=0

where A, B, and C are complex matrices of size p X p, q q, and p q, respectively,
andf C. Let us first review the results of 3 ], and at the same time introduce some
notation.

The controllability matrix of a pair A and L Cp x is defined by

K(A,L)=(L,AL, ,AP-L)
and the observability matrix of (B, R), R e CTM is given by

R

D(B,R)=
RB

RB-The pair (A, L) is called controllable if rank K(A, L) p and (B, R) is observable if
rank D(B, R) q.

THEOREM 1.1 3 ]. Let C LR be a full-rankfactorization and assume that (1. l)
has a unique solution X; then

(1.3)
rank X-<min {rank K(A,L), rank D(B,R)}

min { rank K(A, C), rank D(B, R) }.
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In the case where rank C we have equality in (1.3). Part of the next theorem
has been proved by Hearon in [5].

THEOREM 1.2 [3]. Suppose C lr v O, Cpl, r e C TMq, and let (1. l) have a
unique solution. Then we have:

(1.4) (a)
(b)

rank X min { rank K(A, l), rank D(B, r) }.
In the case p q the solution X is nonsingular if and only if (A, l) is
controllable and B, r) is observable.

Let a(z) ao + + ap-Z
p- + zp be the characteristic polynomial of A, and

let X1, ),p be its eigenvalues. Similarly, let b(z) bo + + bq_ lZ
q- + z and

tl, , tu be the characteristic polynomial and the eigenvalues of B. Then (1.1) has a
solution for any C (which is necessarily unique) if and only if

(1.5) }ki--ldkg:O, i= 1, ...,p, k= 1, ,q.

To a(z) and b(z) we associate the companion matrices

0 0 -ao
Fa 0 -al

0 -ap_

0 0

Pb= 0 0 (fb) T"
-bo -bl be-1

The matrix

(1.6) Ma

al a2 ap-i

a2

api 0

is a "symmetrizer" of Fa, i.e.,

(1.7) FaMa=MaFTa.
THEOREM 1.3 3 ]. (a) The equation

(1.8) F,H- nPb 1, O, ,0) r( 1, O, ..., 0
is consistent ifand only if(1.5) holds.

(b The unique solution of 1.8 ), if it exists, is given by

(1.9a) H=-[MaOp(q_v)]a(Fb)- ifq>=p
or

O(p_ q) q

With the matrix H, any solution of (1.1) can be expressed as a finite sum. As usual
the Kronecker product of two matrices P (Pik) and Q is P (R) Q (PikQ).
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THEOREM 1.4 3 ]. If (1.5) holds and C LR, then the unique solution of (1.1) is
given by

p-lq-I

(1.10) X , hikAiCB’=K(A,L)(H(R)I)D(B,R)
i=Ok=O

where H hik) is the solution of (1.8).
Can we extend the preceding results to the general equation (1.2)? We will show that

Theorems 1.1, 1.3 (a), and 1.4 are special cases of more general results. For the equation

(1.11) X-AXB= C

we will derive an explicit solution that is a counterpart to (1.9) in Theorem 1.3(b). As
Jameson’s trick [6] does not seem to work for (1.11), our approach has to be different
from that of [3]. An analogue of Theorem 1.2 is valid for (1.11), but, as the following
example shows, it does not hold in general for (1.2). Consider the equation

(1.12) X-A2XB2 ele
with

0 0
A= 0

0

The unique solution of (1.12) is

and

0 B=A T
el 0

0 0

X diag (1,0, 1)

rank X= 2 < rank K(A, el rank D(B, elr) 3.

Hence in this case (1.4) does not hold, although the pairs (A, el) and (B T, el) are
controllable.

2. The general equation. The following criterion is due to Sylvester [8 ]. Put
p-lq-I

(2.1) f(x,Y) E E fkxiyk.
i=0k=0

LEMMA 2.1. The equation

p--lq-I

(1.2) , fAiXBk C
i=0 k=0

has a unique solution for every C ifand only if
(2.2) f(h,#)#0

for all eigenvalues h ofA andfor all eigenvalues tt ofB.
Equations where the matrix C is of rank one are important; we refer the reader to

3 for two examples.
THEOREM 2.2. Assume rank C and (A, C) is controllable and (B, C) is ob-

servable. Then (1.2) is consistent ifand only if(2.2) holds.
Proof Suppose (1.2) has a solution X. We want to show that under the given as-

sumptions (2.2) holds. If u and v are eigenvectors ofA and B such that uA hu and
By try, then

f( , u) uxv uCv.
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A full rank factorization of C is of the form C lr with I e Cp and r e C , and
(A, l) is controllable and (B, r) is observable. Hence (see, e.g., [13 ]) u(A M) 0
implies ul 4: O. Similarly we have rv 4: 0. Therefore uCv 4 0, andf(X, ) 4: 0.

COROLLARY 2.3. The equation
p-lq-I

(2.3) , , fkFaHP=(1,O, ,0)T(1,0, ,0)
i=0k=0

is consistent ifand only if (2.2) holds.
The matrix H in (2.3) leads to an explicit representation of solutions.
THEOREM 2.4. Assume that the solvability condition (2.2) is satisfied. Then the

unique solution of (1.2) is oftheform

(2.4)
p-lq-I

X , , hikAiCBk=K(A,I)(H(R)C)D(B,I)
i=0k=0

where H is given by (2.3).
Proof We note that

AK(A I) K(A I) Fa (R) I),

D(B,I)B (’t,(R) I)D(B,I).
It is easy to verify that the matrix X in (2.4) is a solution.

Djaferis and Mitter 2 derive the finite series solution (2.4) by an algebraic method,
which we describe as follows: Let k denote the ideal in C [x, y] generated by a(x) and
b(y), and let V[g(x, y)] be the set of zeros ofg(x, y) in C 2. Condition (2.2) can now
be expressed in other equivalent forms.

THEOREM 2.5 [2]. Thefollowing statements are equivalent:

()
(2)
(3)

(2.2) f(;p,#)4:0, p= 1,...,p, a= 1,...,q.
v[f(x, y)] q Via(x)] fq rib(y)] .
f(x, g) is a unit in C[x, y]/p.

In particular, if

is a polynomialfor which

(2.5)

then

m

h(x, y) , , hixiy
i=0k=0

f(x,y)h(x,y)=-- l(mod b),

m

X hiA iCBk
i=0k=0

is the unique solution of (1.2).
THEOREM 2.6. Under condition (2.2) there exists a uniquepolynomial h(x, y) such

that (2.5) holds and the degree ofh is less than p in x and less than q in y. IfH is the
solution of (2.3), then

(2.6) h(x, y) (1,x, ,xp- )n Y.
yq-1
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Proof. The uniqueness of such an h is proved in 2 ]. We check that the polynomial
given by (2.6) satisfies (2.5). We have

(1,x, ,xv- )Fa (1,x, xv- )x- a(x)(O, ,0, 1).

Hence

Similarly,

(1,X, ,Xp- )F(1,x, ,xp- 1)xi(mod p).

p .Y yk .Y (mod p).

If we multiply (2.3) from the left by (1, x,... ,x-) and from the right by
(1, y, y- ) r, we obtain (2.5).

To estimate the rank of X we write C as a product: C LR, L C’, R
C"q. Then

K(A,I)(H(R)LR)D(B,I) K(A,I)(I(R)L)(H(R)I)(I(R)R)D(B,I)
(2.7) K(A,L)(Y(R)I)D(B,R).

If C LR is a full rank factorization, then

rank K(A,L)=rank K(A,C) and rank D(B,R)=rank D(B,C).

THEOREM 2.7. Suppose the equation

p-lq-1, AiXB LR
i=0k=0

has a unique solution X. Then

(2.8) rank Xmin { rank K(A,L), rank D(B,R) }.

Proo The bound (2.8) follows immediately from (2.4) and (2.7). We will ve a
second proof, to be used in 3. There exist nonsingular matrices S and T such that (see,
e.g., [131)

0 A.]’ 0

TBT_= ( B, O) RT_I=(R,O
B2 B2

where (A, L) and (B, R) are controllable and

(2.9) p =rank K(A,L), q =rank D(B,R).

Then

Let

AC1 pl, LCptn,

Ba-Cqql, R.Cnql

S-1CT- ( LRO )"
S XT- (xz X 2

]
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be partitioned conformably. The block X2 is the unique solution of the homoge-
neous equation

2XzB2 =0.
k

Therefore X2 0, which in turn yields X12 0 and X2 0. Hence

S-XT= (Xo ) Xl aPl ql

and (2.8) follows from (2.9).
We mention without proof that we can obtain an estimate of type (2.8) for a more

general equation

p-I

(2.10) ., AiXBi C.
i=0

For basic facts on (2.10) we refer to [11].

3. X AXB C with rank C 1. The equations

(1.11) X-AXB C

and AX- XB C have many features in common. We mention only Roth’s removal
theorem 9 or parallel results for the Lyapunov matrix equations A rx + XA P and
X- A rXA P in stability and inertia theory (see, e.g., [12]). Therefore we can expect
that Theorem 1.2 also holds for (1.11) even if it cannot be extended to the general
equation (1.2). The following two examples shall illustrate that the case rank C
deserves attention.

Notation. Let

0
0

(3.1) N

0 qxq

be a nilpotent Jordan block. Put

0

P=

To the complex polynomial

we associate

(3.3)

(3.4)

b( z) bo + + bq_ Zq- ._ zq

b(Z) zqb(z-l), i.e.,

b(z) + bq_ z+ + boZq.
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Example 1. Let c be a complex polynomial with deg c _-< q. The Bezoutian F

(1 z zq- 1) r Y b( z)c(y) b(y)c( z)

yi_ z- y

For a matrix X C a the following assertions are equivalent [7]:
(i) X l(b, c) for some nonzero polynomial c;
(ii) X NXff’ b bq_ !) rr for some nonzero r C a.
Example 2. Let b in (3.2) be a real polynomial. The Schur-Cohn matrix

Db=F(b,b)P,
which gives information about the location of the roots of b, satisfies

X-FbXF (x ,xa r(x l, ,Xql ).

If Db is nonsingular, then the number of positive (respectively, negative) eigenvalues of
Db is equal to the number of roots of b with modulus less (respectively, greater) than 1.

The main result of this section is a counterpart of (1.9). We need several auxiliary
results.

LEMMA 3.1 (see, e.g., 11 ]). Assume

(3.5) ,o#, 41, O=I,’",P, a=l,-..,q.

Then the unique solution of (1.11) is given by

(3.6) X=- (zl-A)-lC(l-zB)-l dz

where all the eigenvalues Xp ofA are in the interior ofthe simple closed curve A and all
the zeros ofdet (I- zB are outside ofA.

LEMMA 3.2. Let Ma be defined by (1.6). Then

zl- Fa)- (1, O, O = a(.z)... Ma(1, z zp-

Proof We recall (1.7) and note that

(1,z, ,z- )(zI-Fa)- =(0, ,O,a(z)).

LEMMA 3.3 4 ]. Let 3, be a contour containing all zeros ofa(z) in its interior. Then

(3.7) z- r( z-2ri a(z)Ma(l’z’ ) 1,z, )dz=I.

We now consider the special case of (2.3).
THEOREM 3.4. Suppose condition (3.5) holds. Assume p >= q. Then the unique

solution H ofthe equation

(3.8)

kas tkeform

(3.9)

H- F,HP= (1,0, ..., 0)r(1,0, .-., 0)

H= b(Fa)-’ ( I )b(N).O(p-q)q

F(b, c) is defined by
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Proof. With the representation (3.6) we have

H=- (zI--Fa)-’(1,O,’’’,o)T(1,O,’’’,O)(I--z-lPb)dZ.

From Lemma 3.2 we get

A Ma(1 zp-I)T(z-I 1)Mdz.H=’ a(z)b(z)
Because of (3.5) the polynomials a and b are coprime:

(3.10) ad+ bg=
for some d, g e C[z]. Therefore

Note that

A g(z) T(H=-i h(z) Ma(1, ,zp 1, ,zq- )PMbdz.

2ri a(z) (1’ zp 1)Tdz=FTa
a(z)

(1 zp I)Tdz"

Hence

H=g(Fa)’i a(z)
(1, ,zq- 1, zp- T( 1, Zq 1) dzPMb.

From (3.10) it follows that b(Fa)g(Fa) I. Lemma 3.3 yields

Ma

The matrix

can be written as

’zP-I)T(I’ ’Zq-l)da=
O(p--q) Xq

PMb bo_ 0

bl bq_

PM3 I+ bu_ iN+ + biN- "it- boNq b(N).
We can also verify directly that the matrix (3.9) is a solution: obviously

b(Fa)(1, 0, 0) T= (1,bq_ 1, ,bl, O, ..., O) r,
(1,0, ,0)ml =(0, ,0, 1).

Equation (3.8) follows from

(P, O)T-Fa(P, O)TFb=(1,bq 1, ,bl,0, ,0)T(0, ,0, 1).

Hence (3.9) is valid for matrices over an arbitrary field, provided the polynomials a and
are coprime.

With the matrix H in (3.9) we obtain the analogue of Theorem 1.2.
THEOREM 3.5. Suppose C lr q: O, l Cp 1, r C 1, and let

(1.1 l) X-AXB= C

have a unique solution. Then we have thefollowing:
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(a) rank X min { rank K(A, l), rank D(B, r) }.
b In the casep q the solution X is nonsingular ifand only if(A, l) is controllable

and (B, r) is observable.
Proof From the second proof of Theorem 2.7, it suffices to prove (a) for the case

where (A, l) is controllable and (B, r) is observable. Then the matrices

and

are nonsingular,

K-AK F,,

K=(l, Al, ,Ap-ll)

r

K-I (1, 0, 0) , DBD-I Pb, rD- (1,0, ,0).

IfX is the solution of (1.11), then H K-IXD-l satisfies (3.8). In the case p >- q we
have (3.9). Because of b(0) the factor b(N) in (3.9) is nonsingular and rank H
q, which completes the proof.

Acknowledgment. This paper was written at the Australian National University in
Canberra. I gratefully acknowledge the hospitality ofthe Department of Mathematics at
the Institute of Advanced Studies.

Note added in lroof. Theorem 2.4 can already be found in the following paper:
N. J. Young, Formulae for the solution ofLyapunov matrix equations, Internat. J. Control,
31 (1980), pp. 159-179.
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FIVE-DIAGONAL TOEPLITZ DETERMINANTS AN
THEIR RELATION TO CHEBYSHEV POLYNOMIALS*

ROBERT B. MARRf AND GEORGE H. VINEYARDS

Abstract. A five-diagonal Toeplitz (5DT) determinant is defined as having zeros everywhere
except in its five principal diagonals, with each principal diagonal having the same element in all
positions. Thus the determinant depends on five arbitrary parameters in addition to its order. The
general 5DT determinant of order n is shown to be given by a simple closed expression involving
Chebyshev polynomials of the second kind of order n / 1. An explicit generating function for the
determinants is also derived such that the nth coefficient of a power series expansion of the function
is the nth-order five-diagonal Toeplitz determinant.

Key words, determinants, Toeplitz matrices, Chebyshev polynomials

AMS(MOS) subject classifications, primary 15A15; secondary 33A65

1. Introduction. In the course of some work requiring evaluation of multidiag-
onal determinants of arbitrarily large order, we have found simple, closed expressions
for the determinant of an arbitrary five-diagonal Toeplitz (5DT) matrix in terms of
Chebyshev polynomials of the second kind. As a byproduct of this result, we have also
discovered a generating function for the 5DT determinants, enabling us to extract the
nth-order determinant as the nth coefficient in a power series expansion of an explicit
function.

The strategy starts with the observation that the product of any two general
tridiagonal Toeplitz (3DT) matrices is a five-diagonal (5D) matrix which differs from
a Toeplitz one only in its upper left (1, 1) and lower right (n, n) elements. The deter-
minant of such an "imperfect" matrix is given by a linear combination of the determi-
nants of three successive orders of "perfect" 5DT determinants, and the determinant
of any 3DT matrix can be expressed as a Chebyshev polynomial. There are, moreover,
three quite distinct ways of choosing the 3DT matrix factors, so that a set of linear
equations can be generated, which are easily solved to yield closed-form expressions
for the determinants of interest.

The determination of the possible 3DT matrix factors involves the solution of a
cubic equation, the coefficients of which depend only on the five parameters appearing
as entries in the determinant and not on the order n. It can be shown that the 5DT
determinant of any order is in fact a completely symmetric polynomial in the three
roots of this equation, and it is in analyzing the nature of this polynomial dependence
that we are led to the generating function which precisely expresses the determinant
and its dependence on the original set of five parameters.

2. Definitions and proof of the main result. Let Dn (a, b, c) be the nth-order
3DT determinant,

*Received by the editors March 31, 1986; accepted for publication (in revised form) January 7,
1988. This work was supported by the Applied Mathematical Sciences subprogram of the Office of
Energy Research, U.S. Department of Energy, under contract DE-AC02-76CH00016.

Brookhaven National Laboratory, Upton, New York 11973.
SDr. Vineyard is now deceased.
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(1) Dn(a,b,c)

a b 0 0
c a b 0 0
0 c a b 0

0 0 c a b
0 0 c a

By expanding in minors on the first row, we find the recurrence relation,

(2) Dn(a,b,c) =aDn_l(a,b,c)-bcDn-2(a,b,c), n= 2,3,....

With the initial conditions, D1 a, D2 a2- bc, we may employ the recurrence
relations for Chebyshev polynomials [2] to obtain, for n 1, 2,...,

Dn(a,b,c) (be)n/un
2V

if be :/: 0

an if be 0,

where U is the nth-degree Chebyshev polynomial of the second kind, defined by

(Z + v/Z2 1)n+l (Z- v/Z2 1)n+l(4)
2/Z2 1

Note that an lira (bc)n/un (2-c)" Equation (3) can also be proved from Wol-
bc--*O

stenholme’s formula [1]

(5) Dn (a, b, c) anH 1-COSa n+l
Now define the nth-order "imperfect" 5D determinant,

P:’ (P:’ z, v,

x-a y v 0
z x y v 0
w z x y v 0
0 w z x y v

0 0 w z x
0 0 w z

0
0
0
0

Y

By appropriate expansion of this determinant we find the relation,

(7) Pna Pn (a + )Pn-1 + aPn-2,

where Pn Pn is the "perfect" 5DT determinant defined by (6) with a 0. We

note the starting values Po 1 P1 x, and P x- a y For later use it
y x-/"

is also convenient to define

PZ=x-a-, Pg=l, P-I-P-u=0,

so that (7) is valid for all integers n => 0.
Next, by matrix multiplication observe that

(8) Pna Dn (a, b, c)Dn (a’, b’, c’),
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provided the following equations are satisfied:

(9a) ha’ + bc’ + cb’ x,
(9b) ab + ba y,

(9c) ac’ + ca’= z,

(9d) bb’ v,
(9e) cc w,

(9f) cb’ o,
(9g) be’-

It is obvious that all of these equations are invariant under the transformation,

(10) (a,b,c,a’,b’,c’) -- (Aa, Ab, Ac,)-la’,A-lb’,A-lc’),
for any A : 0. Therefore, as expected, those P that are expressible in the form
given by (8) involve at most five free parameters, which we take initially as x, y, z, v,
and w. (In fact, there are only four free parameters, as will be seen.)

We could treat (9a-e) as a system of equations in a, b, c, a, b, c yielding classes
of solutions equivalent under transformation of the form (10), and then use (9f,g)
to compute a and/3 for each such equivalence class. We prefer here the alternative
approach of first eliminating (a, b, c, a’, b’, c’) from the seven equations (9a-g), leaving
a pair of equations which can be solved for a and/3 directly. These equations may
then be thought of as "consistency conditions" for (8). One such equation, namely

(1) =vw,
follows immediately from (9d-g). To obtain the other, first combine (9b,c) using (9f,g)
to get

(12a) yc- zb (o- )a,

(12b) zb’ yc’ (o )a’.
Next, multiply these two equations and use (9d-g) along with the identity, (a- )2
(a +/)2 -4a, and (11) to obtain

(3) yzs y2w zv (s2 4vw)aa’,
where s c +/3. Finally, substitute into (13) the formula, aa x s, obtained from
(9a,f,g). The result is a cubic equation in s which, after some rearrangement, has the
form,

(14) 8
3 xs2 + (yz 4vw)s (y2w + z2v 4xvw) O.

Straightforward elimination of variables in the set (9) leads to a sixth-degree equa-
tion in one variable. The foregoing work shows how this higher-degree equation is
equivalent to a cubic equation in properly chosen variables.

In the evaluation of D, we encounter the combinations a/x/- and a’/v/-c (see
(3)). These can be determined as follows: Multiply (9b) by ab and (9c) by ac, respec-
tively, and employ bb v, cd w, and aa x- s, to get

(15) va + (x s)b2 aby

and

(16) wa + (z- s)c acz.
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Multiplying (15) by (16), dividing by b2c2, and employing (9f,g) yields for A a2/(bc)
the quadratic equation,

(17) vwA2 + [s(x s) yz]A + (x s)2 0.

Because of the symmetry between primed and unprimed parameters, (a’)2/(b’c’) A’
obeys the same equation. However, A and A must be distinct roots whenever possible
in order that all of the equations (9a-d) will be satisfied, as can easily be shown.

Denote the three roots of (14) by sj,j 1, 2, 3. Each s. gives an equation of the
form of (17) for A; each of these will have two roots, which we distinguish by suffixes
/ and The corresponding solutions of (17) will thus be denoted A.

Now, employing (8) and (3) we can write

Here we have added a subscript to P to indicate (without inconvenience to the
printer) which root Sj of (14) has been used- it is then implicit that a and Z must
satisfy the two conditions, a vw, and a+ s. Depending on how many distinct
roots (14) has, we see that (7) has up to three different versions:

(19) P’n: Pn,j 8jPn-lj + vwPn-2j, j 1, 2, 3.

By subtracting any two of these equations, it follows that (Sk 8j)Pn (Pl,
for 1,

With (18), we therefore have the following theorem.
THEOREM 1. Let Pn pO be the determinant of the ve-diagonal Toeplitz

matrix with elements x, y, z, v, w, as depicted in (6). Assume: (i) vw # O, and (B)
the cubic equation (14) has at/east two distinct roots, 8 and sk. Then,

here the A are the roots of the quadratic equation (17) it , nd here

U+ is the (n + 1)th-degree Chebysheg polynomiM of the second kind.
Remark. Expressions for Pn valid when either or both of the assumptions (A)

and (B) are violated can in principle be derived from (20) by taking limits. For
the sake of brevity, we omit these derivations. It should be noted, however, that
the alternative formulation to be presented in the next section applies with no such
restrictive assumptions. The ease vw 0 is also presented explicitly in 4.

3. Considerations of symmetry; the generating function. From the form
of (17), the three roots 81,82,83 must obey the following relations:

(211) 81 -- 82 " 83 X,

(21b) 8182 + 8283 -" 8381 yz 4vw,

(21c) 818283 y2w z2v 4xvw.
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These can be rearranged into the more succinct forms,
3

x--Esj

j--1

and

(22b)
3

(Yv/- +/- zx/-)2 H (sj +/- 2M),
j--1

where M v/-.
Now consider the quadratic equation (17) with one of the roots, Sl (say), substi-

tuted for s. Using (21a,b) to eliminate x and yz, we find

(23) M2A2 (s2s3 + 4M2)A + (s2 + s3) 2 0,

where (as before) M2 v. w. The two roots, A, of this equation therefore depend
only on M, s2 and s3. Because of (18) we infer that the imperfect determinant P:
associated with a particular root s. of (14), which ostensibly depends on x, y, z, v, and
w, can in fact be expressed as a certain function, Fn, of only three variables- M and
the other two roots of (14).

Using (7), we therefore have, for any n__> 0,

(24) Pn 8jPn-1 -- M Pn 2 Fn Sk s M

< sj,sk, se > being any permutation of < 81,82,83 >. Of course, Po 1 and
P1 x s a, +s2, +s3, allowing us to infer that Pn generally depends on only the
four free parameters, sl, s2, s3, and M. To make this dependence explicit, define the
generating function P by the formal power series

(25) A E npn"
n--o

Multiplying both sides of (25) by (1 s.A + MA2),

(1 8jA + M22)), E (1 8jA + M22)Inpn,
n--O

E An(Pn sjPn-i + M2Pn-2),
n--O

and employing (24), we have

(26)
(1 8’A + M2A2)P), E AnFn(sk’ st; M),

n----O

j,k,g- l,2,3, j # k # g:/: j.

From the three relations (26) we deduce that ) can only have the form

(27) PX(x, y,z, v, w) c(A,M) [li(1=1 8j/ "4- M22)]
--1

where c(A, M) is a function that remains to be determined.
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Consider the special case where v w M, x y z- 0, and recall the
definition Po 1. Then we find that Pn+4 M4p,(n __> 0) and that P1 P2 P3
0. It follows that

Pn (0, 0, 0, M, M) Mn n =_ 0(mod 4),
(28) 0 otherwise.

Also, for these particular values of the parameters, (14) reduces to 83 --4M2s 0,
giving

(29) 81 0, s 2M, s3 -2M.

Equation (25) can now be written, for this special case,

(30) ) E(AM)4n 1
1 4M"--0

Also, from (29)and (27)

(31) ) c(A,M)
(1 + M2A2)(1 2MA + M2A2)(1 + 2MA + M2A2)"

From (30) and (31) we find c(A,M) 1 M22, so with (27) we obtain finally, the
following result.

THEOREM 2.
o

1 M2A2

n=O YI=I(1- sJA W M2A2)

where sl,s2, s3 are the roots of (14), and M vw.
Alternatively, we can employ the relations (21) to write more explicitly,

(33)

Remark. The relation (33) can also be obtained from a six-term recursion relation
satisfied by the determinant Pn, the derivation of which seems to require a much more
lengthy computation. The fact that Pn depends on x, y, z, v, and w only through the
four combinations, x, yz, y2w + z2v, and vw, appearing in (33) can be shown more di-
rectly by applying elementary row and column operations to the original determinant,
().
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4. Special cases. It is seen from the foregoing that the general five-diagonal
Toeplitz determinant can be expressed in terms of Chebyshev polynomials and the
roots of two algebraic equations the first a cubic equation, the second a quadratic. In
special situations these results reduce to substantially simpler forms. In the first class
of special cases treated, which can be described as "pseudosymmetric," the parameters
obey the relation

(34) y2w z2v.

Choose the minus signs in (22b) to find, for this case,
3

H(s" 2M) 0.
j--1

(Note that choosing the plus sign in (22b) is the same thing as choosing for M the
other root of M2 vw and does not yield anything essentially different.) Thus, one
root of (14) is 2M. Call this 81:

(35) s1=2M=2Vv/.
Then from (21a)

(36) s2 + s3 x- 2M

and from (2lc), after reduction,

Eliminating s3 between (36) and (37) gives the quadratic equation for s2,

(38) s + (2M x)s +y- 2xv/-- 0.

Notice that the symmetric 5DT is a special example of this, for which y z and
v w. Equations (35) and (38) still hold.

Another subset of the pseudosymmetric case can be referred to as a banded
determinant, i.e., the Toeplitz determinant for which

y--z=0.

Equations (35) and (38) still apply, with (38) becoming slightly simpler.
Another class of special cases worth mentioning occurs when M2 vw 0.

Obviously, if both v and w vanish, P, reduces to the tridiagonal (3DT) case treated
at (3). However, if we take w 0 and v 0 we have a four-diagonal Toeplitz (4DT)
determinant. Correspondingly, we may take c 0, implying 0 (9e,b), and instead
of (lS), we now have, from (S) and (3),

(39) Pna, (amj)n/Un (..2 )
where mj Vinci, and Aj aj2/m; thus the 4DT determinant can be expressed as
a linear combination of Chebyshev polynomials, instead of a bilinear one. In place of
(17), A. now satisfies a linear equation

(40) [sj(x sj) yz]A:i + (x sj) 2 O,
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although the roots s. must still be obtained by solving a general cubic, namely

(41) s3 xs2 / yzs z2v O.

The quantity a}mj appearing in (39) can be easily evaluated by returning to (9) and
recalling that m. w c. 0, s. a. Thus,

(42) am a}cy-- z s--.
An alternative expression easily derived from (22b)is: a}mj v/Se.
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OF HYPERBOLIC PLANE ROTATIONS*

C. T. PAN AND KERMIT SIGMON$

Abstract. An algorithm for downdating a least squares problem using hyperbolic plane rota-
tions has recently been presented and analyzed by Alexander, Pan, and Plemmons. Their analysis
of the numerical stability of the algorithm rests on the existence of a tight bound on the product
of the norms of a certain collection of hyperbolic rotations. The main result of this paper, which
was obtained in conjunction with that work, establishes the required tight bound. The inequality
established may be of interest in its own right.
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1. Introduction. The objective of this paper, simply stated, is to solve the
following problem.

PROBLEM. Given a E Rn with Ilal12 < 1, find a sharp bound for the product

(l+a) 1+
l-a2 1+

V/i_a: -,.._an_
in terms 4 la[] and n.

While this problem may be of interest in other contexts, the results presented
here were motivated by and obtained in conjunction with the work of Alexander, Pan,
and Plemmons [1] in which an algorithm for downdating a least squares problem using
hyperbolic plane rotations,

- c
c-eosh0, s=sinh0,

is analyzed. The conclusion of [1] on the accuracy of the results of the hyperbolic
rotation downdating algorithm, under some simplification, rests on the existence of a
tight bound for the product of the norms of a certain collection of hyperbolic plane
rotations. As we will show, the question of the existence of such a bound is equivalent
to the problem stated above. Our main result establishes such a bound. In addition,
certain identities needed in [1] are established.. Preliminaries. In this section, we establish notation as well as some identities
which are needed both in the sequel and in [1]. The reader is referred to [1] for the
details of how this relates to the least squares downdating problem.

Suppose R Rnx is upper triangular with positive diagonal and z, a Rn

satisfy arR zr and Ilall < . we denote by

H,H,... ,H R(+lx(+l
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the sequence of hyperbolic plane rotations which, if well-defined, consecutively "zero"
the coordinates of z"

R ) R
Z(0)T ] [zT] and [ R(k) R(k-1)

where

Ck

--Sk

Zk (k-l)

rkk

Ck :=
V/1 tk2

8k tkCk

We now establish identities which express tk, ck, and sk in terms of a. For the
remainder of the paper Ilxll will denote the 2-norm of x defined by Ilxll :- V/-xTx.

LEMMA. If Ilall < 1, then for each k 1, 2,..., n, we have the following:

(1) z(k) -(z--RTak)/V/1- (al 2 +...+ak2), whereck "--(al,’" ,ak,O,’’’ ,0)T

(2) tk ak/v/1- (al 2 -I-’"-t-ak-12); hence Itkl <_ IlOzkll <_ Ilall < 1 so that Hk
is well-defined.

(3) Ck V/1 (al 2 +... + ak-12)/V/1 (al 2 +"" + ak2) and

sk ak/v/1 (al 2 +"" + ak2).
(4) cic2""Cn l/V/1- Ilall .
Proof. We first prove (1) by mathematical induction on k. It is convenient to

set ao 0(zero vector) and begin the induction at k 0, where we have that

z() z -(z- RTao)/V/i --I1oll
Now suppose that z(k-i) (z- RTak_I)//1- Ilak_ill 2. If we let rk denote

the kth column of R, then since zk rkTak rkTozk-1 -t- akrkk, it follows from the
induction hypothesis that

Zk
(k-l) akrkk

and hence

Zk (k-l) ak

rkk V/1_ iio_111:

Then Itk] <_ IIll -< Ilall < 1 so that ck and Sk are well-defined; in particular,

ck V/1- Ilak-lll2/V/1- Ilakll 2 and sk ak//1- Ilakll 2. The induction step is
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completed by noting that

z(k) --SkRkT + CkZ(k-l)

--akRkT -t- (Z RTOk_l)

z R c

1- 111
where R denotes the th row of R.

It only remains to observe that the identities for t, c, and s in (2) and (a) were
established in the proof of (1) and that (4) follows easily from the identity for c.. Source of the roblem. In the analysis given in [1] of the numerical stability
of the hyperbolic rotation downdating algorithm we are lead to the need for a bound
for

k=n k=l

We would like this bound to be in terms of ]a]] and n since Stewart [3] has shown that

the nearness of ]]a to 1 in particular, the size of 1/1 -]a][ 2 is a measure of
the condition of the problem.

On the one hand, if [a[ is near to 1, the above products must be large. To see

this note that the (n + 1, n + 1)st entry of Hn’"H2H is cc2""cn 1/1- {]a{[ 2

and hence 1/ -I[aIl IlH... HHli[. [Thanks go to the referee for pointing this

out.]
On the other hand, it is easy to show that

so that

IIHkll-- Ck + Ik] Ck(X + Itkl),

It
in terms of Ilall and n. We should note that, since tk ak/V/1
this is exactly the problem stated at the beginning of the paper.

n n n

H IIHkl]- (ClC:2""Cn) H(1 + Itkl)
1 H(1 + Itkl).

k--1 k:l V/1- Ilall :
The products are, therefore, bounded as follows.
THEOREM. If Ila[I 1, thn

n
1

n
1

<-[[ H Hk[[

_
H [[Hk[[

_
H (1 + [tkl).

V/1 ][a[[ 2 Vk=n k=l 1- [[a[[ 2 k=X

The factor 1/W/1 I[a[l:2 is just Stewart’s measure of the condition of the problem.
remains, therefore, to find a tight bound for 1-I=1(1 + Itk[)

:2 -4-’"-[- ak-12),
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Of course, since Itkl < 1 for each k, 2n is one bound for the product, but not a
satisfactory one. We will show below that a much tighter bound exists.

4. The bound.
THEOREM. /]" Ilall < 1, then

H( / Itl) _< 1 + 1 1-Ilall
=1

Thi bound i sharp with equali bein obtained when
Pro@ Define f on N by

f(al,a2,...,an) :: H(I+

1+
l-(al+...+a )=1

or fixed I111, w show that the mimum obtained by f on the n-sphere
+ a +... + 111 in Rn is indeed

Bn "= 1 + 1- @1 -I111

Since f(a, a,... a) is invariant under arbitrary change of signs of al, a, a,
it suites to consider f on the positive cone of N. Therefore, we assume henceforth
that ai O, and hence ti O, for each i.

We first show that equality is obtained when t t tn. In this ease we
have that

(1 aa+l al a)
2 2 2 2a( a a_ a

2 2
ak

2 a ak

a( a).
A simple inductive argument gives

2a a (-a)-for each k. Hence
2

=a l+(1-a )+(1-a +...+(1-a

1 (1 a)n
since 0 < 1 a < 1. Solving for a yields

for each k. Therefore, at this particular point b where t t, we have that

f(b) (1 + t)= 1 + 1 1-
=1
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To establish the inequality we proceed by induction on n. For n- 1 the result is
immediate. We assume the inequality holds for n- 1 and show it holds for n. It is
convenient to set

Tn := {x e Rn IIxll- Ilall and x _> 0 for each i},
Tn := { x E Rn Ilxll- Ilall and x > 0 for each i}.

Since f is continuous on the compact set T,, it must attain a maximum at some
point of T,. We next show that this point must be in Tn. If, for any fixed io, ao is
constrained to be zero, the product

f(al,... ,an) l-I 1+
k----1

ak )V/1-- (al2 - :. W ak_l 2)

reduces to the (n-1)st case. It follows from the induction hypothesis that f(al,..., an)
<_ Bn-1 on the complement of Tn in Tn. But it is shown above that f(b) Bn
at that point b in Tn where tl tn. Using derivatives one can easily show that
Bn > Bn-1. We then have that b Tn, so f must attain its maximum in Tn.

We complete the proof by showing that the point in Tn where f attains its
maximum must in fact be the point b corresponding to where tl tn at which,
as shown above, f (b) Bn.

By the principle of Lagrange multipliers, we have that

Vf(al,’" ,an)--Vg(al,... ,an)

for some A R at the point a at which f attains its maximum, where g(xl, ,Xn) :--

x 2 +... + Xn [2, p.374] Hence o_L 2Aak for each k so thatOak

1 Of 1 Of 1 Of _2
al Oal a20a2 an Oan

It then follows from the following lemma that t t2 tn so the proof is
complete.

LEMMA. If
1 Of 1 Of
ak Oak ak/l Oak/l

at a point in Tn, then tk tk+l.
Proof. First note that since ti ai/v/1 (a2 +... + ai_ ) we have

akai ti 3
ak-- if i > k,

(1 -al 2 -ai_12)3/2 ai 2

1 mtk if i k,
V/1 (al 2 -... W ak-12) ak

if i k.

for fixed k (1/ak) -O-h- ti3/ai2 is the same for allObserve that Oak
i > k and (1/ak)0_ 0 for all i < k. Hence corresponding terms in the expansionsOak
of (1/ak) -2L and (1/ak+l) O[ by the product rule for derivatives agree, exceptOak Oak+l
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possibly in the kth and (k + 1)st terms. Therefore

1 Of 1 Of
ak+ Oak+ ak Oak

tk+l 2 t-"k (1 + tk+l)]
[ak+12 (1 + tk)(1 tk+l

ak2

tk+l (1 + tk)(1 tk+l) t___k
ak+l ak2

1-I +
i=/=k+

Since (1/ak) -L (1/ak+l) 05
Oak Oak+l we have that

tk
ak 2

tk+l
ak+l 2 (1 + tk)(1 tk+l).

But from the relation ai
2 ti2(1-al 2

(tk+12/ak+12)(1- tk2). It follows that
ai-1 2) we easily show that (tk2/ak2)

tk+l 2 tktk+l(1 tk 2) (1 + tk)(1 tk+l)
ak+l 2 ak+l

so that tk+l(1 tk) tk(1 tk+l), and hence tk+l tk. [::l

4. Numerical values of the bound. Below we give some numerical values of
the bound

Bn 1 + 1- __1- Ilall

It can be seen that Bn does not grow rapidly with n unless Ila[I is very close to one.
It is on the basis of this fact and the results of Stewart [3] that the general conclusion
is drawn in [1] that the results of the hyperbolic rotation downdating algorithm are
accurate unless the problem is ill conditioned.

As noted earlier, 2n is a bound for the relevant product. Since Bn 2n when

Ilall 1, the rightmost column of Table 1 below gives approximations of 2n. It is seen,
therefore, that Bn is a significantly tighter bound than 2n unless Ilal] is very near 1.

TABLE 1
Approximate values of Bn

][a[[ 1- 10-1 1- 10-2 1- 10-4 1- 10-6 1- 10-s 1
n
10 27 91 280 482 649 1024
20 144 1138 1 104 4 104 9 104 1 106
30 524 8103 2 105 1 106 5 106 1 109
40 1553 4266 2 106 2 107 1 l0s 1 1012
60 1 104 7 104 1 l0s 4 109 5 1010 1 1018
80 5 104 7 106 4 109 3 X 1011 6 1012 1 1024
100 2 105 6 107 8 101 1 1013 5 1014 1 1030
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